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ON TEICHMULLER’S MODULUS PROBLEM IN R"

MATTI VUORINEN
1. Introduction.
For xe R™\ {0,e,},n =2, e, =(1,0,...,0), define
(1.1) p(x) = ‘iEnfM(A(E, F:R")
,F

where E and F are continua with 0, e, e E and x, oo e F (see Section 2 for
notation). O. Teichmiiller has suggested the problem of evaluating p(x) in terms
of well-known functions when n = 2. Making use of the geometric method of
symmetrization, he also solved this problem in the particular case x = te,,t > 1,
when the extremal continua E and F are linear and constitute the boundary
components of a ring which is conformally equivalent to the so-called Teichmiil-
ler ring.

M. Schiffer [S] gave a qualitative solution of the general case of this problem in
1946 and a quantitative expression for p(x) was found by H. Wittich in 1949 [W].
G. V. Kuz'mina’s book [K] contains a complete account of this extremal
problem of conformal geometry with several applications to univalent functions
(pp. 187-217). See also J. G. Krzyz [Kr].

Generalizing Teichmiiller’s work on symmetrization to the multidimensional
case F. W. Gehring [G1] proved in 1961 that the conformal capacity of a ring
decreases under symmetrization. By performing spherical symmetrizations with
centers at 0 and e, we see by [G1] that for xe R"™\ {0, e,}

(1.2) p(x) = max {z(|x]), t(Ix — e,])}

where 1(s) = 1,(s) is the capacity of the Teichmiiller ring in R" (see Section 2).
Equality holds in (2.1) if x = se, and s < 0 or s > 1. Therefore Gehring’s work
provides the answer to Teichmiiller’s problem in the particular case x = te,,
t > 1. Finding a multidimensional analogue of the general case, i.e. generalizing
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Schiffer’s and Wittich’s work to R" seems extremely difficult and no results of this
kind are known.

In the present paper we shall prove the following results in the direction
opposite to (1.2).

1.3. THEOREM. For xe R™\ {0,¢,}, Ix — e,| < |x|
(1) p(x) = 2t(x — ey]), when |x + 4] 2 2,
2 p(x) = 4t(lx — e,]), when |x| 2 1,
Q) p(x) < 2" 1(lx — e,)).

This theorem enables one to find some estimates for a conformal invariant
introduced by J. Lelong-Ferrand in [LF] and studied by the present author in
[Vul. If G = R" is a domain with card (R"™\ G) = 2 set ([LF],[Vu])

(1.4 Ag(x,y) = inf M(A(C,,C,;G))

Cx,Cy
where x, ye G, x # y, and where C, and C, are disjoint curves in G with xe C,,
yeC,and C,n 3G + & + C, N 0G. The conformal invariant A4(x, y) has found
recent applications to the theory of manifolds of negative curvature, due to P.
Pansu [P]. The main result of this paper is the following theorem.

1.5. THEOREM. 1 £ Agny (o, (x, ¥)/1(Ix — yl/min{|x|,|y[}) < 4 for x,ye R"™\ {0}.
An immediate application of Theorem 1.5 is the next result.

1.6. THEOREM. If f:R" — R"is a K-quasiconformal mapping with f(0) = 0, then
for x,ye R™\ {0}

S0 =10 1-1(-‘_T< b =y ))
min{| (L | fWI} = 4K "\ min {|x},lyl} /)

We shall give several applications of the above results to the distortion theory
of quasiconformal mappings. Because the special function t— 1~ 1()/(4K) ad-
mits a dimension-free hélderian majorant (cf. [AVV1] and Theorem 2.15 below),
Theorem 1.6 provides a dimension-free distortion theorem. For further results of
this kind, see [AVV2]. An application of Theorem 1.6 is contained in [AVV2,
Section 4].

For a general domain G there is no counterpart of Theorem 1.5. A simple
counterexample for n = 2 is the unit disk minus a radius. If, however, R"\ G is
a null set for extremal distances in the sense of Ahlfors and Beurling, then there is
a counterpart of Theorem 1.5 for G. More generally, this holds if R™\ G is
a QED-set in the sense of Gehring and Martio [GM], as we shall prove.
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In Section 2 we prove some functional inequalities for 7(s) which are crucial for
the sequel and are perhaps of independent interest. Sections 3 and 4 contain the
proofs of Theorems 1.3 and 1.5 together with some applications. In Section 5 we
prove a distortion theorem for Mobius transformations and give a conformally
invariant formulation of Theorem 1.5 in terms of the absolute ratio.

