MATH. SCAND 63 (1988). 268-281

ON PLURIHARMONIC INTERPOLATION

JEAN-PIERRE ROSAY and EDGAR LEE STOUT*

Introduction.

Given a domain Q in C” a closed subset E of bQ is called an interpolation
set if given a continuous function ¢ on E, there is an f € 4(Q) = C(Q) N 0(2),
0(£2) the space of functions holomorphic on @, with f = ¢ on E. The study
of these sets has been an active part of the theory of the boundary behavior
of holomorphic functions since the characterization, due in independently to
Carleson [5] and to Rudin [12] of the interpolation sets in the boundary
of the unit disc in the plane. The study of these sets in the case of domains
in C" is much more complicated than the disc case and leads to some serious
questions of a geometric nature. For the theory in the case of the ball, one
may consult the book [13]; see also the newer survey [14].

Recently the subject of pluriharmonic interpolation has been broached by
Bruna and Ortega [3], who show:

If T is a smooth simple closed curve in the boundary of the unit ball B,
that is everywhere transverse to the complex directions in bB,, then there is a
closed subspace & <= C(I') of finite codimension every element ¢ of which is of
the form ¢ = u|I" for some function u pluriharmonic on B,, continuous B,

(Their result is true also for strongly pseudoconvex domains, as they remark.)
It will be convenient to introduce the notation that for a domain Q in C",
Ph¢(2) denotes the space of real-valued functions pluriharmonic on Q and
continuous on Q. Recall that a function is pluriharmonic if locally it is the
real part of a holomorphic function. For nonsimply connected domains, this is
not equivalent to the condition that u = Re f for some holomorphic function f
for the conjugate of u may very well be multiple-valued.

Two remarks are in order. First, the Bruna-Ortega result treats an essentially
multivariate problem, because on the disc or, more generally, on reasonable
domains in the plane, the Dirichlet problem is solvable. Secondly, notice that
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the question is not that of interpolating C(I'), to within a finite dimensional
subspace, by functions u = Ref, f € A(B,): According to [15], if E < bB, is
a closed set with Re A(Q)|E closed in Cy(E), then the set E is an interpolation
set for A(Q).

That one interpolates, in general, only a finite codimensional subspace of
Cg(I') appears in the work of Bruna and Ortega for funtional-analytic
reasons: An operator between Banach spaces that is the perturbation of a
surjective operator by a compact operator has closed range and the range has
finite codimension. In fact, there is a simple geometric explanation for the
phenomenon: Let V be a nonsingular one-dimensional complex submanifold
of a neighborhood of B, that meets B, and that meets bB, transversally
and in such a way that I' = V ~ bB, is a simple closed curve ; it will be smooth
by the transversality assumption, and it is necessarily transverse to the complex
directions in bB,. If each ¢ e Cg(I') is the restriction to I' of a function
ue Ph¢(B,), then every @€ Cx(l') = Cr(b(V n B,)) extends to a function
harmonic on ¥V n B, that is the real part of a function f e O(V n B,). This
can occur only when V is simply connected. (By Theorem IV.1 of [16], every
compact bordered Riemann surface with connected boundary can be realized
in the form V n B, contemplated here.)

In the sequel we shall use frequently the observation that for an arbitrary
closed set E < bB,, if Ph‘(B,)|E has finite codimension in Cg(E), then
Ph¢(B,)|E is closed in Cgr(E). To see this, let ¢ be the restriction operator
from Ph¢(B,) to Cr(E). By hypothesis, there exist ¢, ..., ;€ Cq(E) such that
each ue Cgx(E) is of the form

d
u=glE+ ) cjp;, gePh(B,).
j=1
The operator g is continuous, so T: Ph¢(B,) ® R? - Cgr(E) given by
d
T(g,c)=glE+ Y c:o;
j=1

is continuous and surjective. If K : Ph¢(B,) ® R* - Cg(E) is given by
d
K(g.,c)= 3. ¢;0;

j=1

then K has finite rank, and so ¢ = T —K has closed range.
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The results.

Motivated by the result of Bruna and Ortega, it is natural to extrapolate:
Perhaps every totally real smooth submanifold in bB, that is transverse to the
complex directions is a pluriharmonic interpolation set, at least to within a
finite dimensional subspace. The thrust of the present paper is that this extra-
polation is completely unwarranted.

