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CONTINUITY PROPERTIES OF RIESZ POTENTIALS AND
BOUNDARY LIMITS OF BEPPO LEVI FUNCTIONS

YOSHIHIRO MIZUTA

Abstract.

This paper deals with various properties of a-potentials of functions f satisfying the condition that

&( f(y)))dy < oo, where & is a positive nondecreasing function on R! such that for any ¢ > 0,
Rn
Ar'® < @(r) < Br"**¢ whenever r > 1 with positive constants 4 and B. Of corse, there are many

known results in case @(r) = r?, which belong to the nonlinear potential theory. According asap < n
orap > n, the results will take on a different aspect. Our results given below will be similar to those in
the case ap > n.

The results obtained for Riesz potentials will be valid for Beppo Levi functions, by the aid of
integral representations. We shall also be concerned with the existence of boundary limits of Beppo
Levi functions in a half space of R".

1. Introduction.

For a nonnegative locally integrable function f on R", we write R, f(x) =

JR,,(x — y)f(»)dy, where R,(x) = |x|*7",0 < a < n. Wethennote thatR, f £ o

if and only if f R,(x — ) f(»)dy < o for some x, where B(x,r) denotes
R"-B(x, 1)
the open ball with center at x and radius r; this is equivalent to

(1) J(l + [y)* " f(y)dy < oo.

In this note we are concerned with the following properties:

(1) Continuity and differentiability of R, f.
(2) Behavior at infinity of R, f.
(3) The existence of boundary limits of Beppo Levi functions.
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Incase f € I (R"), many authors discussed these properties for R, f; and obtained
a great number of results (see e.g. Aikawa [1], Kurokawa-Mizuta [2], Meyers
[4], Mizuta [5], [7] and Ohtsuka [9]). If « is a positive integer, then R, f will be
seen to be a Beppo Levi function. Conversely, Beppo Levi functions will have
integral representations with kernel functions introuced by modifications of
Riesz kernels (cf. [5], [7]). Thus, the results obtained below for Riesz potentials
will also be valid for Beppo Levi functions.

In what follows we study several problems concerning such properties for
a-potentials of nonnegative functions f satisfying (1) together with the following
condition:

@ Jf Fa(f(y)dy < o,

where p = n/a > 1 and wis a positive nodecreasing function on the interval (0, o0)
such that

(wy) J o) VP D 1dr < o
1
and
(w,) w(2r) < Aw(r) for any r > 0 with a positive constant A.

As typical examples of w, we give
w(r) = [log(2 + r))% [log(2 + )17 ' [log(2 + log (2 + r)1%,...,

where d >p — 1> 0.
The author has already obtained some results in the papers [6] and [8], and
the present paper is an extension of these papers.

2. Continuity and differentiability.

First of all we note thatifap > nand f is a nonnegative measurable function in
IP(R™) such that R, f % oo, then R, f is continuous on R"; this fact follows readily
from Sobolev’s imbedding theorem. In case ap < n, R, f may not be continuous
anywhere but it is quasi continuous in a certain sense (cf. Meyers [4]).

Our first result will asure the continuity of R, f if f satisfies condition (2) with
p = n/a; the case ap > n is reduced to the present case if we replace w by r*w(r)
with ¢ > 0.

THEOREM 1. If f is a nonnegative measurable function on R" satisfying (1) and (2)
with p = n/a > 1, then R, f is continuous on R".
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For a proof of this theorem we need the following Holder type inequality.

LEMMA 1. There exists a positive constant M such that

j R,(x — y)g(y)dy
{yig(y) 2 a)

i/p © 1/p’
=M (J gy w(g(y)) dy) (J w(t)””“"”t”‘dt>
{rig») 2 a} a

for any a > 0 and any nonnegative measurable function g on R", where ap = n and
1/p+1/p =1L

ProoF. Define G; = {yeR" 2" 'a < g(y) < 2 a} for each positive integer j,
and taker; = Osuch that|G;| = |B(0,r;)|, where |E| denotes the Lebesgue measure
of a set E < R". Then we note that

j R, (x — y)g(y)dy =Y J Ix — yI*""g(y)dy
{yig(y) 2 a} i=1J6;

< ZZfaJ |x —y*"dy < szaj [x —y*""dy
j=1 G, =1

B(x,rj)

=M, Y 2ja|Gj|“/"
j=t

- Up [/ » 1/p’
s M2< @ e w2 'a) |Gj|> ( Y w(2ia)~ - u)
i=1 i=1

i/p @ 1/p’
éMa(Jg(y)”w(g(y))dy> (J w(ﬂ'“""”t“dr) ,

a
where M,, M, and M, are positive constants independent of g, x and a. Thus
Lemma 1 is proved.

Proor oF THEOREM 1. We have only to prove that R, f'is continuous at the
origin 0. For xe R" and r > 0, we write

Raf(x) = J\

B(O,r)

R,(x — y)f(y)dy + j R,(x — y)f(y)dy

Rn—B(0,r)
= ,(x) + u/(x).