The functional inequalities in Section 2 are particular cases of more general
results, which are given in [AVV3]. In the two-dimensional particular case one
can improve the results of this paper by using the methods of [K]. Such results
are given in [LeVu].

I wish to thank Prof. M. K. Vamanamurthy of Auckland, New Zealand for his
detailed comments, which led to some improvements in the text.

2. Some functional inequalities for z(s)

2.1. Notation. We shall adopt the relatively standard notation and termino-
logy of [V1]. The coordinate unit vectorsin R" are e,. . .,e,. If x, ye R", then we
denote [x,y] = {ty + (1 — £)x: 0 £t £ 1} and similarly for open or half-open
segments. If xeR™ {0}, then [x,0) = {ux: u 2 1}. For xeR" and r > 0 let
B'(x,r) = {zeR™ |z — x| < r}, $""! (x,r) = 0B"(x,r), B'(r) = B"(0,r), S""'(r) =
0B"(r), B"= B"(1), and S" ' =0B". If J+ A < R" set d(A) =sup{|x — y|:
x,ye A} and d(A4, B) = inf{|x — y|: xe A,ye B} for & + A,B < R".

For the definition and some properties of the modulus M(I') of a curve family I"
the reader is referred to [V1]. If E, F, G are subsets of R" or R” = R" U {00}, then
A(E, F; G) stands for the family of all curves joining E to F in G;see [V1, p. 21]. If
G = R"or G = R", we denote A(E, F; G) = A(E, F). For the definition and some
properties of K-quasiconformal, K-quasiregular, and K-quasimeromorphic
mappings the reader is referred to [V1], [MRV], and [R].

A ring in R"is a domain such that its complement has exactly two components.
By definition, the complementary components of the Teichmiiller ring R(s) =
Ry ,(s) in R"are [ —e,,0] and [se,, o), s € (0, co) while those of the Grotzsch ring
Rg(s) = Rg ,(s) are B" and [se,, ), se(1, o). The capacities of these rings are
denoted by

t(s) = 1,(s) = cap Ry ,(s)
(2.2)

‘V(S) = yn(s) = Cap RG,n(s)'
The following identity holds
(2.3) ys)=2"""e(s*—1), s> 1

It is well-known that (s) is a strictly decreasing function.
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In the special case n = 2, y,(t) has an explicit expression (2.4). No formula like
(2.4) is known for n = 3. For re(0, 1) (see [LV])

=9 Va(l/r) = 2n/p(r); p(r) = K(J/1-r)
2K(r)

where

1 dx
K(r) = .
) L J = x3)(1 —rix?)

The function u satisfies the functional identities
2 ﬁ n? n?

(2.5) ulr) = 2#( ) = = :
TN ()

1+r

By (2.3), (2.4), and (2.5) we get

2.6 t(t) = t/u(1/\/T + 1) = 20/u(/1 + £ = /).

By performing inversions we get

@.7) t,,(s (tl"_st)) — M(A(O, se, 1, [te,,e,]); 0<s<t<1
(2.8) 7.(s) = M(A([ —ey, —ae,],[ae,,e,]), s>0

wherea =1+ %(1 — /1 +5)e(0,1).

2.9. THEOREM. The following inequalities hold

8 7(s) £ (1 + 25) = 2" 11(4s* + 4s), s> 0,
(2 () £ 2125 + 25 /1 + 1/s), s>0,

3) r(s)§t(t)+r(i(;i‘—_;£)—), O<s<t< oo,

) st ( ) < t(u) + t(v), u,v>0.

uto+1

PROOF. (1) Let I' = A(S" " *(—e,/2,1/2),[se,, ). Then by (2.3)
M(I) = y(1 + 25) = 2" 1 1(4s® + 4s)

while by [V1, 6.4] t(s) £ M(I') and the desired inequality follows.
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(2) We can map Ry(s) by a Mobius transformation onto a ring in R" with
complementary components [—e;,e;] and [be,,00)u {0} U [—be,, ),

=14 2s(1 + /1 + 1/s). A symmetry property [GV, Lemma 3.3] of the
modulus shows that

7(s) = 2M(4([0,e,], [bey, 0); {x:x, > 0}))
< 2tb - 1),

as desired.
(3) Let I', = A[—e,,0],[se,, te, 1), I, = A([—e,,0], [le,, c0)). Then by (2.7)

1+t
t(s) £ M(I'y U T) £ M(Iy) + M(T) = r(s(t ha )) + 1(0).
(4) After a change of variables the right inequalities in (4) follows from (3). The

left inequality follows from the fact that  is decreasing.