We fix a bounded domain Q in C", n = 2, with bQ of class C! so that for
some real-valued function Q of class C! on C",

Q={zeC":Q(z) < 0},

and dQ vanishes at no point of bQ. At each point p € bQ2, we have the tangent
space

T,(bQ) = {ve T,(C"): dQ(v) = 0};

with suitable identifications, this is a real affine hyperplane in C" that passes
through the point p, and as such, it contains a unique complex affine hyper-
plane that passes through p. This complex affine plane is denoted by Tcp(bQ).
A submanifold M of bQ is said to be complex tangential if at each point
peM, T, (M) is contained in Tg(bQ). If at pe M, T,(M) is not contained in

»(09), then M is said to be transverse to the complex directions at p or
simply transverse at p. Those M’s that are transverse to the complex directions
at each of their points will be called transverse submanifolds. We recall (see [4])
complex tangential submanifolds of strongly pseudoconvex boundaries are
necessarily totally real.

Our first result is the following fact.

1. THEOREM. If M < bQ is a compact C* submanifold of C", possibly with
boundary, M of dimensional at least two, such that Ph*(Q)|M is a closed
subspace of Cq(M) of finite codimension, then M is complex tangential.

It would be more natural to suppose M to be a submanifold of class C'
rather than of class C?, but the present arguments do not seem to yield this
stronger version. Recall in this connection that the corresponding result for
interpolation by A(€2) on manifolds of class C! (see [13]) requires ideas beyond
those used in [10] to treat the class of C''! manifolds. In contrast with the
argument given below, the C! interpolation theorem for A(R) uses in an
essential way the assumptions that b is of class C? and that the interpolating
functions are defined on Q rather than on certain wedges.

The proof we give for the theorem depends on ideas familiar in the study
of C* wave front sets. In this connection, see [2].
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For nonsmooth sets, we have the following rather special noninterpolation
result.

2. THEOREM. If X is a compact subset of bB, such that the Cech cohomology
group H*(X,C) is not zero, than Phe(B,)|X is not a closed subspace of
Cr(X) of finite codimension.

As an example, every closed two-dimensional topological submanifold, not
necessarily smooth, of bB,, satisfies the hypotheses. In contrast with Theorem 1,
Theorem 2 is a global theorem; it is not clear what might be a local version
of this theorem, though one might conjecture that, as in the case of A(Q)
interpolation (see [17]), interpolation sets E < bB, for Ph¢(B,) have topo-
logical dimension not more than n— 1, provided n = 2.

Let us now turn to the proofs.

Proor or TueorREM 1. We will deal first with Theorem 1 under restrictive
hypotheses: We assume that

1°.  Q is strongly pseudoconvex, bQ of class C? and that
2°. M is totally real and real-analytic.

We shall show then that if M is transverse, Ph°(Q)|M omits a subspace
of C*(M) of finite dimension. This is a very special case of the general theorem,
but as its proof is a rather direct application of the edge-of-the-wedge theorem,
it seems worth independent treatment.

The proof depends on the edge-of-the-wedge theorem as follows. As M
is totally real and real-analytic, M has a complexification M* in C": In some
neighborhood W of M in C”, there is a k-dimensional complex submanifold
M* that contains M, k = dim M. If the neighborhood is chosen correctly,
then M* admits an antiholomorphic involution ¢: M* — M* that leaves M
fixed pointwise. We have assumed that the submanifold M of bQ is transverse
to the complex directions, so the complex manifold M* meets bQ transversally
along M. Choose a smoothly bounded strongly pseudoconvex domain Q, < Q
with the property that bQ, contains M and is otherwise contained in Q.
According to the edge-of-the-wedge theorem, there is a neighborhood U of M
in M* with the property that if f is holomorphic on Q, " M*, if g is
holomorphic on the domain ¢(Q, n M*), and if the boundary values of f
and g along M agree, then for some holomorphic function F on U, F agrees
with fon U n Qy n M* and with g on U n o(2, N M*). (We need not enter
into a discussion of precisely how the boundary values of f and g along M
are to be assumed. It suffices that they be assumed continuously or, in the event
that f and g are bounded or merely have bounded real parts so that the
boundary values exists nontangentially at almost every point of M, it suffices
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that these a.e. existent boundary values agree.) A consequence of this is that
if u is a pluriharmonic function on Q, N M* that assumes continuously the
boundary value zero along M, then u continues pluriharmonically into the
open set U in M*. The domain Q, n M* in M* is strongly pseudoconvex
— at least if we choose Q, correctly, it will be. Thus, there is a function ¥
holomorphic on a neighborhood of the closure of 2, n M* that has a pole
at a point geQ n M* nU. There is a monic polynomial P(X) in one
indeterminant and with complex coefficients such that if @ = P(y), then the
restriction of Re® to M is of the form u|M for some ue Ph¢(Q)|M. (It is
here that we use the hypothesis that Ph°(€) interpolate a subspace of C“(M)
that has finite codimension.) The function u, = u — Re @ is pluriharmonic on
Q, and assumes continuously the boundary values zero along M. Thus, there
is a pluharmonic function u* on U that agrees with u, near M.

