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COMPARISONS OF IDEAL STRUCTURES IN ALGEBRAS
OF ANALYTIC FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

HAKAN HEDENMALM'

Abstract:

For a commutative unital Banach algebra, an ideal theory is a characterization of its closed ideals
and the corresponding quotient algebras. We investigate to what extent an ideal theory of an algebra
like A(W) = H* (W) n C(W) for a domain W < C" carries over to a closed subalgebra consisting of
functions holomorphic on a larger domain than W.

§0. Introduction.

The present paper continues my theme from [Hed 2] to C*, n > 1.

For a domain (nonempty open connected set) W in C", let H® (W) be the
Banach algebra of bounded analytic functions on W, endowed with the uniform
norm on W, and put A(W) = C(W)~ H*(W). It is convenient to consider these
algebras only when W is the natural domain of definition for them. For instance,
W should be pseudoconvex, if we want to avoid the Hartogs phenomenon. Very
little appears to be known about the ideal structure and in particular, about the
structure of closed ideals, in such basic algebras as A(W) and H*(W) if n > 1,
even when W is the ball or the polydisc. Yngve Domar [Dom] has described the
closed primary ideals (that is, closed ideals contained is only one maximal ideal)
at interior points for a certain class of algebras, namely the rationally generated
ones. And at least for well-behaved bounded domains W < C", A(W)is rational-
ly generated. More recently, Joaquim Bruna and Joaquin Ortega [BrO] studied
the closed finitely generated ideals in A(W) and A4, (W)= C*(W), k 2 1, for
bounded, strictly pseudoconvex domains W with C*-boundary.

For a commutative unital Banach algebra, let an ideal theory mean a charac-
terization of its closed ideals and the corresponding quotient algebras. The object
of this paper is to investigate to what extent an ideal theory of an algebra like
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A(W)is related to that of a closed subalgebra consisting of functions holomorphic
on a larger domain than W. We obtain results analogous to those in [Hed2], but
our methods are partially different.

The reader interested in these questions should also consult [Hed1,3].

§1. Basic concepts.

All Banach algebras are assumed complex and commutative, but not necessarily
unital. Recall that a uniform algebra is a Banach algebra with a norm equivalent
to the supremum norm of the Gelfand transform. The bilinear form linking any
Banach space 4 with its dial Banach space A* will be denoted by <-,").

For any Banach algebra B, we write .#(B) for its Gelfand (or carrier) space,
equipped with the Gelfand topology. If B has a unit, this is its maximal ideal
space. The hull of a B-ideal I is the set

h(1,B) = {me .#(B): x(m) =0 for all xel},

which is a closed subset of .#(B). It is well known that if I is closed, one can
identify h(I, B) and .#(B/I) (see [Sto, p. 27]). Let B have a unit. Then for any
element x € B,

a(x,B) = {AeC: 1 — x is not invertible}

is its spectrum, and for finitely many y,,..., y,€ B, their joint spectrum o(y, B) =
o(¥15..., Vm; B) (Where y = (y,,..., y,)eB")isthesetof all 1 = (4,,..., 4,)eC"
such that the ideal generated by the elements 4, — y;,..., 4, — y, is proper in B.
Here, complex numbers are identified with the corresponding multiples of the
unit. Let j: #(B) - C" be the mapping y(m) = (y(m), ..., y,(m)), me .#(B). It is
well known and easy to check that if I is a closed B-ideal,

y(h(,B) =0o(y + LB/)=0o(y, + I, ..., y, + I; B/I).

This holds in particular for I = {0}, making j(.#(B)) = a(y, B).

A subalgebra A4 of B is said to be a Banach subalgebra if it is equipped with
a norm stronger than that of B and which makes A a Banach algebra. By the
closed graph theorem, a subalgebra can have (within equivalence) at most one
Banach subalgebra norm.

Let K be a compact subset of C". The polynomially convex hull of K is the set

K = {{eC":|p(0)| < sup|p| for all pe 2(C")},
K
where 2(C") denotes the set of all complex-valued (holomorphic) polynomials in

{=(y,...,¢,). K is polynomially convex if K = K.
Let z; be the coordinate function z;({) = {;for { = ({,...,{,)eC 1 =j<n,
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and letz = (z,, ..., z,) be the identity mapping C" — C". It will be clear from the
context when we use the symbols z and z; to denote functions or points in C" and
C, respectively.

W will for the time being be an arbitrary bounded domain in C".