2.10. COROLLARY. (s) < 21(,/5), s> 0.

PROOF. The left inequality follows from 2.9 (2) because 7 is decreasing. The
right inequality follows from 2.9 (1).

2.11. REMARK. For n =2 2.10 and (2.6) yield the following result for the
function p

u(1/ /1 + 1) £ 2u(1/3/1 + /1) < 4u(1//1 + 1), > 0.

For what follows we require the well-known inequalities [LV, p. 61]
1 4
(2.12) log—<,u(s)<log?, O<s<l,
S $

(2.13) e "<u tu)<de™ O<u<oo.

Note that (2.13) follows from (2.12). From [Vu, 2.14(2), 5.20] we recall that for all
s>0

2
(2.14) c,loga £ t(s) £ c,u(l/a); a=1+ ’S-(l + /1 +5s)

2.15. THEOREM. Forn =2, K = 1, and t€(0,2> )

T Y z(t)/K) < 43 VKUK,

2
PROOF. Let x =t~ !(z(t)/K) and b = log<1 + T(l +J1+ t)).
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By (2.14) we obtain

2
c,,béc,,K;t(l +—;(1 - J1 +x)>

and further
x £ 4p”(b/K)/(1 — u~ ' (b/K))>.

It follows from (2.13) that u~!(b/K) < 1/2 for t €(0,22~3%). From (2.13) and the
above inequality we obtain

x<4 < 437 VKUK

T
t+2(1 + /1 +1)
for t €(0,223X), which is the desired inequality.

2.16. REMARK. Note that the upper bound in Theorem 2.15 is independent of
the dimension n. Some other dimension-free estimates of this type were given in
[AVV1, 3.9].

3. Bounds for p(x)
It follows from the definition (1.1) that the values of p(x) are completely
determined by its values in the set
3.1 Dy = {(x1,0,...,0, x,):x; 2 1/2,x, = 0}\ {e,}.
We shall need the following elementary lemma.
3.2. LemMA. If xe R"™\ B"(—2e,,3), then
A(lx| — 1) 2 min {]x — e,],]x — e,]%}.
PROOF. Write x = x + 2e; — 2¢, and x — e; = x 2- 2¢; — 3e,. Then
Ix|2 = |x + 2¢,|* + 4 — 4(x + 2¢,) e,
Ix — e |* = |x + 2e,)*> + 9 — 6(x + 2¢,) e,
3 = 2lx —e)P =|x +2¢,> ~629 —6=23.

2
Hence |x| = [1 + glx — ¢,]?, so that

2 2
|x|—12 jlx‘_ell

T+ 1+ 3x—e)?
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Case A. |x —e,| = 1. Then

2 —
(3.3a) Motz zal S,
1+ /1+3%
Case B. |x — ¢, > 1. Then
2 —_ —_
(33b) x| — 132X —alx—el o 23

= Ix — el >glx—e
L+ /T+3k—el? " 1+ /1+3 ’

since t/(1 + /1 + }t?) is increasing on (0, c0).
The proof follows from (3.3a) and (3.3b), respectively.

All the upper bounds that we shall prove for p(x) rely on the following lemma,
which is based on Lemma 3.2 and on a lemma of F. W. Gehring [Vu, 2.58].

3.4. LEMMA. Let E = [0,e,] and F = [x, o) for xe R"\ B". Then
(1) p(x) = M(4(E, F)) < (x| — 1).

If xeR"™ B"(—2e,,3), then
) p(x) £ M(A(E, F)) < 2t(]x — e,]).

PrOOF. (1) was proved in [Vu,2.58]. It follows from 2.9(2) that t(u) <
27Q2u + 2 \/17) < 2t(2 \/;) and hence 1(s%/4) < 21(s). From 2.9 (2) it also follows
that t(s/4) < 2 t(s). In conclusion, for s > 0 the following inequality holds

t(min {s,52}/4) < 21(s)
The proof of (2) follows from part (1), the above inequality, and Lemma 3.2.

3.5. PROOF OF THEOREM 1.3 (1). Let Y = {xeS" ! (—e},2): x, = 1/2}. Note
that d(e,, Y) = \/5 It suffices to prove the assertion for xe D\ B"(—e;, 2).

Case A. |x —e,| £ \/5

Choose xeS" !(—e,,2)n D, with |x —e|=|x —e,|. Then |X—¢e(|=

4 sin—l;— where B is the acute angle between the segments [ —e;,e,] and [—e, X].