Applying Lemma 1 with a = 1, we have

1/p
ux) =M {r" + (I FOPo(f(y) dy) }
B(O,r)
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where M is a positive constant independent of r. Hence u,(0) is finite, so that

R, f(0) is finite. Moreover, letting r = 2|x|, we see that lim u} |, (x) = 0.
x—0

If ye R" — B(0,2]x|), then|x — y| = (1/2)|y|. Since R, f(0) < co asseen above, it

follows from Lebesgue’s dominated convergence theorem that lim u3 ), (x) =
x—0

R, f(0). Thus Theorem 1 is established.

We next consider the differentiability properties of R, f. A function u is said to
be totally m times differentiable at x, if there exists a polynomial P of degree at

most m such that lim |x — x| ™ [u(x) — P(x)] = 0. To evaluate the size of the

x—=Xx0
exceptional sets, we use the Bessel capacities; B, , is used to denote the Bessel
capacity of index (B, p) (see Meyers [3] for the definition and properties of Bessel
capacities). If f =0, then B, , is understood as the n-dimensional Lebesgue
measure.

As a generalization of the result in [6], we give the following result.

THEOREM 2. Let f be as in theorem 1. If ap = n and m is a positive integer such
that m < a, then there exists a subset E of R" such that B, _,, ,(E) = 0and R, f is
totally m times differentiable at any point of R" — E.

The proof is similar to that of [6; Theorem 1], where we were concerned with
the special case: w(r) = [log(2 + r)]° with 6 > p — 1. Thus we give a sketch of
a proof for readers’ convenience. For this purpose we prepare several lemmas.

LEMMA 2. For a nonnegative integer m, we set
K. (x,y)=R(x—y)— ¥ (A" x*[(0/0x)R,](~).
1Al £m
Then there exists a positive constant M such that
K n(x, )l £ Mx|™* ! |yI*~""™ " whenever ye R" — B(0,2|x|).
This follows readily from the mean value theorem.

LEMMA 3. Let f be a nonnegative measurable function on R" satisfying (2). For
a positive number f§, we define

E= {xeR"; lim sup r“""”J Lf(»)—=f(x)ldy > 0}-
rio B(x,r)

Then H;,(E) = 0. Moreover,if B < aand wis assumed in addition to be continuous
and satisfy

(w3) w(r?) £ Aw(r) for re(l, o)
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with a positive constant A, then H,(E) = 0, where h(r) = r*” w* (r 1) with w*(r) =
<] 1-p
(J ()~ -t dt) and H, denotes the Hausdorff measure with the

measure function h.

REMARK. From condition (w,) it follows that lim r % w(r) = 0 and h(r) =

r’ w*(r~!) is nondecreasing on some interval (0, C;), C; > 0, for § > 0.

ProoF OF LEMMA 3. We shall give a proof only in the case § < «, because the
remaining case can be proved similarly. By Lemma 1 we have

rrfon f(y)dyér'”f lx — yI*~" f(y)dy

B(x,r) B(x.r)

s er"”{ar" + w*(a)” ”"( f(Y)"w(f(y))dY>Up}

B(x,r)

for any a > 0, where M, is a positive constant independent of a, x and r. Hence, if
we takea = r7%,0 < § < « — B, then by condition (w,) there exists M, > 0 such
that

limsupr*=#-n f(y)dy

rio B(x,r)

1/p
< M, limsup (h(r)‘1 , f(y)”w(f(y))dy) .
(x,r)

rio

Since f(y)” w(f(y)) e L}(R™), with the aid of the fact in [3; p. 165], we obtain the
desired result.

PROOF OF THEOREM 2. For x,e R" and a multi-index 4 with |1| £ m, define

A; =lim J [(6/0x)*R,1(xo — y)f(y)dy.
R™ — B(xg,r)

r—-0

If |A] = m = a, then the limit exists and is finite for almost every x, (see [10;
Theorem4in§11]),and if |4| < a, then the limit exists and is finite for x, such that

Ixo — yI* M 7"f(y)dy < 0. Letting g(y) = f(y) if f(3)>1 and g(y) =0
otherwise, we see that geI’(R") and f Ixo — Y "f(y)dy = oo if and only if

Jlxo — y# "g(y)dy = o, where B > 0. Hence we can find a set E; = R" such

that B,_,, ,(E,) =0 and if xoeR" — E,, then A, exists and is finite for any
multi-index A with |A| £ m. In what follows we assume that x,e R" — E,.
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We next note that J R,(x — y)dy is infinitely differentiable in B(0, 1). We
B(0,1)

thus let B, = 0if |A| < m and

B, = (0/0x)‘f R,(x — y)dy

B(0,1)

if |A] =m,
0

x=

and consider the numbers C; = A, + f(x,)B,. We now define

Px)= Y (A)7'Cyx — xo)*

1Al Em
Letting  Ki(x,y) = R,(x —y) — Y (A)™'(x — xo)* [(3/0x)*R, ] (xo — y), we
121 =t
write

Ix — xol "™ {R, f(x) — P(x)}

= lx - xoi—m‘[ Km(x,)’)f(}’)dy
R"— B(x,1)
+Ix = xOI’"‘J Kol ) LS () = f(x0)]dy
B(xg,1)— B(xg,2|x—xp|)

—x = xol™™ X ()T (x — x)*

1Al sm

X limj
r 10 J B(xg,2|x = xgl) ~ B(xq,r)

(0/0x)* R, (xo — ) LS () — f(xo)]dy

+ Sxo)Ix — Xol""‘(f Kp-1(6y)dy — 3 ()7 By(x — Xo)‘>

B(xq,1) |Al=m

+Ix - xol’"’j R.(x = ) [f(y) = f(x0)]dy
B(xg,2|x — xg)
= II+I2+I3+14+159

since I (6/0x)* R,,(x)dx = Oforanyr,s > 0and any A with || = m = a.
B(0,r)— B(0,s)

By condition (1) and Lemma 2, we can apply Lebesgue’s dominated conver-
gence theorem to prove that I, tends to zero as x — x,. In view of Lemma 3, we

can find a set E, = R" such that H,,(E,) =0 and limr*~""" J If(y) —
rio B(xo.)