DEFINITION 1.1. B is an acceptable algebra on W if
(a) Bis a Banach subalgebra of H*(W) containing the unit 1,
(b) zjeBforj=1,...,nand
(c) o(z,B)=W.

REMARKS 1.2. (a) Observe that because of the Hartogs phenomenon, there are
bounded domains W < C" which have no acceptable algebras on them if n > 1.
There are even pseudoconvex W that carry no acceptable algebras. See [Ber] for
a survey on natural domains of definition for analytic functions.

(b) Since point evaluations in W define complex homomorphisms, every
acceptable algebra on W is semisimple.

(c) An acceptable algebra B on W contains ¢(W) because o(z, B) = W, by the
holomorphic functional calculus. In a sense, the algebra B is “sandwiched”
between (W) and H®(W).

For ease of notation, we shall write Z(I, B) instead of Z(h(I, B)) for B-ideals I.

§2. A Lemma.

The following lemma, which will prove useful later on, is probably known. The
author has however been unable to find a suitable reference.

LEMMA 2.1. Let B be a Banach algebra with unit 1, and let A be a closed
subalgebra of B containing the unit. Pick n elements ay, ..., a,€ A". If the joint
spectrum o(a, B) is polynomially convex, a(a, A) = a(a, B).

ProoF. Clearly, a(a, B) < a(a, A), so it suffices t prove the opposite inclusion.
Picka{ =({,, ..., {,)e C"\ 6(a, B). Since o(a, B) is polynomially convex, there
exists by the spectral radius formula a polynomial p such that |p({)| > | p(a)|l, so
that p(a) — p({) is invertible in 4. By the Taylor expansion of p(z) around the

point {, one can find polynomials gy, ..., g, such that
p(a) — p(0) = (a; — () qs(@) + ... + (a3, — {,) 4a(a)
Since gja)e Aforallj=1,...,n,{eC"\ o(a, 4), and the assertion follows.

REMARK 2.2. The one-dimensional variant of this result is well known (see
[Rud], Theorem 10.18) modulo the observation that a compact subset of C is
polynomially convex if and only if its complement is connected.
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§3. The problem and its solution.

Fix the dimension n = 1. Let W be a bounded domain in C". B will be an
acceptable algebra on W; recall that this puts certain restrictions on Wifn > 1.
Let two domains W, and W, be given, of which W, is bounded, such that
W, n W, = W. Itisinstructive for the reader to keep the example W = (D\ rD) x
D, W, = D x D,and W, = (C\\rD) x D in mind; here r is a fixed number in the
interval (0, 1), and D is the open unit disc, as usual. Set B, = B~ H*(W,), and
assume that this algebra is acceptable on W,. Moreover, we assume there is
a closed subalgebra B, of B~ H*(W,) such that B= B, @ B,, meaning B =
B, + B, and B, n B, = {0}. By the closed graph theorem, this implies that B,
and B, are closed subalgebras of B. Of course, the interesting case is when
B, # {0}. We denote by P, and P, the continuous projections onto B, and B,,
respectively, which add up to identity.

We plan to compare the structure of closed ideals in B, with that of B. If I is
aclosed ideal in B,, and J is a closed ideal in B, we can form the extensionT- Bof I,
which is the closure of the B-ideal generated by I, and the contraction J n B, of J,
which is a closed B,-ideal. A basic question arises arises naturally: for which I is
I =T-Bn By, and for which J is J = (J n B,)- B? One would tend to guess that
the pertinent conditions are Z(I, B,) = W, and Z(J, B) = W,. Later, we will show
that under some conditions on B, I = I B n B, does indeed hold if Z(I, B,) = W,,
but we have only been able to obtain the relation J = (J n B,)* B under the
additional condition that Z(J, B) is polynomially convex.

An essential ingredient of our proof is the construction of a continuous
epimorphism (surjective homomorphism) B — B,/I that is canonical on B,/I
that is canonical on B, for proper closed B,-ideals I with Z(I, B,) = W,.

The holomorphic functional calculus (abbreviated HFC) provides us with
a morphism (a continuous homomorphism mapping unit onto unit)

O(Z(1, B,)) = B,/1,

which takes z;onto z; + I,j = 1, ..., n(see [Bou], pp. 31-46, or [Wael, 2]). For
anopenset Q < C, 0(Q)denotes the Fréchet algebra of all holomorphic functions
on ©, and if K is a compact subset of C, ¢(K) denotes the algebra of germs of
functions analytic in neighborhoods of K, endowed with its natural inductive
limit topology. Assuming Z(1, B,) = W,, the HFC morphism gives us a conti-
nuous homomorphism B, — B,/I when composed with the injection mapping
B, = O(Z(1, B,)). Denote by L, the linear mapping B = B; @ B, — B,/I defined
to be the canonical epimorphism on B, and the HFC morphism on B,. L, is
continuous by the closed graph theorem.