Let xo = (e, — e,)/2. Because xe D\ B"(—e,,2) we obtain

Ix — Xo|2 2 |X — Xxo)* = 23in[3+—1—2+ l——4sin2—ﬁ—2
o= 0 2 2 2

1
—;~+ lZsin27 + 2sin[i=3(1 + A),

where 4 = 24 sinzg + 4sin B. Because |xo —e,| = 1 /\/5 an elementary but
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lengthy computation shows that

| — Xol A _ B
—— =2 X —e,| = 4sin
Ixo — e 1+ /1+4 ' 2

holds for all xeD,\ B*(—e,,2). Let E, =[xq,e,], E; =[0,x,], and F =
X + t(x — x¢):t 2 1}. By 3.4 (1) and the above inequality

MA(E, F) < (—'—1—"—'— 1) < r(f‘—_—’fi - 1) <t(i— el
|xo — €4l [xo — €]
for j = 1,2. Because |X — e,| = |x — e,|, we obtain

p(x) £ M(A(E, U E,, F)) < 21(lx —e,])

as desired. (Note that the condition |x — ¢,| < \/5 was used only for the con-
struction of x).

Case B. |x —¢,| > \/i
It is easy to see that in the Case B we have

Tg—'_—e—lll 21-1//2> 1/4
and hence by 3.4 (1)
p(x) < (x| — 1) = t(lx — e,|/4).
Finally as 7(s) < 2t(4s) by 2.9 (2), we obtain
p(x) = 21(lx — ey).

3.6. THEOREM. For xe D,\ B"(—(e; + 3e,/(tan))/2, 3/(2sina)) 0 < a < 7/2,
the following inequality holds

p(x) £ 41(2(sina)|x — e,]).

PROOF. Let x, = (e, —e¢,/tana)/2. Let E, =[xg,¢,]. E, =[0,x,], F=
\Xo + t(x — xo):t 2 1}, I'; = A(E}, F). It follows from 3.4 (1) that

M(r)_1-<_l___—_xLI 1)
lxo — €]

for j = 1, 2. Because of the choice of x, lemma 3.4 yields

r(u - 1) < 2r<u> = 2t(2sin o) |x — e,]).
Ixo — €4l Ixo — eyl
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These inequalities yield
p(x) = M(A(E, U E,, F)) < 4t((2sina) |x — e,])
as desired.

3.7. ProOOF OF THEOREM 1.3 (2). Choose « = /4 in Theorem 3.6. May assume
xe D,\ B". The proof follows now from Theorem 3.6.

1

1
EATAT

3.8. PrOOF OF THEOREM 1.3 (3). We may assume xe D,. If x,
then Theorem 3.6 with « = 7/6 yields
(3.9) p(x) = 41(jx — e,]).

Ifx, <—= \/, fxl,choosexeD , with X, = x, and x, ——————x,.Let

Xo = (e, — \/ge,,)/Z, E =[0,xo] U[xg,€,], and F =[x,x]U {xo + (X — xo)
t:t = 1}. Since |X — e,| > |x — e,|, we obtain by (3.9) and (2.3)

p(x) £ M(A(E, F)) £ 41(IX — e4) + M(A([x, X], E))
Sdr(lx —ey) + M(I)
S du(lx —e]) +7(2) = da(lx —ey]) + 2771 1(3)
SE@+2"Dlx —e) S 27 a(lx — ey)
where I' = A([x, %], S"~(%,]% — e,])).

3.10. REMARK. For n = 2 the shape of the extremal ring for p(x) has been
studied by G. V. Kuz’'mina [K, Chapter 5]. If x = (1/2, x,) € D, then the extremal
ring is Mori’s ring, i.e.

p(x) = M(A(E, F));

where E is an arc of a circle with center at x joiningOtoe, and F = {(,):t 2 x,}.
It follows from [LV,(1.11), p. 58] that

p(x) = 2n/u(3\/2 — /4 — 1),

where t = 1/|x|. Choosing x = (4,0) yields

P, 0) = 2n/u(1/3/2)
while Theorem 1.3 (3) yields in view of (2.6)

p(3,0) < 8t(d); () = n/u(/3).
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Therefore the least constant ¢ in 1.3 (3) for n = 2,
¢y = inf{d: p(x) < dt(lx — e,]) Vx, |x — e;| < |x|}

must satisfy

¢ 2 P30/ = 2u(/ D1/ /D =171

4. Bounds for A,

In this section we shall prove some inequalities for the conformal invariant
Zanuoy (X, y) which was defined in (1.4). Previously the exact expression for
/gn(x,y) was found in [Vu]. We shall give also some applications of these
inequalities to quasiconformal mappings.