Since the function u is pluriharmonic on all of Q and since, on the other
hand, Re @ has a singularity at the point g, we have a contradiction, and our
special case of Theorem 1 is proved.

It is plain that there are certain local variations of this argument.

Let us now take up the proof of Theorem 1 in the general case. We make
a preliminary reduction.

Suppose that the manifold M < bQ is not complex tangential. Thus, at some
point, p, which may be chosen not to lie in bM, the tangent space T,(M)
contains two linearly independent vectors &' and &" with, say, ¢ not in
Tcp(bD). There is then a C? two-dimensional disc with boundary, call it X,
that is contained in M and that passes through p such that T,(X) is spanned
by & and &”. The disc X is totally real at p and so in a neighborhood of p;
we may suppose that X is totally real at each of its points by shrinking it as
required.

Notice that if Ph¢(Q)|M is a closed subspace of finite codimension in
Cr(M), then Ph¢(R2)|Z is a closed subspace of finite codimension in Cg(Z).
This is more or less evident : Put E = Ph¢(Q)|M so that for some finite dimen-
sional subspace F < Cg(M), where Cg(M)=E @ F. Let g:Cr(M) - Cx(2)
be the restriction map, and let ng and n be the projections of Cq(M) onto
E and F respectively. Thus, if f € Cxg(M),

of = engf+enef
whence
engf = of —onef.

This exhibits the operator gng:Cr(M)— Cgr(Z) as a finite dimensional
perturbation of the surjective map g; as such it has closed range of finite
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codimension, whence ¢E is a closed subspace of finite dimension in Cg(2).

Accordingly, we may proceed under the assumption that the M in the state-
ment of the theorem is totally real.

We shall need the following fact:

3. LEMMA. If f € O(Q2) has bounded real part, then
(i) |f(z)] = const. log(dist(z, bQ))" !, and

(ii)

I (z)! < const. dist(z, bQ)™'.
0z;

Proor. The estimate (i) follows from (i), and (ii) is a consequence, granted
the Cauchy-Riemann equations, of the estimate (see [9, p. 109]) that for a
harmonic function u on a domain D < R™,

ou

Ox

< mdist(x, bD) ™! sup |ul.
| D

In the sequel, we will not use the full force of (i) but only the estimate that
|f (z)| = const.dist(z, bQ)~*.

To prove the theorem, consider an M < bQ that is a manifold of class C?,
M transverse to the complex directions on b2 and totally real. Assume 0 M. As
M is totally real, there is a map

¢:Rk>C"

with @(0) = 0, @ of class C?, @ carrying R* diffeomorphically onto a neigh-
borhood of 0 in M* The map & admits an extension, again denoted by @,
to a neighborhood of R* in C* in such a way that, near 0 e C*,

1) [0®(z)] = o(ly]), z = x+iy, x,yeRk

(For this see Hormander and Wermer [7].) The hypothesis that M* be
transverse implies that

d®(T,C*) & Ty, (bRQ) for xeRk

To see this, note that by hypothesis there is ¢e T,(R*) such that
dD(£) ¢ To(,(bR2). As 3 = 0 on Rk,

d®,(J) = JdD,(S)
is a vector in T, (®(C*)) that does not lie in Ty, (b€2).