PROPOSITION 3.1. Let I be a proper closed B,-ideal such that Z(I, B,) =« W,. If
O(W,) is dense in B,, L, is a continuous epimorphism B — B,/I.
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PROOF. Since L, is continuous and canonical on B, the assertion will follow as
soon as we have shown that L, is a homomorphism.

It is implicit in the assumption that ©(W,) is a subalgebra of B,. Let us now try
to see why this is so. The holomorphic functional calculus (see [Bou], p. 44, or
[Wae2], p. 522) defines a morphism ¢(W,) — B, which takes z; onto z; forj = 1,
..., n, and since the Gelfand transform of the image of an f € O(W,) equals f o2,
we realize that it is just the obvious injection mapping; just check on those
complex homomorphisms which are point evaluations in W;. On the other hand,
if we compose the morphism ((W,) - B, with the canonical epimorphism
B, — B,/I, we arrive at the restriction of the HFC morphism O(Z(!, B,)) — B,/I
to (W)

Hence

Li(f-9) = L(f)Li(g) for feC(W,), geB,,

and since L, is continuous, the assertion is immediate.

For proper closed B-ideals J with Z(J, B) ¢ W,, let A,: B — B/J be the linear
mapping defined to be the canonical quotient mapping B, — (B, + J)/J on B,,
and the HFC morphism

B, - ((Z(J,B)) - B/J
on B,; A, is continuous by the closed graph theorem.

PROPOSITION. Let J be a proper closed B-ideal such that Z(J,B) c W,. If
B, N ("(W)is dense in B,, A, coincides with the canonical epimorphism B — B/J.

PROOF. Just as in the proof of the previous proposition, the restriction to ('(W)
of the HFC morphism ('(Z(J, B)) —» B/J coincides with the canonical quotient
mapping ((W)— (((W) + J)/J, and hence A, is the canonical epimorphism
B — B/J at least on a dense subspace of B. The assertion is now immediate,
because A, is continuous.

PROPOSITION 3.3. Let J be a proper B-ideal with Z(J, B) ¢ W,, such that Z(J, B)
is polynomially convex, and assume A, coincides with the canonical epimorphism
B — B/J. Then there exists a constant C = C(J) such that

lgll < C-ligly, |l forall geJ*.

PROOF. We argue by contradiction. So, assume there is a sequence {g,}§ < J*
such that ||g,|| = 1 for all ke N = {0,1,2,...}, and ||gi|g,I| = 0 as k — oc. Then
there is a sequence | fi|g < B, /il = 1. keN, such that {f.¢,> =1 and
CPyfis 9> > 0ask — oo

We now intend to see how our assumptions on Z(J, B) and A; come into play;
in order to do so, we shall have to take a closer look at how the HFC morphism is
defined in [Bou] and [Wael,2].
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Since Z(J, B) = a(z + J, B/J) is polynomially convex, we can find two poly-
nomial polyhedra,

Ap={{=(,....0)eC":|p)l <r;forallj=1,...,N} and
A, ={{eC:|p Ol < R;forallj=1,..., N},

where N 2 n,R; > r; > |pj(z) + Jlgyforallj=1,....,N,pi({) = {;for1 £ j < n,
and where p;({) is a (holomorphic) polynomial for n < j £ N, such that

ZJ,BycAycAyc Ay c A, =W,
For ease of notation, write p for the mapping (p,, ..., py): C" —» C". Put
Do = {w=(W,,...,wy)eC":|w)| <r;forallj=1,...,N}and
2, = {weC":|wj| <R forallj=1,...,N};
these are two open polydiscs in CV, for which
Ao ={{eC":p(\)eP,} and
Ay ={{eC":p(()e 2.}