S(xo)ldy = Ofor any x, € R" — E,. Hence itfollows that I, and I, tend to zero as

X = x, for x, € R" — E,. Further, the definition of B, implies that I, tends to zero

as x — x,. Finally, setting g(y) = |f(y) — f(x,)| for simplicity, we establish with
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the aid of Lemma 1

Il = Malx — xo|*™™"

+ x — xo|""f R,(x — y)g(y)dy
{yeB(xq,2|x — xol);i9(y) > a}

S Malx — xo|*™™ +M2|x—xo|_m<J

B(x,2]x —xg)
© 1/p’
x w() Ve~ De=tde) |
a

where M, and M, are positive constants independent of x and a. Define

1/p
g(y)f w(g(y) dy)

E3 = {xeR" limsupr™™" L ) ) o(f(y) — fx) o(f(x))ldy > O}.
(x,r

rio

Then we have H,,(E;) =0. Moreover, if x,€R" — Ej, then, since (t + s)°

ot + 5) — tPw(t) = sPw(s) for t,s = 0, we see that limsup|ls| £ M,a, which

x—xo

implies that lim I; = 0. Thus R, f is totally m times differentiable at x,e R" —

E, UE, U Ejand, in view of [3; Theorem 21], B, _,, ,(E, U E; U E;) = 0. Now
the proof of Theorem 2 is completed.

We next consider the existence of weak sense derivatives. For ze R" and
a function u on R", we set 4,u(x) = u(x + z) — u(x), and define AT = A,(47" 1)

inductively with A} = 4,. Note here that AT u is of the form Y, au(x + kz),
k=0

where q;, = (— 1)"'”‘(:’).

THEOREM 3. Let p =n/a > 1 and w be a nondecreasing function on (0, o)
satisfying conditions (w,), (w,) and (w3). If f is a nonnegative measurable function
on R" satisfying (1) and (2), then, for a positive integer m such that m < o and
a positive number f,

3 lim |x|? ™™ AT R, f(xo) = 0
x—=0
holds when x,€ Fy w F,, where

F, = {xeR"; limpe~n"m*8 f(ndy = 0}

rio B(x,r)
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and

F,= {xeR"; lim hy(r) ™" JOPo(f(y)dy = 0}

rlo B(x,r)
with hg(r) = r'™ PP @*(r~1).
REMARK. In view of Lemma 3, H,,p(R" —F,uF;)=0.

PrROOF OF THEOREM 3. For x4 € R", we write

R, f(x)= j

R" - B(x0.1)

Ix — yI*""f(y)dy + J lx = yI*" [f(y) — f(x0)]dy

B(xgp, 1)

+ f(xo)f e = 3" "dy = uy(x) + uy(x) + f(x0) us(x).

B(xq,1)
Then it is easy to see that u, and u; are infinitely differentiable on B(x,, 1). Thus it

suffices to show that u, satisfies (3) for x,€ F, U F,. For simplicity, we assume
that x, = 0, f(0) = 0 and f vanishes outside B(0, 1); in this case, u, = R, f. Write

ATR, f(0) = J (4AZR)(—=y)f(y)dy
R™ - B(0,(m+ 2)|x|)
+ f (AZR)(=y)f(y)dy = U'(x) + U"(x).
B(0,(m+ 2)|x])

If yeR" — B(0,(m + 2)|x|), then we see by the mean value theorem that
A% R, (—y)| £ M, |x|™|y|*~"~™ with a positive constant M,. Hence

P~ U () = M, IXI"j Iyl " f(y)dy
R™ - B(0,(m+ 2)|x|)
=M, le"f Iy1*=™=" f(y)dy
R™ - B(0.¢)
€
+ M, IX|”J (J f(y)dy)d(—r“""'")
(m+ 2)|x| B(0,r)
=M, le”f V=m" f(y)dy + M3 Ale),
R™ - B(0.¢)
where A(e) = sup r* " " f(y)dy and M, is a positive constant inde-
O0<rse B(0,r)

pendent of ¢ and x. Thus it follows that | x|’ ~™U’(x) tends to zero as x — 0. On the
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other hand, Lemma 1 gives

Ixlf =" |U" ()] < My le"'"‘k lkx — yI* ™" f(y)dy

=0 JB(0,(m+2)]x|)

=M, Iﬂ”‘"‘(w*(a)'lj

B(0,(m+2)|x])

1/
FOPolf) dy) "4 Myalxp e

for any a > 0, where M; and M, are positive constants independent of a and x.
Hence, taking a = |x| "#/2, we see that |x|? ™ U"(x) tends to zero as x — 0. Thus

Theorem 3 is proved. .

