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DUALITY AND LORENTZ-MARCINKIEWICZ
OPERATOR SPACES

FERNANDO COBOS

Abstract.

We investigate the dual of the Lorentz-Marcinkiewicz operator space S, ,. In particular we
determine the dual of S, , (the space introduced by H. Triebel) for some values of p and ¢
not covered by C. Gapaillard and P. T. Lai.

1. Introduction.

Let H be an arbitrary Hilbert space over the field of complex numbers
(H might not be separable), and let ¥ (H) be the Banach space of all bounded
linear operators acting from H into H.

We denote by S,, the collection of all compact operators Te #(H)
having a finite quasi-norm

o 1/
0o q(T) = ( gl ((P(n)sn(T))q"ﬂ) ! if 0=g< o

0,4(T) = Sull) (@(n)s,(T)) if q = 0.

Here (s,(T)) are the singular numbers of T and ¢ belongs to the class .4,
formed by all continuous functions ¢:(0, o0) = (0, c0) with ¢(1) =1 and
such that

@(t) = sup (p(ts)/e(s)) < w for every t > 0.
s>0
The space S,, is the component over H of the Lorentz-Marcinkiewicz
operator ideal that we studied in [4] and [5]. Some other additional material
on S, can be found in [6].
If 0 < pg = % and ¢(t) = t'"? we obtain the operator spaces (S, ,.0,,)
introduced in 1967 by H. Triebel [19]. These spaces play an important role
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in some problems on estimates of singular numbers and eigenvalues (see [19]
and [2]). The special case p = g gives the Schatten p-class S, (see [18]
and [8]).

For 1<p<o and 1 =gq < oo, the dual of §,, was described by
C. Merucci [11] using interpolation techniques. He showed that (S, ) = S,
with equivalent norms and 1/p+1/p’ = 1/q+1/q' = 1. Later on C. Gapaillard
and P. T. Lai [7] gave a direct proof of that result. On the other hand, in
the case | < p < o and 0 < q < 1, the dual of §,, can be determined by
means of a result of J. Peetre [15] concerning the dual of the interpolation
spaces (Ao, A1)y, when 0 <gq <1 In this way, one can derive that
(S,.¢) = Sp.. But so far as we know, the dual of §,, is unknown for
O<p<landO0<gSow,orp=land0<g< L

In the present article we characterize the dual of the Lorentz-Marcinkiewicz
operator space S, .. In particular, we solve the problem mentioned in the
preceding paragraph by proving that (S,,) = #(H) for 0 <p <1 and
0<g=<ow,orp=land0<g <1

The necessary hypothesis on the function parameter ¢ to obtain our results
are expressed by means of the Boyd indices of ¢. They are defined by

az = lim (log @(t)/logt), Bs = lim(log @(t)/logt)
t— t—0
Note that o, (T) = [(s{T))ll 15> Where [* |14 is the quasi-norm of the
Lorentz-Marcinkiewicz sequence space defined by

hod 1/q
o) = {C = @Iels: i = ( %, (otmizyn” ) < oo}

where ({*) designates the non-increasing rearrangement of the bounded
sequence { (see [4, §2]).

2. The duality theorem for the case of Banach spaces.

We now investigate the dual of S,, when 0<pf; =o; <1 and
1 £ g £ 0. We shall use interpolation techniques to deal with this case. For
this reason, we shall review the definition of the real interpolation space with
a function parameter.

Let (Ag.A;) be a couple of Banach spaces. We equip A4o+A4;
(respectively 4, N A;) with the norm K(1,x) (respectively J(1,x)) where
K(t.,x) = K(t,x; Ay, A;) and J(t,x) = J(t,x:; Ag, A;) are the functionals of
J. Peetre, defined by

K(t,x) = inf{||x0||,40 + tlxylla, % = X0 + Xy, X0 € Ag, X; €A}
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and
J(t, x) = max{||x|| . tllx]l4, }-

The space (44,4,),, where 0 <q < o0 and peZ# with 0 < ;< a; <1,
is defined as the subspace of 4, + A, given by the condition | x|, , < co where

€

1/
lixllyy = (J((p(t)"K(t,X))“dt/t) ! f0<g<
0
lIxllyy = sup (@)™ 'K(t, x)) if g = o0.
t>

The study of this interpolation method was initiated by J. Peetre [14] in
1963. Later on, and mainly in recent years, many papers have appeared
concerning it (see, e.g., [10], [9], [12], [13], and [16]).

When 1 £ q < 0, (Ao, A1)gq ' ll4.4) is @ Banach space, but if 0 < g <1
in general only a quasi-Banach space. For o(t) =t* (0 <6 < 1) we get the
classical real interpolation space (Ao, A1), |- lo.,4) (se€ [1]).

In the next statement, we denote by S, the closure of finite rank operators
inS§, .

