DOMINATED AND UNIFORMLY DOMINATED FAMILIES OF LOEB-MEASURES

DIETER LANDERS and LOTHAR ROGGE

Abstract.

It is shown in this paper that each dominated family of Loeb-measures, derived from an internal family of probability contents, is uniformly dominated. As a corollary we obtain some surprising "nonstandard equivalences" for uniform domination in the standard world. An essential tool is an extension of a well-known theorem of Halmos and Savage which is proven by nonstandard methods in a rather direct way.

1. Notations.

Let P and Q be probability contents (p-contents) on an algebra \mathscr{C} . Then

Q weakly dominates P iff $C \in \mathcal{C}$ and Q(C) = 0 imply P(C) = 0;

Q dominates P iff for each $\varepsilon > 0$ there exists $\delta > 0$ such that $C \in \mathscr{C}$ and $Q(C) < \delta$ imply $P(C) < \varepsilon$.

If P, Q are p-measures on a σ -algebra then both concepts coincide.

Let \mathscr{P} be a family of p-contents on \mathscr{C} . Then \mathscr{P} is (weakly) dominated iff there exists a p-content Q, which (weakly) dominates \mathscr{P} ; that is Q (weakly) dominates each $P \in \mathscr{P}$.

 \mathscr{P} is uniformly dominated iff there exists a *p*-content Q, which uniformly dominates \mathscr{P} ; i.e. for each $\varepsilon > 0$ there exists $\delta > 0$ such that $C \in \mathscr{C}$ and $Q(C) < \delta$ imply $P(C) < \varepsilon$ for all $P \in \mathscr{P}$.

We assume in this paper that we have a structure containing the real numbers R, and a polysaturated nonstandard model of this structure.

Let \mathscr{B} be an internal algebra, and $Q: \mathscr{B} \to *[0,1]$ be an internal *p*-content. Then $Q_L(B) := {}^{\circ}(Q(B))$, $B \in \mathscr{B}$, defines a *p*-measure on \mathscr{B} and the system L(Q) of all sets C with

$$\sup\{Q_L(B): C\supset B\in\mathscr{B}\}=\inf\{Q_L(B): C\subset B\in\mathscr{B}\}$$

Received May 21, 1987; in revised form September 7, 1987.

is the σ -algebra of all Carathéodory-measurable sets with respect to $Q_L|\mathscr{B}$. The common value of the above expressions defines the unique extension of $Q_L|\mathscr{B}$ to a measure on the complete σ -algebra L(Q). This extension is also denoted by $Q_L;Q_L$ is the Loeb-measure associated with Q. The described construction was given in [3], [4]. Put

$$L_u(\mathcal{B}) = \bigcap \{L(Q): Q \text{ internal } p\text{-content on } \mathcal{B}\}.$$

If \mathscr{G} is a family of internal p-contents on \mathscr{B} , let $\mathscr{G}_L|\mathscr{B} = \{Q_L|\mathscr{B}: Q \in \mathscr{G}\}.$

2. The results.

The following Theorem of Halmos and Savage (see [1]) is an important tool in mathematical statistics and especially in the theory of sufficiency. We give a short and transparent proof using nonstandard techniques.

If P is a p-content on an algebra \mathscr{A} , put $N(P) := \bigcup \{*N : N \in \mathscr{A}, P(N) = 0\}$. As our model is polysaturated, Theorem 1 of [2] implies that $N(P) \in L_u(*\mathscr{A})$ and $*P_L(N(P)) = 0$.

The following Lemma will be used several times in the proofs of our results.

- 1. LEMMA. Let Q be an internal p-content on an internal algebra 38.
- (1) If $Q_L|\mathcal{B}$ is weakly dominated by a p-content $v|\mathcal{B}$, then it is dominated by $v|\mathcal{B}$.
- (2) If $P | \mathcal{B}$ is an internal p-content such that P_L dominates Q_L on \mathcal{B} , then it dominates Q_L on $L_u(\mathcal{B})$.
- (3) Let P and Q be p-contents on an algebra \mathscr{A} . Then $P | \mathscr{A}$ dominates $Q | \mathscr{A}$ iff $P_L | L_u (\mathscr{A})$ dominates $Q_L | L_u (\mathscr{A})$.
- PROOF. (1) As \mathcal{B} is an internal algebra, $v|\mathcal{B}$ is a p-measure and can be extended to a unique p-measure on $\sigma(\mathcal{B})$. It suffices to show that $v|\sigma(\mathcal{B})$ weakly dominates $Q_L|\sigma(\mathcal{B})$. Let $C \in \sigma(\mathcal{B})$ with v(C) = 0. Assume indirectly that $Q_L(C) > 0$. Then there exists $B \in \mathcal{B}$ with $B \subset C$ and $Q_L(B) > 0$, contradicting v(B) = 0.
- (2) Let $C \in L_u(\mathcal{B})$ with $P_L(C) = 0$. If $Q_L(C) > 0$, we obtain a contradiction as in (1).
- (3) By transfer it can be seen that $P|\mathscr{A}$ dominates $Q|\mathscr{A}$ iff $*P_L|*\mathscr{A}$ dominates $*Q_L|*\mathscr{A}$. Now by (2), applied to $P|B=*P_L|*\mathscr{A}$ and $Q|B=*Q_L|*\mathscr{A}$, we obtain (3).
- 2. Theorem. Let $\mathscr P$ be a dominated family of p-measures on a σ -algebra $\mathscr A$. Then there exists $P_n \in \mathscr P$, $n \in \mathbb N$, such that $\sum_{n \in \mathbb N} 2^{-n} P_n$ dominates $\mathscr P$.