For xeR"™ {0} we denote by r, a similarity with r (x)=e, and
Ir (y) — eyl = |x — y|/|x|. It follows immediately from the definitions (1.1) and
(1.4) that

4.1) inn\m) (x,y) = min {P(rx()’)), P(ry(x))}'

In particular, in the two-dimensional case one can find an explicit expression for
4a20; applying (4.1) and the expression for p(x) obtainable from [K, Theorem 5.2
p. 192].

4.2. PrOOF OF THEOREM 1.5. We may assume |x| < |y|.

We shall first prove the lower bound. Because |r(y) — e, = |x — y|/|x| and
|r(x) — e,] = |x — y|/|y| and 7 is decreasing the lower bound follows from (1.2)
and (4.1).

For the proof of the upper bound let V be the (n — 1)-dimensional plane
orthogonal to [0, x] at x/2 and let H,, H, be the components of R"™\ V, xe H,.
Consider two cases.

Case A. ye H . Because |y| = |x]| it follows from 1.3 (2) that

/,:'R"\{o}('xﬂ y) = dr(lx — yl/|x]).

Case B. yeH,. Let E; = [0,x/2]), E, = [x/2,x],and F = {x/2 + t(y — x/2).
t2 15, I;=AE;F),j=12 Then by 3.4

M(T)) £ (2ly — x/2|/1x] = 1)
for j = 1,2. Since |y — x/2| 2 \/31yl/2 and |y| Z |x| for ye H, we obtain

Jmioy(X,y) £ M(I'y) + M(T) £ 20(/310/1xl — 1)

3—1|x—y
< 21((/3 = DI/ IxI) < 2T<L L‘_L'>

2 Ix]
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By 2.9 (2) t(s) < 21(4s) and hence we obtain

inn\w;(X, y) = dt(lx — yl/Ix])

as desired.
4.3. REMARK. Let d be the smallest constant in Theorem 1.5 i.e.
d = inf{a: Agn()(x, y) < az(|x — y|/min {|x],|y})
for all x,ye R™\ {0}}.
Then
Armyo (X, —x) = M(A([0, x], [ —x, o0))) = 1,(1)
while by the definition of d
Aamyoy (X, —x) < dt,(2).
In conclusion
d 2 7,(1)/7,(2).

For n =2 we get by (2.6) d > y(l/\/g)/u(l/ﬁ) = 1.17... . It seems probable
that this is the exact value of the contant for n = 2.

4.4. PrOOF OF THEOREM 1.6. Because
)"R"\(O)(x’ y) = Kian\(o;(f(X),f(Y))
holds by [Vu, 3.1] the result follows directly from Theorem 1.5.

4.5. THEOREM. Let G be a proper subdomain of R". Then

Ag(x, y) £ inf Agayi;) (x,¥) < 41(lx — yI/m(x, y))

2e(G
where m(x, y) = min {d(x, G),d(y, 0G)}.

ProoF. The first inequality follows from the monotonety property of the
modulus. For the second, fix zoe dG with d({x,y},{z}) = m(x, y). Applying
Theorem 1.5 to R™ {z,} yields the desired result.

A closed set E in R" is said to be a c-quasiextremal distance or ¢ — QED
exceptional set, c€(0,1], if for each pair of disjoint continua Fy, F, = R"\ E

(4.6) M(A(F,, F3; R"\ E)) 2 M(A(F}, F;))c.

If G is a domain in R" such that R™\ G is a ¢ — QED exceptional set, then we call
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Gac — QED domain. Sets satisfying (4.6) have been studied by F. W. Gehring
and O. Martio [GM], where also examples of sets satisfying (4.6) are given. We
remark that (4.6) holds with ¢ = 1, e.g. for sets of capacity zero (or more generally
for sets of vanishing (n — 1)-dimensional Hausdorff measure) and with
c = 1/2K?)if E = R™ fB"and f:R" - R" is K-quasiconformal.

Next we shall prove a lower bound for A4(x, y)in case G isa ¢ — QED domain.
To this end we require a variant of a well-known lemma, see [V1, 12.7], [GM, 2.6],
[Vu,2.44].