Since 9, is a Stein domain and p(A,) is a closed complex submanifold of Z,, the
restriction mapping (2,) — O(p(A,)) is surjective (see [GuR], p. 245, or p. 41 for
the particular case we are interested in. Now since ()(A,) and ¢(p(A,)) can
obviously be identified, it follows that the mapping ¢ : 0(2,) - O(A,) defined by
the relation ¢f = f o p is a continuous epimorphism, and by the open mapping
theorem, ¢ maps open sets onto open sets, or, in short, ¢ is open, because ()(2,)
and O(A,)areboth Fréchet spaces. Let U be the openset { fe O(2,): || f | Ho(@, < 1}.
By the way the topology on (O(A,) is defined , ¢(U) is open implies that there is
a 0 > 0 such that all functions in H*(A,) with norm <J belong to ¢(U).
Expressed differently, to every function fe€ H*(A,) with norm <4, we can find
a function F € O(2,) with | F| y= 4, < 1such that Fop = f. For ke N, choose an
F,e O(2,)such that F,op = P, f,on A,;since | f;|| = 1 and P, is continuous, we
may thus choose the F,’s so that for some constant C, || Fy[ g« (g, < CforallkeN.

By the definition of the HFC morphism (see [Wae2], pp. 189-191, or use the
standard proof of Taylor’s formula together with Proposition 1 [Bou], p. 41, and
Théoréme 2 [Bou], p. 46), the image of P, f, € B =« H®(W,) is

N

P, fi[z + J] =(2ni)‘NJ‘v [T w; = pi(2) + D)~ ' Fi(w)dw,
(Pg) j=1

where $(2,) = {w = (w,,...,wy)eC": |w)| =r; for all j} is the distinguished

boundary of 2,, and dw = dw, A...A dwy. The expression w; — p;(z) + J is

invertible in B/J because |w;| = r; > [p;(z) + J||.
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For ke N, introduce the functions

N
gk(w)=< H(Wj—pj(z)+J)~l’gk> ’ W=(W1’~",WN)EQa
ji=1

where Qs the connected domain {we C":|w;| > Ilpi(z) + J|forallj =1,...,N},
which are holomorphic is Q because the expression [ [}, (w; — p(z) + J) ™! has
a convergent power series expansion locally arond every w e Q, and which satisfy
the estimate

N
%)l < [T lw; = p2) + )7 'll, weQ
j=t
Replacing {¥,}; by a subsequence (this is actually not necessary), we can
assume by normality {#,}J converges uniformly on compact subsets of Q to
some function in ((Q). Since (w; — p;(z))” '€ B, if [w| > pi(2)ll and ||gilg, Il =0
as k — oo, 4, (w) - 0 as k — oo on the set

{w=(wy,...,wy)eC": |wj| > |Ip,(2)| for all j}.

Hence ¥, (w) — 0as k — oo uniformly on compact subset of Q is connected, and in
particular on S(2,).
Since by assumption, A, coincides with the canonical epimorphism B — B/J,

S$(2¢)

P9 = (27ti)_NJ (W) Fi(w) dw.

Now because we know that ||Fy| ;= 4, < C for all k, we may conclude that
<P2ﬁ‘,gk>—‘)0 as k—->OO,
which gives us our desired contradiction.

REMARK 3.4. In connection with the proof of the previous proposition, we
would like to mention the following result by G. M. Henkin and P. L. Polyakov
[HeP]. If M is an analytic variety in the open unit polydisc D" satisfying certain
regularity conditions, there exists a continuous linear operator E: H*(M) —
H*(D") such that Ef|,, = f for all fe H*(M).

We now state our main result, which is formulated in two theorems, Theorems
3.5 and 3.6.

THEOREM 3.5. Assume ((W,) is dense in B, and (W)~ B, is dense in B,. Let
I be a closed B,-ideal such that Z(1,B,) = W,. Then
(@ Z(TB,B)=2Z(,B)andT-BAB, = 1.
(b) L, is a continuous epimorphism with kernel T- B.
(c)  The quotient algebras B,/I and B/T-B are canonically isomorphic.
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PrOOF. Let us first check (b). By Proposition 3.1, L, is a continuous epimor-
phism, so it remains to show that ker L, = I - B, since L, is canonical on B,. Let
m be arbitrary in h(I - B, B). Then m|g: € h(l, B,), and consequently

Z(T"B, B) = 2(W(T-B, B) < 3(h(l, B,)) = Z(I, B,).

Hence Az is well defined. More or less by the definitions of L; and A, the
composition of L; and canonical homomorphism B,/I — B/I- B equals Aj5. By
Proposition 3.2, A5 coincides with the canonical epimorphism B — B/T- B, and
it is now immediate that ker L, = T- B, which verifies (b).

Now we turn our attention to (¢). The mapping L, induces a Banach isomor-
phism

L,:B/kerL, = B/T-B— B,/I.