As ©(C*) is transverse to bQ2 along M*, &~ !(bQ) is a certain real hyper-
surface through R* — we work locally along R* only. There is, then, a purely
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imaginary vector iyo, yo = (39,..., yf) € R, such that d®,(iy,) points into Q.
(That is, d®(iy,) is not tangent to bQ at 0, and the component of it
normal to bQ at 0 is an inner normal.) If we act on our geometric configuration
by elements of GL(k, R), we preserve the essentials of the geometry; we may
assume therefore that u, = (1,0,...,0).

Fix a cone V, in R* with vertex 0 and axis uy: For some small n > 0,

Vo = {y eR*;|y'| < ny;}

where for y= (yi-.u¥), ¥V = (V2y...)€R*" L Let V¢ denote the
truncation

Ve ={yeV:lyl <o}

If ¢ and 7 are small enough, we shall have that (V) = Q U {0}, and, indeed,
for sufficiently small J,, the image under & of the wedge

W, = {x+iVf:xeR" x| < 8o}

will be contained in Q. We shall have, in addition, dist(®(x +iy), b2) 2 const. |y].
Consider now a function u € Ph¢(Q2). Our analysis is entirely local, so there
is no loss in assuming £ simply connected so that u = Ref, f holomorphic
on Q. There is no reason for f to be bounded, but we do have the estimates (i)
and (ii) of the lemma for f and its derivatives.
The function F = f o @ is not holomorphic in the wedge ¥ , but we have
the estimates that for x +iye #7,

@) |F(x+iy)| < const.|y| ™1,

(ii')

OF )
é—;(x—zy)} = o(1).
zr

The former estimate follows from the estimate (i) for f, the fact that the

vector dd,(1,0,...,0) is transverse to bQ, and the fact that V;, is a small cone
with axis the ray (t,0,...,0). The latter estimate comes from

n a(pj
) (fj°¢);3*z-:

i=1

oF _
0z,

where f; = df /0z;. We have then that

If{(®(x+iy))| < const.|y| ™!
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by (ii), and we have
a‘l’j .
%z, (X'H)’)( = o(ly]),

by (1).

The estimates (i') and (ii') imply that F has boundary values, F*, along
R n #, through #7; in the sense of distributions.

Denote by x a C* function on R¥, y identically one near O, the support
of x to be a ball of radius less than 6,. We may extend y to be a C*®
function on all of R* with

Ox(x +iy) = O(ly|?) for all p,y — 0.

We can, in addition, suppose that y is a supported in a ball of radius less than
min(g, d,) centered at 0.

Fix a vector &, not in the dual, I'y, of the cone V, so that ;- -y, <0
for some unit vector y, € V.

Let £ be a vector so near &, that &y, < 4, yo. We consider the Fourier
transform
(XF*) (t¢) = ~[J{(X)F*(X)e""“f"‘(Jlx
Rk
where the integration is understood to be the pairing of the distribution F*
with the test function x — y(x)e~i¢x,

Let IT < R* be the (k — 1)-dimensional subspace orthogonal to the vector y,,
and define

¥Y:C xR ! o Ck
by
() ¥(s1,0') = s1y0+T(0")

where T:R"~! > [T is a linear isometry. We take s, = ¢, +ity, 6’ = (d5,...,0).
By definition, ¥(i,0) = iyo, and the map ¥|(RxR*"') is a linear isometry.
We may write then

(3) (XF*) (t¢) = ‘[ X(P(s1,0)F(¥(sy,0))ets ¥61.9ds, dg’.
R xRK!
Notice that

¥Y(o,+ity,0") = ¥(04,0')+it Yo,
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and so when |6,|?> +|0')? < &, and 0 < 1, < 9, ¥(0, +it,,0’) is contained in
the wedge #'5 . Notice also that

@) - ¥(oy+ity,d') =& ¥Y(o,,0)+it & yo.

We apply Stokes’s theorem to the integral (3) in which we regard R x R* as
part of the boundary of the domain {(s,,6’)eC x R*:0 < 1, < g}. The con-
clusion is that

((F*) (t€) = J 2(Plsy +ig, 0)F(P(s; +ig, o'))e " ¥er el 0o s g’ +

g eR!
s;€R

+ J a_sl{X(W(Sh ' )F(¥(sy, 0"))6—“6 ws"a,)dsl }do’

O<r, <g
g eR!

=I+IL

The integral I is zero, because y is supported in the ball of radius ¢ around the
origin.