THEOREM 2.1. Assume that 1 = q < o and ¢pe# with 0 < f; = ap < L.
Then we have, with equiralent norms,

(Sp.y) =Sy and (S5 .) =S,
where Y(t) = t/p(t) and 1/q+1/q = 1.
Proor. Choose 1 < p, < p; < oo such that 1/p; < B; = a; < 1/po. Put

Q(f) = tPl/‘Pl "Po'((p(tﬂopx/(m “Po)))— 1

u(t) = t/o(t) and 1/py+1/py = 1/p,+1/py = 1. According to [4, Theorem
5.1] and [12, Example 3.2.3] (see also [17, Theorem 3.1] and [16, Theorem
2.41]), we have

(Spuq) = ((Spgs Sp, og) = ((Sp, )+ (Sp, )V Dy

By [8, Theorem 3.12.3], we know that (S,) =S, (j = 0.1). Consequently,
[4. Theorem 5.3] implies that

(Syq) = (Sp,+ Spo g = Sy

The case of S9 ,, can be carried out in the same way.
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3. The duality theorem when 0 < q < 1.

For the purpose of determining the dual of S,, when 0 < g <1 and
0 < B; = a; < 1, we shall first extend to the (¢, q)-method a classical result
of the (0, g)-method due to J. Peetre [15].

In what follows, given (E,||]|) a quasi-Banach space, ||-||* designates the
semi-norm defined by

lxll* = inf{ Y lxilix =Y, x,-}

i=1 i=1

and (E* ||'||*) denotes the completion of the quotient space E/N with the
quotient norm induced by ||| *. Here

N = {xeE:|x||* = 0.
For properties of E* we refer to [15]. We only recall here that (E*) = E'.

THeoreM 3.1. Let (Aq, A;) be a couple of Banach spaces, let 0 < q < | and
peA with0 < f; = a; <1 Then

((A()’ Al )(p.q)# = (AO’ Al )(p_l
with equivalence of norms.

Proor. Let 0 < p < co. By the equivalence theorem we know that (4q, 4,),,
consists of all x € Ao+ 4, such that there exists (u,)*, < Ay N A; with

(2) x = i u, (convergence in Ao+ A4;)
and
x 1/p
(3) NJ 2% ullg,, = ( _Z (1(2"»%)/(!’(2"))") < 0.

Moreover, |||l , is equivalent to the quasi-norm
”x“w.p;.l = inf]|(J(2", “v))”(lw,
(u,)
where the infimum is taken over all sequences (u,) satisfying (2) and (3).
As a direct consequence of this representation, we get
(Ao, A, )(M < (Ao, A4y Jo.1

and the last space is a Banach space. Therefore ((A4,, A, )M)“ is continuously
embedded in (4q, A1), -
Next, we prove the reverse inclusion. Since
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K(s,x) = min(1,s/t)J(t,x), x€Ay N Ay, st >0

and
1 o
j(@(l/t))"dt/t < o0, jq‘)(l/t)“dt/t < oo (see [3])
0 1

it follows that there exists a constant M = M(e,q) such that for any
x€Ag N A, and any t > 0 we have

M
— J(t, x).

o(t) )

So, if xe(Ao,4,),; and x = Y os _ou, is a representation of x satisfying
(2) and (3), then the series Zf‘: _ o U, converges in ((Ao, A,)M)“ because

lixllyq =
N

R R
2wy, EM Y IR u)e2Y)
v=N v=N

=M _Z— J (2% u,)/e2").

Consequently,

IxliZ, € % I, < MU u)lg,,

v=—a

and the inclusion is established by taking the infimum over all sequences (u,)
satisfying (2) and (3).

Now we can prove

THEOREM 3.2. Assume that 0 < q <1 and @e®B with 0 < f; = a5 < 1.
Then we have, with equivalent norms,

(So.q) = Sy
where Y(t) = t/p(t).

Proor. Take po,p;, and g as in the proof of Theorem 2.1. Using [4,
Theorem 5.1], we see that

Spq = (SpyrSp)og and  Se1 = (Sp, Sp)r-
Hence Theorems 3.1 and 2.1 give
(Spg) = ((Sp.)®Y = (((Spys Sp,)eg)”
= (S(p.l) = Swvw
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4. The duality theorem in the remaining cases.

Up to now, all spaces S, , considered have been generated by a sequence
space A%g) that contains [, (see [4, Lemma 2.2]). In this section we shall
discuss the converse situation.

THEOREM 4.1. Let 0 < g £ o0 and @ € B with A%¢) continuously embedded
in l;. Then we have, with equivalent norms,

(Spq) =

Proor. We shall prove that (S,,)* = S,. This gives the result, by [8,
Theorem 3.12.1].

The inclusion (S,,)* < §, is trivial. Let us show the opposite one. Let
TeS, and let

L(H).

0

T(x) = ¥ Al XD Ym Ay = 5,(T)

n=1
be its Schmidt representation. Since

m

m m
%o < )} ’11<‘~xj>yj> S Y 0o qiaxpy) = ) 4~ 0 asnm— x
J J=n

i=n j=n

it follows that the series Z,fs 14212 Xap ¥y is convergent in (S, ,)*. Therefore

og4(T)S Zl Jy =061 (T).
n=
Finally, as an immediate consequence of Theorem 4.1 we can complement
the known results on the duals of the spaces S, , by:

CorOLLARY 4.2. Let 0 <p<land 0 <q=x,0or p=1and 0 <¢q < L.
Then

(Sp.q) = L(H).

Note added in proof. Theorem 3.1 has been also simultaneously obtained by M.
Mastylo, Banach envelopes of some interpolation quasi-Banach spaces, in
‘Function Spaces and Applications’, Springer L.N.M. 1302, pp. 321-329.
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