THEOREM 4. Let f be as in Theorem 3. For a nonnegative integer m such that
m < a, we set

F, = {xeR”; A= limJ ((9/0x)* R,)(x — y) f(y)dy
B(x,r)

rlo

exists and is finite for any A with |A| = m},

F,= {xeR"; lim r"‘""‘"[ [f(y) = f(¥)Idy = 0}
B(x,r)

rlo
and
Fy= {x eR™ limr ™ @*(r~')~! JOPo(f(y)dy = 0}-
rlo B(x,r)

If xoe F, U F, U F5, then

lim [x| ™™ [4ZR, f(xo) — P, (x)] = 0,

x=0

where P, (x) = ; (C,/A)x* and C; = A; + B, f(x,) with B, defined in the
{Al=m
proof of Theorem 2.

This fact can be proved in the same way as Theorems 2 and 3. Here we note that
Hy(R" — F, U F3) =0, where h(r) = r""w*(r~'), whereas H,,(R" — F;)=0.
Hence we only know that H,,(R" — F, U F, U F;) = 0.
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3. Behavior at infinity of R, f.

Let f be a nonnegative function in [#(R") satisfying (1). Then we note that
(i) if ap > n, then |x|""*P¥P R_ f(x) - 0 as |x| — oo;

(i) if ap £ n, then |x|" " *P"P R f(x) > 0 as |x| = o0, x€ R® — E, where E is
(a, p)-thin at infinity;

(see [2] for a proof of these facts).
For a function f as in Theorem 1, we investigate the limit at infinity of R, f. As

<) 1-p
before, we consider the function w*(r) = (J ()~ M-yt dt> ,where w is

r

a nondecreasing positive function on (0, oo) satisfying (w, ), (w,) and the following
condition:

(ws) There exists A4 > 0 such that w(r) £ Aw(r?) for any re(0,1).
Then it is easy to see that w* also satisfies condition (w,) and limr ?w(r) =
rl0

lim r % w* (r) = oo for 6 > 0.
rl0
Now we prove the following result.

THEOREM S. Let f be a nonnegative measurable function on R" satisfying (1) and
(2) with p = nja > 1. Then w*(|x]~')'/? R, f(x) tends to zero as |x| — oo.

REMARK. Since wis nondecreasing, w*(r) £ w(1)[logr~']' ~?forre(0, 1/2). If
lim w(r) > 0, then there exists a positive constant M > 0 such that [log(1/r)]' ~?
rgfon*(r) for re(0, 1). Hence, in this case, (log|x|) ™" R, f(x) = 0 as |x| - co.

PROOF OF THEOREM 5. For x e R" — {0}, we write

Raf(x) = J‘

B(x.|x|/2)

R,(x —y)f(y)dy + j R,(x — y)f(y)dy

R" - B(x,|x|/2)

= uy(x) + u,y(x).
First we note that |y| < |x| + [x — y| £ 3|x — y|if ye R" — B(x,|x]/2), so that we
can find a positive constant M, such that u,(x) < M, J(le + |y)* " f(y)dy. Since

(1) holds, we have by Lebesgue’s dominated convergence theorem

lim u,(x)=0.

x|~
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We are next concerned with the estimate of u,. By Lemma 1 there exists a positive
constant M, such that

f R,(x — y)f(y)dy
y: f(y)>a}

< M(f f(y)"w(f(y»dy)”"( f " o) e dt)w
{y; f(y)>a} a

for any a > 0 and any x e R" — {0}. Hence, taking a = |x| %, § > a, and using
condition (w,), we obtain

uy(x) = M;«{IXI“_" + (w*(IXI“)_’I

B(x,|x]/2)

p
JY o(f(y) dy> }
so that
'llim o*(x] " HYPu,(x) = 0.
Thus the required equality follows.

- PROPOSITION 1. Let ap = n and @ be a nondecreasing function on the interval
(0, o) satisfying (w,), (w,) and (w,). Then for any positive nondecreasing function
a(r) on R! such that lim a(r) = oo, there exists a nonnegative measurable function

r— o

f satisfying (1) and (2) such that

lim sup a(|x]) @*(1x|~)!/P R, f(x) = o0.
|x| =

PROOF. Let {k;} be a sequence of positive integers such that 2k; < k;., and

Y a(2*)™! < co. Setting ¢; = (22%,0,...,0)e R", we define
i

) = allef)™ M @™ (le)| ™)™ le; — o~ [w(le; — 91 =] MY
ifl <le;—yl < 2%~ and f(y) = O elsewhere, where
W (r) = f w(t)” "~ V=1 dr. Then, since f(y) < M, |e; — y|~** on account of

r

(w,) with a positive constant M,, we have

jf (»)F o(f(y)dy
=M, i a(lejl)_‘w~(le,|“)‘1j " axly]~ )PP D1 dy
i=1 B(0.2%; - 1)

<M, Y alel)”! <,
j=1
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f(l F Gy < My Y, alle) @™ (el 1) Ples

j=1

X J ™ w(yl™ )~ Ddy
B(0,2%;- 1)

0

< M, ¥ 2ME 27 < o

i=1

and
flej — Y f(y)dy
2 a(le,-n‘”Pw~(|e,~r‘)-”ﬁf ™" eyl ™) e D dy
B(0,2%;—1)—B(0,1)
2 Mgale)™ P w*(le;l 1)1,

where M,,..., My are positive constants independent of j. Thus f has all the
conditions in the proposition.