Since L, is canonical on B, (L;)”* must coincide with the canonical homomor-
phism B,/I - B/T-B.

We proceed with (a). First we show that Z(I- B, B) = Z(I, B,). We already
know that Z(I- B, B) = Z(l. B,), so it suffices to obtain the opposite inclusion.
To this end, let m,eh(l, B,)(c I*) be arbitrary. Then m = [*%(m,)e(T- B)*
is a complex homomorphism in h(I- B, B) = (I B)* n .#(B), whose restriction
to B, is m,, since L, is canonical on B,. Here, Iy : I* — B* is the adjoint mapping
of L,. Since 2(m) = (m(z,),...,m(z,)) = (m(z,),...,m,(z,)), we conclude that
Z(T-B,B) = Z(I, B,). To finish the verification of (a), we need to show that
T-B B, = I. This follows immediately from the facts that L, is canocial on B,
and that its kernel is T- B, by (b). The proof is complete.

THEOREM 3.6. Assume ((W,) is dense in B, and O(W) B, is dense in B,. Let
J be a closed ideal in B. Then
(@)  JisoftheformT- B for some closed B,-ideal I with Z(I, B,) = W, if and only
if Z(J N By,By) = W,; an I that works is | = J N B,.
(b) If Z(J, B) is a polynomially convex subset of W,, then Z(J n B, B,) = W,,
so by (a),J = (T~ B,)-B. In particular, J ~ B, % {0}.

PROOF. Let us first check (a). It will be sufficient to prove that J = (J n B,)- B.
For ease of notation, we write J, = (Jn B,)- B, and observe that J, = J. By
Theorem 3.5(c), the quotient algebras B,/J n B, and B/J, are canonically iso-
morphic. By some elementary algebra, this implies that B = B, + J,. Thenforan
arbitrary feJ, there exists a ge B, such that f —geJ,. Since J, = J, we
conclude that ge J n B, and consequently, f €J,; hence J = J,,.

We proceed with (b). Let v be the canonical monomorphism B,/J n B, — B/J.
Its adjoint mapping v*:J* — (J n B,)* restricts the functionals in J* to B,. By
Proposition 3.3,im v* = J* |, is norm closed, so an application of Theorem 4.14
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[Rud] shows that im v is a closed subalgebra of B/J. Certainly, this subalgebra is
canonically isomorphic to B,/J n B,, and

o(z +J,imv) =o(z + Jn By,B,/J nB,) = Z(J " B, B,).
Since Z(J, B) = a(z + J, B/J) is polynomially convex, Lemma 2.1 shows that
Z(JnB, B)=o0(z+ J,imv)=Z(J,B),
and consequently, Z(J n B,, B,) = W,. The proof of the theorem is complete.

REMARKS 3.6. (a) The above two theorems apply to the algebra A(W)for some
domains W; we refer to [Ran], pp. 280282, 303-307, and 360-361 for details on
when O(W) is dense in A(W).

(b) Ifthe polynomials are dense in B,, it is well known (see [Sto], p. 25) that the
set o(z, B,) = Z(.#(B,)) is polynomially convex. The same result applied to the
quotient algebra B,/I shows that under the same assumption, Z(I, B,) is poly-
nomially convex for all closed B,-ideals I.

(c) There are many domains W to which Theorem 3.5 applies which are not of
product type, that is, not of the form a domain in C' times a domain in C" .
Simple examples are provided by tilting product domains. A nontrivial example
is

W={z=(2,,2,)€C%: |z,|* + |z,|* < 1, |z,] < 1/2,and |z,| > 1/2}.
Here, W, is the set
{zeC?: |z > + |z,)* < 1, |z5] < 1/2},
and W, is
{zeC2: |z,| < 1/2,|z4] > 1/2}.

The point is that the distinguished boundaries of W, and W, do not intersect, so
that we can get a decomposition B = B, @ B for the algebra A(W).

(d) Ifw:Z" - (0, o) is a submultiplicatieve weight function when Z" is given its
standard additive group structure, we can introduce the Beurling algebra
I'(w,Z") as consisting of those functions f: Z" — C for which

Il =% If@)lw@) < o,
aeZn
supplied with convolution multiplication. For a class of weight functions, which
is the one-dimensional case n = 1 consists of those which are of what one calls
analytic type, Theorems 3.5 and 3.6 gives us information about the relation
between the ideal theories of I'(w, Z") and its closed subalgebra I'(w,N x Z").
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