4.7. LEMMA. Let E and F be connected disjoint sets in R" with d(E), d(F) > 0.
Then
1
M(A(E,F)) 2 t1(4m* + 4m) = ¢, log(l + ;)

where c,, is a positive constant and m = d(E, F)/min {d(E), d(F)}.

ProOF. By [V1, 10.12] we may assume that oo ¢ En F. Fix ae E, ce F with
la — c| =d(E,F)and be E, de F with |a — b| = d(E)/2 and |c — d| = d(F)/2, res-
pectively. Applying [G2, Corollary 1, p. 226] we obtain because 7 is decreasing

la—cl |b—ad >T(Ia—-cl(la—bl+|a—c|+|c—~d|)>
la—bl lc—dl)~ la — bllc — d|

M(A(E, F) = r(

= t(u).

Here

= 2d(E, F)(d(E) + 2d(E, F) + d(F))

< 4m? + 2
A(E) d(F) =2m+4m* + 2m
and the first inequality follows. The second inequality follows from [Vu,2.14(1)].

4.8. COROLLARY. Let E and F be connected disjoint sets in R" with0 < d(E) <
d(F). Then

M(A(E, F)) 2 2" ~"1(d(E, F)/d(E)).
ProOF. The proof follows from 4.7 and 2.9 (1).
49. THEOREM. Let G be a c — QED domain in R". Then
Ag(x,y) = ct(s? + 25) = 2! ~"1(s)
where s = |x — y|/min {d(x, 0G),d(y, 0G)}.

Proor. Let C,, C, be connected sets as in the definition (1.4) with xe C, and
yeC,. Let I'y = A(C,,C,; G) and I', = A(C,,C,). May assume d(x,dG) =
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d(y,0G). Fix ueC, and ve Cy with |x — u| = d(x,0G) and |y — v| = d(y,0G) =
d(x, 0G). Because |u — v| < |u — x| + |x — y| + |y — v| we obtain by [G2, p. 226]

M(Iy) Z cM(I) 2 Cr(‘x_—yﬂi‘:_'i>
Ix —ully — vl

1 _
> cr(lx — y|< + = + ! >> = ct(s? +2s)

y—o Ix—ully—o |x—ul

> ct(4s? + 4s) = 21 " 1(s),
where also 2.9 (1) was used in the last step. The proof follows.
If G is a proper subdomain of R" we denote
r¢(x,y) = |x — yl/min {d(x, 0G), d(y, 0G)}
for x,yeG.

4.10. THEOREM. Assumethat G < R"isac — QED domainandthat f:G — fG
is K-quasiconformal with fG = R". Then

/(9. S S 77! (5,,5—1K4("G(xv y»>.

ProoOF. The proof is similar to the proof of Theorem 1.6 except that we use
now Theorems 4.5 and 4.9.

4.11. REMARKS. (1) The hypothesis that G be a c — QED domain cannot be
removed from 4.10. The function f: B>\ [0,e,) = B> {(x,y):y > 0} f(z) = \ﬁ

11
is the desired counterexample. Indeed, let x; = (-2—,7), yi & —=1/h)j=4,5,....

Thenry(x;,y;) = 2,D = B*\ [0,¢,),forallj = 4,5,... whiler ,(f(x;), f(y,)) = o©
as j — oo0. Hence the conclusion of 4.10 cannot hold for this mapping. Note that

Disnotac — QED domain for any ¢ > 0. Also Theorem 4.9 fails for this domain
D.

(2) Theorem 4.9 and hence also Theorem 4.10 can be generalized to so-called
¢-uniform domains (see [Vu]).
If G is a proper subdomain of R" we set
Jelx,y) = log(1 + rg(x,y))
for x, y € G. Note that in [GO] a slightly different function j; was considered. The
next result follows from [GO, Theorem 4].

4.12. THEOREM. There exist constants c and d depending only on n and K with
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the following property. If f is a K-quasiconformal mapping of R" whichmaps G onto
G, then
(4.13) Jef(x), f(Y) = gelx, y) +d
for all x,yeG.
We prove the following result.

4.14. THEOREM. Under the hypotheses of Theorem 4.12, the following inequa-
lity holds for x, yeG.

o 100 5 ¢ (5 ot ).
Proor. May assume d(f(x), dG') £ d(f(y), dG'). Fix z’eG’ such that
[f(x) — Z'| = d(f(x),0G’) and z € dG such that f(z) = z". Then
Ay (%, ¥) £ Klgm (f (%), £ ()
and hence by Theorem 1.5
(rg(x,y)) £ 4Kt(re(f(x), f(¥))
which yields the desired inequality.
Theorem 4.14 together with (4.13) yields
(4.15) Je(f(x), f(y) = min{cjg(x,y) + d, p(j(x, V)}
where ¢: [0, o0) — [0, o0) is a strictly increasing function with ¢(0) = 0, ¢(t) =

log(l + t“(zll—(—t(exp(t) - 1))), t>0.