4. Logarithmic potentials.

For a nonnegative locally integrable function f on R", we define Lf(x) =

Jlog(l/|x — y)f(y)dy. Then it is noted that Lf # — oo if and only if

(4) J’log 2+ Iy)f(y)dy < oo.

Here we collect several results concerning logarithmic potentials.

THEOREM 1'. Let f be a nonnegative measurable function on R" satisfying (4) and

) ff (»1og(2 + f(y)dy < oo.

Then Lf is continuous on R".

THEOREM 2'. If f is as in Theorem 1', then Lf is totally n times differentiable
almost everywhere on R".

THEOREM 3. If f is as in Theorem 1’, then

Lf(x)+(J.f(y)dy>log|xI—»0 as |x| = oo.
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These theorems can be proved in a way similar to proofs of Theorems 1, 2 and
5, respectively, if we note, instead of Lemma 1, the following lemma.

LEMMA 1'. There exists a positive constant M such that

j , l)[log(l/lx = yD1f(y)dy = M Flog(1/F)
s>

for any nonnegative measurable function f on R", where

F=f f(Mlog2 + f(yNdy <e .
(i f(»)> 1}

5. Boundary limits of p-precise functions.

In this section we study the boundary limits of functions in the Beppo Levi
space BL (L%, (R")), where R is the half space {(x’,x,)e R""! x R';x, > 0}.

Such functions with certain quasi continuity are called locally p-precise (see
Ohtsuka [9]). We know several existence theorems of boundary limits for locally

p-precise functions u on R" such that J i |grad u(x)|P x% dx < co. In these discus-
+

sions, one of the main tools is a canonical or potential type integral representa-
tion of u (see [5] and [7]). This section is concerned with the existence of
nontangential limits of u satisfying a stronger condition when we restrict our-
selves to the case p = n. We say that a function u on R", has a nontangential limit
at £e OR", if u(x) tends to a number as x — ¢ along the cone I'(¢,a) for any a > 0,
where I'(é,a) = {x = (x',x,)eR""! x RY; |(x',0) — &| < ax,}, a > 0. Before gi-
ving our result, we remark that if p > n and u satisfies the above inequality, then
u has nontangential limits at boundary points except those in a set E such that
B, _,p.,(E) = 0. However, if p < n, then u may fail to have a nontangential limit
at any boundary point; in this case, we are concerned with the existence of fine
nontangential limits (cf. [5], [7]).

Letting w be a positive nondecreasing function on R' satisfying (w,) withp = n
and (w,), we state our result concerning the existence of nontangential limits of
locally n-precise functions on R", .

THEOREM 6. Let u be a locally n-precise function on R", such that

f |grad u(x)|" w(lgrad u(x)]) x3 dx < 0. If 0 < a < n — 1 and u is continuous on
L

R",, then there exists a set E < dR", such that B, _,,, ,(E) = 0 and u has a non-

tangential limit at any boundary point in 0R", — E.
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PROOF. Let u be as in Theorem 6. In view of the proof of Theorem 1 in [7],

u can be extended to a function # which is locally p-precise on R" for p such that

1 < p <nf(xd + 1) and satisfies { |grad @ (x)|" w(grad a(x)|) |x,|* dx < oo. Fur-
RH

ther we note the following integral representation of u:

(6) u(x) =c Z Jk i(x, )(0/3y;)i(y)dy + A

for almost every x € R", where c is a constant depending only on the dimension n,
A is a number which may depend on u and

kix, ) = {[(a/axj)Rz] (x—y) if |yl <1,
” [(@/0x)) Ry)(x — y) — [(8/0x )R, ] (—y) if [yl = 1.

For N > 0 and x, € R" such that x, , > 2N, write

uy(x) = J k;(x, y)(6/0y;)a(y)dy
B(xq,N)
and

vj(x) =f ki(x, y)(©/0y;) i(y)dy.
R™ = B(xo,N)

Since |k;(x,y)| £ M,|x||y|™" whenever |y| =21 and |y| = 2|x| with a positive
constant M,, we see easily that v; is continuous on B(x,, N). On the other hand,
since |k;(x, y)| £ M,|x — y|' ~" whenever ye B(x,2|x|) with a positive constant
M,, as in the proof of Theorem 1, we can show that u; is continuous on R". Thus
the right hand side of (6) is continuous on R",, and hence equation (6) holds for
any xeR",. For x = (x', x,) € R",, we write

uj (x) = J ki(x, y)(0/0y;)u(y)dy,
B(x,x,/2)

uj"(x) = j kj(x, y)(0/0y;) u(y)dy
R" = B(x,%,/2)
and
Uj(x) = uj (x) + u;"(x).
For simplicity, set f;(y) = 1(6/0y;)u(y)l. Since |k;(x, y)| £ M,|x — y|' 7" whenever

y€ B(x, x,/2), it follows from Lemma 1 that

lujl(x)l < Myx, + MB(J

B(x,x,/2)