For the integrand in II, notice that as the exponential term is holomorphic
in 5;, we have

0
S} = -2 {F(W(sl,o'))gx(ws,+a'»+
1

OF (¥(sy,0'))

+X(‘P(Sx +0”)) P } {e—ité‘ '{’(leo')ettnf‘yo}do.ld,rl‘
1

The function y is bounded by one and by (i') we have
|[F(¥(sy,0)) < const.ty L.

Also, by (ii'),

'aFo ‘I’fs,,a) - o(1).
05,
In addition,
0¥+ N | onst 2
35, = '

forall p = 1,2,.... As x is compactly supported, we reach, for t > 0 and large
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oC
I} £ const. J &Mt g,

0

—1 f“
= const. e *di
t&-yo
0

= const. [t| ™',

Thus, for t > 0
©) |(xF*) (t&)] < const. |t|~*,

where the constant in question is locally uniform in &, subject to the condition
that &- yo < 3&o yo.

We can perform the same kind of analysis, starting with the function f,
the complex conjugate of f, rather than with f, and show that for vectors &, not
in the negative, —I'y, of the dual cone of Vj, there is an estimate of the form

(6) |(xF*) (¢€)] < const.|¢] ™!

uniformly in &, £ near &, for t > 0 large.
The stimates (5) and (6) combine to yield the estimate

(7) [x(o ®)] (t¢) < const.|t| !

When é¢_r0 Uro.
As Iy is the dual of the cone V,, we have that

1
ry= {YER"5|J"| S .Vl}«
n
where, as before, y = (y,.V'), y; €R, ¥ e R*"!. Thus,
k.| -1
—Iy=<{yeR:y| = Tyl .

In particular, —I'y U I, omits certain vectors, & For these vectors &, (7)
imposes a genuine condition on the function u.

This condition precludes the possibility that Ph¢(Q)|M = Cx(M) or even,
the obstruction being local, that Ph(Q)|M be a closed subspace of finite
codimension in Cr(M): As is known from the Riemann-Lebesgue lemma,
for every continuous function h, (xh) (t&) = o(1), t = oo, provided ¢ #+ 0. But
it is also known that the Fourier transform of an arbitrary function need not
decay to zero at any particular rate, and it certainly need not be O(1/r).
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There are various other statements that can be formulated on the basis of
what we have done. For example, the analysis shows that when M is transverse,
itis not possible to realize every ¢ € Cq(M) as the a.e. [dM] nontangential limit of
a bounded, pluriharmonic function on Q.

Finally, let us observe that this approach yields another proof, independent
of the theory of peak sets, of the result that interpolation manifolds for A(f2)
are necessarily complex tangential. Since in this case we do not have to treat
unbounded functions, the smoothness requirement on M can be reduced from
C? to C!. Moreover, if we use the almost analytic extension @ constructed in
[11, p. 334] by Nagel and Wainger we can treat the case of curves (for A(Q)
interpolation) as well as the case of higher dimensional manifolds.

Proor oF THEOREM 2. To begin with, we need the following simple fact.
(We denote by X the polynomially convex hull of the set X.)

4. LEMMA. IfX < bB, is a closed set, if fe O(X) and if ue Ph(B,) satisfies
u=RefonX,thenu=RefonX.

ProoF. As u € Phe(B,), there is a sequence {f,} -, of functions, each holo-
morphic on a neighborhood of the closed ball, B,, with {Re f,}=., converging
uniformly to u on B,. We have that

le"1g = 1e" Iy
— Ieu,,—Rejlx o 1’

so lim Re(f,—f)(x) = O for x € X. Considering in a similar way e /=1 we find
limRe(f,—f)(x) =0 for xe X, so Ref, — f on X. But as Ref, » u on B,,
we have u = Ref on X, as we wished to show.

5. LeMMA. If X < bB,, is a compact set with the property that Ph(B,)|X
has finite codimension in Cg(X), then X\X contains the germ of no real-
analytic, totally real n-dimensional submanifold of C".

Proor. Assume the lemma false, and let X < bB, be a compact set such that
Phe(B,)| X has finite codimension in Cg(X) and such that X \X contains M,
an n-dimensional, real-analytic totally real closed submanifold of an open
subset of C". We may suppose 0 e M.