4.16. REMARK. It is clear by the proof of Theorem 4.10 (cf. 4.9) that the right
side of the inequality in 4.10 can be replaced by

T ! <'4—Tck— T(rD(xa y)2 iy ZTD(X, Y)))

if desired. This observation, together with the fact that the special function
t— 1 1(A1(t), A > 0, t > 0, admits dimension independent estimates, see 2.16,
shows that Theorem 4.10 has a dimension-free counterpart. The same is true
about Theorems 1.6 and 4.14.
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5. Conformal invariance

In this section we shall give a conformally invariant version of some of the
results in Sections 3 and 4. As corollaries we obtain results which are closely
connected with two well-known theorems due to F. W. Gehring [G2] and
S. Rickman [R], respectively. We also obtain a sharp distortion theorem for
Mobius-transformations, which improves an earlier result of A. F. Beardon [B].

The spherical (chordal) metric is defined by

5.1) {q(x,y) ==y + XA+ Lx+0oFy
’ g(x,00) = (1 + |x|*)" %

For A  R", 4 + (J, let q(A) be the diameter of 4 and g(A, B) the distance of two
non-empty sets A, B in R". The absolute ratio of a quadruple a, b, ¢, d of distinct
points in R" is defined by

5.2 a,b,c,d|l =
5-2) | | q(a, b)q(c,d)
If all points are finite, then (5.1) yields

(5.3) la,b,c,d| = %.
We also consider the maximum of two absolute ratios
m(a, b, c,d) = max{|a, b,d, c|,|a, c,d,b|}.
If G = R" is a domain with card (R"™\ G) = 2, then let
mg(b, c) = sup {m(a, b, c,d): a, de 0G}.

For D = R"let GM(D) denote the set of all Mobius transformations f in R” with
fD = D. It follows that m is symmetric

(5.4) m(a, b, c,d) = m(a, c,b,d) = m(b,a,d,c)
and GM(R")-invariant, in other words,
(5'5) mj(a»bsc7d) = m(fa,fb,fC,fd) = m(a,b,c,d)

for all f e GM(R"), because the absolute ratio has this invariance property ([B,
p. 32]). From (5.2) we obtain for x, ye R"™\ {a},a€R",

Ix =yl
min {|x — al,|y — al}

(5.6) m(a, x, y, 00) =
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It follows from (5.3) and (5.5) that
(5.7 mg(x,y) = rg(x,y); G = R"™\ {a}

for x, ye G, where r; is as in 4.10.
Next let us consider mg for G = R", card (R™\ G) = 2. Clearly mg is symmetric
and GM(R")-invariant. Also the following properties are immediate

(1) G, = G, and x,ye G, = mg (X, y) 2 mg,(x, y).

(2) For a fixed ye G, mg(x, y) = 0 iff x = y and mg(x, y) = o0 iff x - 0G.
(3) mg(x,y) 2 9(9G)q(x, y).

@) mg(x,y) < 9(0G)q(x, y)/q({x,y},0G)*.

(5.8

The Poincaré (or hyperbolic) metric p of B" is defined by (see [B, p. 40])

(bo) __ 2lb—c
2 (1 =B —el?)

5.10. THEOREM. p(b,c) = log(1 + mga(b,c)) for b, ce B".

(5.9) chp(b,c) — 1 = 2sh> 2

Proor. By GM(B")-invariance we may assume b= —re, = —c. Then
1+
1 —

2lb—¢ _ p 1A%
m(a,b,c,d) £ T —(4thz)/<l — th 4> .

Since m(—e,, —re,, re,, e,) = 4r/(1 — r)?, it follows that

2
- P _th P\ _ et _
Mgn(b, ¢) (4th4)/(1 th4) e 1.

p(b,c) =2log : or, equivalently, r = th(p(b, ¢)/4). For all a, de B"

For f in GM(R") let
Llp (f) = sup M.
x#y q(x, y)
Then Lip(f ') = Lip f for all fe GM(R"). We call f a spherical isometry if
Lipf = 1.