1/n
S o(fi(y) dy) w* (1)~

i/n
< Msx, + M4(X..' “I SO o(f(») ya dY>
B(x,x,/2)
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with positive constants M3 and M, independent of x. Define

E;= {x €dR%; limsupr® J S o(f{(y) |yal*dy > 0}-
B(x,r)

rio

If £e OR", — E;, then we easily see that u;'(x) has nontangential limit zero at &
We next consider the set

F,= {ceam; J 1€ —y' " fiydy = 00}-
B, 1)

By Lebesgue’s dominated convergence theorem we can show that u;” has a
nontangential limit / at e dR", — F;, where [ = J ki(&, y)(0/0y;)u(y)dy, which is
Rn

finite. Thus U; has a nontangential limit at any boundary pointin R — E; U F;.
Since H,(E;) = 0, we find by [3; Theorem 21] that B, _,, ,(E;) = 0. Moreover
B, _ 4 /n.n(F;) = Obecause of f;e L*(R"). Thus the proof of Theorem 6 is completed.

REMARK 1. We do not know whether Theorem 6 is best possible as to the size
of the exceptional sets, or not.

REMARK 2. In Theorem 6, if « = 0, then u has a finite limit at any boundary
point. To show this fact, for fixed £€dR", for r with 0 <r <1 and for
xeR" n B(E,r/2), we write uj (x) = u] (x) + v] ,(x), where

uj (%) = J kj(x, y)0/dy;)u(y)dy
B(&,r) — B(x,x,/2)

and

vj,(x) = J k;(x, y)(0/dy;)a(y)dy.
R" - B(&,r)

Then |u],(x)] < le Ix — y|" ~"f;(y)dy, and by Lemma 1 we have

B(&.r)

1/n
|u;-",(x)|§M2{r+< L f,-(y)"w(fj(y))dy> }
(S.r)

where M, and M, are positive constants independent of x and r. Hence it follows
that J |€ — yI' "f{(y)dy < oo and u],(x) tends to zero as x — £ Moreover,
B(E. 1)

with the aid of the inequality, we can apply Lebesgue’s dominated convergence
theorem to prove that v}, withr = 2|¢ — x| has a finite limit as x tends to £. This
implies that u; has a finite limit at any boundary point. Thus the proof of
Theorem 6 assures the existence of boundary limits of u at all boundary points.
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Now we consider the following condition on w, which is weaker than condition
(w3).

o0
(ws) w(r)”"'“"[ w() VD14 5 00 asr — .
r

We remark here that ¢(r) = rPw*(r~ '), > 0, is nondecreasing on some
interval (0, 4,), A, > 0, and hence the Hausdorff measure H, with the measure
function ¢ is defined.

THEOREM 7. Let u be as in Theorem 6 and 0 <o <n — 1. If in addition

lim u(x’, x,) = 0 for almost every x' € R"™ !, then there exists a set E = dR". such
xnl0

that H,(E) = 0 and u has nontangential limit zero at any point of 0R", — E, where
h(r) = ro*@r 1)

Proor. If we set u = 0 outside R",, then, as in the above proof, we see that u is
locally p-precise on R" for p with 1 < p < n/(x + 1) and it has the following
integral representation (for this fact, see also the proof of Theorem 2 in [7]):

u(x) =c i J[k;(x, y) — kj(x,»)1(0/0y;) u(y)dy
j=1

for every xe R"., where x = (X, —x,) for x = (¥, x,). For x = (x’,x,)e R";, we
write

uj(x) = J [kj(x, y) — kj(%, y)1(0/dy;) u(y)dy,
B(x,x,/2)

uj(x) = J [ki(x, y) — kX, y)](6/0y;) u(y)dy
R" - B(x,x,/2)
and
uj(x) = uyx) + uj(x).

For simplicity, set f;(y) = [(6/0y;) u(y)l. Then it follows from Lemma 1 that

1/n
lu;(x)| = M,ax, + M I(J S o(fi(y) dy) w*(a)” '

B(x,x,/2)

with positive constants M, and M, independent of x€ R and a > 0. Hence,
letting a = ex, !, ¢ > 0, we have

1/n
lwj(x)| = Mye + M2<h(xn)— ! J Sy o(fi(y) ya dy)

B(x,x,/2)

with a positive constant M, independent of x, where h(r) = r* w*(r ).
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Define

E;= {xeaRi; lim;Up h(r)~! J o )fj(y)" o(f{(y)yal*dy > 0}-

If£€dR", — Ej, thenit follows that limsup [u}(x)| £ M, eforany b > 0, which
x—&,xel (&,b)
implies that u}(x) has nontangential limit zero at £; we must note here that M, is

independent of e. Next we are concerned with the estimate of u]. For this purpose,
we see first that if xe I'(&, a), where £ 0R", and a > 0, then

uj(x)] £ M;x, f bx — ' 7" 1% — 72 yufi0) dy

R" - B(x,x,/2)

< Mw..f(lé =+ %) Ly fi(y)dy

< Mu..{f(f y..fj(y)dy>d(—(r +x,)7"Y
o B(,r)