The hypotheses imply the existence of a biholomorphic map y from the
open unit polydisc U" in C" onto an open subset of C" with y(0) = 0 such
that y(R" n U") is a neighborhood of 0 in M.

If P is a holomorphic polynomial, then Re P|X and Im P|X belong to
Phe(B,)| X, so as the latter space is closed, the open mapping theorem yields
a constant C, independent of P, such that there are u,ve Ph%(B,) that match
Re P and Im P, respectively, on X and that satisfy
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lulg, = C|Re Ply and lolg, = C|Im P|y.

The functions u oy and vey are pluriharmonic in U" and are bounded there
by C|Re P|x and C|Im P|y, respectively. On R" we have Taylor expansions

uoy =3 o,x’
l’°‘/’ = Zﬂ]xls

which are valid for all x with max|x;| < 1. Consequently, for every ge (0, 1),
there is a constant C, such that

2layle = €,CIPIx

and

ZIBJ'Q”‘ - C0C|P|x-

On U", we have

Poy(z) =Y (a,+iB,)’.
Thus, for any fixed z e U",

[Poy(z)l = C.|Plx,

where the constant C; is independent of the choice of P. Applying this to P*,
k =1,... and taking kth roots shows that C, may be taken to be one: For
every ze U", y(z)e X, and X is seen to contain an open set.

This, however, is impossible : Choose a point z, € B, \ X. There is a function
F holomorphic on a neighborhood of X, meromorphic on B, with a pole
at the point z,. As Ph’(B,)|X has finite codimension, there is a positive
integral d such that for some choice if a, ..., a,_; €C, the function

Re(a0+a1F+.,.+a,,_1F"_l+F") = Ug

satisfies uo|X = u|X for some u € Ph¢(B,). By Lemma 6, u, = u on X, whence
uy = u on all of B, off the singular set of ay+a,F+...+ FY, for we have that
X contains an open set in C". As u is pluriharmonic throughout B, but u,
has singularities, we have reached a contradiction, and the lemma is proved.

The proof of the Theorem itself now goes as follows. Let X < bB, be a
compact set such the Cech cohomology group H*(X,C) is not zero, and
suppose that Ph¢(B,)|X has finite codimension in Cg(X).

The hypothesis that H?(X, C) # 0 implies that dim(X \X) > 2, dimension
taken in the topological sense. This is a result of Alexander [1]. If
dim(X \X) = 4, then (see [8, p. 44]) the set X \X contains an open subset
of C2, and this is impossible, as we saw in the proof of the last lemma. Thus,
dim X \X = 3.
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There is another way to see the set X has dimension three, at least in certain
cases. Granted that Ph¢(B,) interpolates all of C(X), the algebra 2(X) is a
Dirichlet algebra, and so its Gleason parts are all points or discs. Thus, X
cannot contain an open set in C2. If Ph¢(B,) only interpolates a subspace of
C(X) of finite codimension, then, provided there are invertible elements
hy, ..., h, of P(X), such that the functions log|h;| together with Ph®(B,) span
all of Cx(X) so that the algebra 2(X) is a hvpo-Dirichlet algebra, the
result of [6] on the structure of the Gleason parts of hypo-Dirichlet algebras
can be applied to conclude as above that X cannot contain an open set.
If we merely suppose that Ph®(B,)| X has finite codimension, we are not assured
that 2(X) is a hypo-Dirichlet algebra; it would be necessary to extend the
results of [6] to deal with this general case.

Let g be a point in B, \X, and let the function f be meromorphic on C?,
holomorphic on X with a pole at g. As above, our hypotheses imply the
existence of a positive integer d such that for suitable constants aq, .., o4_,, if

fO = d0+a1f+...+ad_1fd_1+dd,

then there is a function F, holomorphic on the ball such that Re Fy € Ph‘(B,)
and ReFy|X = Re fy|X. Set u = Re(Fy —f,). This function vanishes on X whence
on X, by Lemma 6. The set {u = 0} n B, is a real-analytic subset of B,
and so is generically a three-dimensional analytic manifold. If contains the
three-dimensional set X \ X, and so there is an open set Q of manifold points
of {u = 0} contained in X (see [8, p. 44]). The three-dimensional manifold Q
contains a two-dimensional real-analytic, totally real submanifold, whence a
contradiction to Lemma 5.
The theorem is proved.
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