The next result was proved by A. F. Beardon [B, pp. 41-42]. It should be noted
that Beardon uses d(x, y) = 2q(x, y) in place of g(x, y) and accordingly the con-
stant in [B, pp. 41-42] is different from the constant 2 in 5.11.

5.11. THEOREM. Let D be a domain in R" and let { and & be distinct points of R".
If f e GM(R™) does not assume the values { and & in D, then for all x,ye D

2q(x,y)

NOE |
q(f(x), f(y) q(¢, &)/ q(x,dD)q(y, 0D)




ON TEICHMULLER’S MODULUS PROBLEM IN R" 331

Moreover, the constant 2 is best possible.
We now prove the following sharp result.

5.12. THEOREM. Under the assumptions of Theorem 5.11

q(f(x), £(y) < Lip f q(x,y)
V. 0a(f(),9 = 9¢.9 | /q(x,aD)q(y,oD)

The inequality is sharp.

PROOF. Fix a, de R™\ D such that f(a) = { and f(d) = £&. Now

q(a, d)* g(x, y)*
q(a, x) q(x,d) q(a, y) q(y, d)

(Lipf)? q(x, y)
= q(a,x)q(y,d) q(fx, &) q(fy,0)

(Lipf)? q(x, y)*
= q(x,0D) q(y,0D) q(fx, &) q(f¥. ()

By the GM(R")-invariance of the absolute ratio, we obtain

a({, £)* q(fx, fy)?
q(&, x)a(fx, ) (&, fY) afy. &)’

These two relations together with the GM(R")-invariance of the absolute ratio
yield the desired conclusion.

To see the sharpness of the inequality choose D = R™\ {0}, x = e,, y = —e;,
{ =0, ¢= o0,and f the identity (or the inversion in §" 1),

|a,x,d,YI laaYad’xl =

| fa, fx, fd, fyl|fa, fy, fd, fx| =

Itis clear that, in addition to being sharp, Theorem 5.12 yields a better estimate
than Theorem 5.11 if Lip f < 2.

Let a and d be distinct points in R" and D = R™\ {a,d}. The next theorem is
a conformally invariant version of Theorem 1.5.

5.13. THEOREM. 1 £ Ap(b, ¢)/t(mp(b,c)) < 4 for b, ceD.

PRrOOF. The proof follows readily from (5.5) and 1.5.

5.14. THEOREM. Let D = R" be a c-QED domain such that card (R"™\ D) = 2. If
f: D - fD < R" is K-quasiconformal, then for x, ye D

mep(f(x), f(Y) St~ ! (ﬁ T(mp(x, Y)))

PRrROOF. By the proof of Theorem 4.9

Ap(x,y) = ct(mb + 2mp) = ¢2' " t(mp)
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where my, = my(x, y) while
/lfu(f(x)»f(,\’)) < 4T(mfz)(f(x), f»)
by 5.13 and 4.5. The proof follows now in the same way as in 4.10.

5.15. COROLLARY. Let f: B" — R" be K-quasiconformal with a, de R"\ fB".
Then for x,ye B

e Ix — yI?

ProoOF. By [Vu,2.23] and (5.9)

1 _ ul2
'{B"(xay) = _2-T< |x yl >

(= xP)1 = 1y*)
for x, ye B". Next by (5.8) (3) and 5.13
Appn (f(x), f(y) < d1(mppa(f(x), f(3))
= 41(q(a, d)q(f (x), f()).
The proof follows from these relations as in 5.14.

5.16. COROLLARY. Let f:B" — R" be a K-quasimeromorphic mapping, let a,
de R™ fB" be distinct, and suppose that there exists pe[1,o0) such that card
{f~'(»)} £ p forall yeR". Then

q(a,d)q(f (). f¥) _ r"( 1 ( x — y* ))
q(a, f(x) q(f(y)d) ~ 8Kp "\ (1 —IxI))(1 — [y

for all x, ye B".

Proor. Clearly
mep(f(x), f(¥) 2 la, f(x).d, f(y)l.

The proof follows now as in 5.15, except that we apply now the inequality
Apn(x,y) £ Kp Appn(f(x), f(y) [Vu,3.1(2)].

In view of Theorem 5.10 we may regard Theorem 5.14 as a sort of Schwarz
lemma for general domains. Corollaries 5.15 and 5.16 are close to the results in
[G2, Theorem 1, p. 233] and [R, Theorem 4.4], respectively. In view of 2.15 and
2.16 these results provide some dimension-free distortion estimates. See also
[V2] for some conformally invariant results.
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