+ (e + x,,)‘"'lf

B(Z,¢)

Yafi¥) dy}
+ Mm[ (& =yl +x,)""" 'y [y dy
R"-B(¢,2)

for ¢ > 0. Hence if follows that

limsup [u}(x)] £ Ms sup r""f yafi(y)dy,
B(,r)

x—+¢&,xel (&,a) 0<rse
where M3, M, and M; are positive constants independent of x e I'(¢, a) and &. Set
F;= {{eaR’L;limsupr_”I yafi{(y)dy > 0}.
rio B(,r)

If e 0R", — F;, then we see that u] has nontangential limit zero at £. Thus, what
remains is to show that H,(F;) =0. Let ¢ > 0. Then we have by Holder’s
inequality

r” ‘[ ya f(y)dy
{yeB(&, 1) S ;(») > ¢elyal -1}

1/n
< r‘”( Yafiy) o(f(y) dy)
B(,r)

1/n’
x ( Y7 aofgly, ) dy)
B(@,r)

1/n

£ Ms(f“' w*r~h)7! L« )Y:f,-(y)" w(fj(y))dy)
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with a positive constant Mg which may depend on ¢. On the other hand,

r*"JA ynL(y)dy§M78’
(yeB(&,n);f j(») Selyal 1)

where M, is a positive constant independent of r and ¢. Therefore, if £ ¢ G;, where

G = {x € R”; lim sup h(r) ~* J ) [yal* f;(¥)" o(f(y)dy > 0},
(x,r)

ri0

then

hm Sup r—nj ynf](.V)dy é M7£’
x— &, xel(&,a) B(&,r)
which implies that the left hand side is equal to zero. Thus we find that F; = G;.

Since Hy(G;) = 0, we also obtain H,(F;) =0, and the proof of Theorem 7 is
completed.

ReMARK. Theorem 7 is best possible as to the size of the exceptional set if we
assume (w5) instead of (w); in fact, for a compact set K < dD such that H,(K) = 0
we shall construct a nonnegative measurable function f on D satisfying (1) and (2)

such that u(x) = G, f(x) = J G,(x,y)f(y)dy does not have nontangential limit
D

0 at any e K, where G,(x,y) = |x — y|' ™" — |X — y|' ™" with X = (x, —x,,) for
x = (x, x,).

For the construction of such f, take a mutually disjoint finite family {B(x; ,,
r;.1)} of balls such that x;, €dD, u; B(x;,,5r;;) > K and Y ;h(r;,) < 1, and
define

[i0) = ajilziy =y ollzy =y 7HTHETD

for yeB(z;,r;,), where z;, = x;; +(0,2r;,) and a;, = 0*(r;{)"'"""; set
fi(y) = 0 otherwise. Letting &, = min;r;,, we take a mutually disjoint finite
family {B(x; ,,7;,)} of balls such that x;,€dD, r;, <& /4, ;h(r;;) <27*
and U;B(x;,,5r;,) > K. As above, we define fy(y)=a;,lz;, —y"
oz, —y~) Y=Y for yeB(z;,,r;,), where z;,=x;,+(02r;,) and
a;, = w*(rj;)"™"Y; define f,(y) = 0 otherwise. In the same manner, for each
positive integer m we can find a mutually disjoint finite family {B(x;, ,r; )} and
a function f,, such that x;,€dD, Y jh(rj ) <27 """, U;B(X;m 5r;m) = K and
Jn¥) = @jym|2jm — V7' (12, — Y171 for y € B(2) s T, m) Where z;,, =
Xjm + (0,27 ), @) = 0*(rj )" Vandr;, <é,_/4withe, | = min;r;,_,;
we set f,(y) =0 outside U; B(zj.";.) as above. Then, since f,(y) <
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M, |z;,, — yI”! on B(z;, ;) With a positive constant M,, we note

L VatSm(V)" O(fu(y)) dy
s Mzza?,mj Volzjm— Y "0z, — yI 71 V"D dy
j B(2j s j, m)

rj,m
< M3Za;5,m rjmf w(t—l)—ll(n—l)l—ldt
J 0
— MaZh(rj,,,.) < M32_"'“,
J
f Vnfm(y)dy
D
= Mi“mf Valzim = W7 flzim — ™) 7H dy
J

B(zj,msTj,m)

rj,m
< MSZaj_,,,r;{;,‘J (™) e D=1 gy
j 0

=M; 311t S Me L h(ry ) < Me2™™!
J J

and

Gifn(zjm) 2 M7J 12jm = W 7" m() dy

B(zj’m.rj‘m)
Tj,m
2 Mga;,, J o)V d = M,
0

where M,, . .., Mg are positive constants independent of j and m. Consequently,

since {B(z;,, T;.m)} is mutally disjoint, f = Y f,, satisfies conditions (1) and (2).
m=1

Moreover, if £ € K, then for each m there exists j(m) such that & € B(X ji). m> ST jim).m)-

Then zj,, ,€I'({,5), which implies that limsup u(x) = Mg > 0 and hence
x—=&,xel(&,5)
u does not have nontangential limit zero at &.

Finally we prove that

J |grad u(x)|” w(|grad u(x)]) |x,|* dx < oo.
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First we consider the case o = 0. We note by the well known fact in singular
integral operators that

Ma) = H,({x;|grad u(x)| > a})

éMga"J f(y)dy+M9a“’J frdy
S 2a/2} {yif(y)<a/2}
= Mop,(a) + Mop,(a),
where g > nand Mj is a positive constant independent of f and a. Hence, setting
&(r) = r"w(r), we have

o]

Jdi(lgrad u(x)))dx = j Ma)dd(a)

0

oo}

< M, J " iy(a)dd(a) + M, f (@) db(a)

V] 0

2/ ©
=M, jf()’)(f0 a! dd’(a)) dy + M, Jf(ﬁ"(J;ﬂ )a_"dd’(a)) dy

s Mmj‘ﬂf(y))dy <0

with a positive constant M.
In the general case, setting g(y) = |y,|””f(y) and v(x) = f G (x,y)g(y)dy, we
D
note that

| 1x,*"| grad u(x)| — |grad v(x)| |

g Ml 1 J‘Ka(xm yn)(Plxn — ¥yl * g(.a yn))(-x,’ Ixn - ynl) dym

where K,(x,, y,) = [1 — [x,/y,*""| /Ix, — y.l, P denotes the Poisson kernel and
M, is a positive constant independent of x and y. Applying Appendix A.3 in
Stein’s book [10], we see that

Ma) = H,({x; | Ix,/*" |grad u(x)| — |grad v(x)| | > a})

< My, (uy(a) + pa(a)),

where M,, is a positive constant independent of a, u(a) =a™? j
{yig(y)2a/2}

g(y)’dy and pu,(a) = a“’j g/y)y’dy with 1 < p < n < q. Hence, by the

{yig(y) <a/2}
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above considerations, we obtain

J.d’(l |x,|*"| grad u(x)| — |grad v(x)| [)dx < M5 jd’(g(y)) dy.

Since f has compact support, it follows that

f‘I’(IX.I“’" lgrad u(x))dx = My, j P(g(y)dy = M, s f‘b(f (I 1yal*dy < 0

with positive constants M3, M,,, M;s. Thus we can establish
J¢(lgrad u(x))) |x,|* dx < oo.

Our last aim is to prove the following result concerning global boundary
behaviors.

THEOREM 8. Let u be as in Theorem 6 and 0 < o <n — 1. Then
[x2w*(x,; )] u(x) tends to zero as x € R", tends to the boundary oR", .

ProoFr. First we note the following integral representation of u (see the proof
of Theorem 6):

ux) =c _Zl Ik,-(x, Y)@/dy;)u(y)dy + A,

where ¢, A are constants and i(x) is an extension of u to R" such that
Jlgrad u(x)|" w(lgrad a(x)) |x,|* dx < co. For x = (x', x,) € R", we write u;(x) =

uj(x) + uj(x) as in the proof of Theorem 6.
For simplicity, set fi(y) = |(0/0y;)ii(y)l. For a > 0 we have by Lemma 1

1/n
lu;(x)| = M,ax, + MI(J Sy o(fi(y) dy> w*(a)~"

B(x,x,/2)
with a positive constant M, independent of x and a. Letting a = x, !, we obtain
lim [x} w*(x, )] uj(x)] = 0.

xnl0

We next estimate the function u]. For simplicity, set

1/n
F = ( J‘ L o(fi() |yal* dy) . For 6 > 1, by Holder’s inequality we have
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J L, =y TSy
{(yeR"™ — B(x,x,/2); y > X/ 2,£ ;(0) > |x—y| )

i/n
é(Jf;(y)"w(f;(y))lynl“ dy) <L e B mlx— FLCEL

1/n
x ofx — y| 707y, dy)

Zx"_l Un'
=< M2F<J w(r)_l/("'l)ra/(n—l)r—ldr)
0

é M3F[w(x,,_ 1)—1/(n—-1)x”—a/(n—l)]1/n’ é M4 Fx;a/n w*(x”— l)-—l/n

and

- 1-4
j =T dy S Max, ™
{yeR" — B(x,x,,/2); yn > x,/2,f (0) <Ix—y| )

In the same manner, letting z = (x',0), we obtain

j = YISO dy
{(YER" — B(X,X/2); . <X/ 2, ;(0) > |z —y]  *}

1/n
= (jﬁ(y)" o(f{) |yal* d)')

1/n’
x ( f e = Y7 aollz — y7) | dy)
{yeR™ ~ B(x,x,,/2);y,, < x,,/2}
) 1/n
< M6F<'[ (r+ x,,)_"w(r“)‘”""”r‘““"‘”r""dr)
[
é M7 F[w(x,," l)— 1/(n—1) xn—a/(n— 1)]1/n’ é M8 F[x: w*(x”- l)] —1/n
and

- -8
j L, =TSO dy £ Mox, ™
{(YeR" ~ B(x,X/2); yn <X,/ 2, SN <|z=y| 7}

Hence lim sup [x% w*(x, ")]*""|u] (x)] £ M,o F, from which it follows that
xnl0
lim [x3 w*(x, ')]""" u] (x) = 0.

xn |0

To extend our results to the tangential case, we shall need the techniques used
in the paper of Aikawa [1], and leave the details to the reader.
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