PROOF. Let \mathscr{P} be dominated by a *p*-content μ . Let $\{P_n : n \in \mathbb{N}\} \subset \mathscr{P}$ be such that

$$(1) \qquad *\mu_L\left(\bigcap_{n\in\mathbb{N}}N(P_n)\right)=\inf\left\{*\mu_L\left(\bigcap_{P\in\mathscr{P}_0}N(P)\right):\mathscr{P}_0\subset\mathscr{P}\text{ countable}\right\}.$$

By (1) we have for each $Q \in \mathcal{P}$ that

$$N:=\bigcap_{n\in\mathbb{N}}N(P_n)\subset N(Q)\qquad *\mu_L|L_u(*\mathscr{A})-\text{a.e.}$$

As $*Q_L|L_u(*\mathscr{A})$ is dominated by $*\mu_L|L_u(*\mathscr{A})$ according to Lemma 1, we obtain $N \subset N(Q) *Q_L$ -a.e. Put

$$P_0 := \sum_{n \in \mathbb{N}} \frac{1}{2^n} P_n$$

and let $A \in \mathscr{A}$ with $P_0(A) = 0$. Then $*A \subset N(P_0) \subset \bigcap_{n \in \mathbb{N}} N(P_n) = N$. Hence $Q(A) = *Q_L(*A) = 0$ for all $Q \in \mathscr{P}$.

Using once more nonstandard techniques, we obtain the following generalization of the Theorem of Halmos-Savage.

3. COROLLARY. Let \mathscr{P} be a dominated family of p-contents on an algebra \mathscr{A} . Then there exist $P_n \in \mathscr{P}$, $n \in \mathbb{N}$, such that $\sum_{n \in \mathbb{N}} 2^{-n} P_n$ dominates \mathscr{P} .

PROOF. Let \mathscr{P} be dominated by a p-content μ . By Lemma 1 we have that $\{*P_L: P \in \mathscr{P}\}$ is dominated by $*\mu_L$ on $\sigma(*\mathscr{A})$, the σ -algebra generated by $*\mathscr{A}$. According to Theorem 2 there exist $P_n \in \mathscr{P}$, $n \in \mathbb{N}$, such that $\sum_{n \in \mathbb{N}} 2^{-n} (*P_n)_L$ dominates $\{*P_L: P \in \mathscr{P}\}$ on $\sigma(*\mathscr{A})$. Hence $\sum_{n \in \mathbb{N}} 2^{-n} P_n$ dominates \mathscr{P} .

Now we prove a result for certain families of Loeb-measures which is obviously false for general families of measures.

4. THEOREM. Let \mathcal{B} be an internal algebra and let \mathcal{G} be an internal family of p-contents on \mathcal{B} . If $\mathcal{G}_L|\mathcal{B}$ is weakly dominated, then there exists an internal p-content $v|\mathcal{B}$ such that $v_L|\mathcal{B}$ uniformly dominates $\mathcal{G}_L|\mathcal{B}$.

PROOF. According to Lemma 1, $\mathscr{G}_L|\mathscr{B}$ is dominated. Hence there exist $Q_n \in \mathscr{G}$, $n \in \mathbb{N}$, such that $\sum_{n \in \mathbb{N}} 2^{-n} (Q_n)_L$ dominates $\mathscr{G}_L|\mathscr{B}$ (use Corollary 3). Since \mathscr{G} is an internal set, and since our model is polysaturated, there exists an internal extension $(Q_H)_{H \in {}^*\mathbb{N}} \subset \mathscr{G}$ of $(Q_n)_{n \in \mathbb{N}}$. Put

$$v = \sum_{H \in {}^*\mathsf{N}} \frac{1}{2^H} Q_H.$$

Then $v|\mathcal{B}$ is an internal p-content. Furthermore, $v_L|\mathcal{B}$ dominates $\mathcal{G}_L|\mathcal{B}$.

If $B \in \mathcal{B}$ and $v_L(B) = 0$, then $Q_n(B) \approx 0$ for all $n \in \mathbb{N}$ and hence $Q_L(B) = 0$ for all $Q \in \mathcal{G}$; therefore \mathcal{G}_L is dominated by v_L according to Lemma 1.

Let $\varepsilon \in \mathbb{R}_+$ be fixed and put for each $\delta \in \mathbb{R}_+$

$$\mathcal{G}_{\delta}:=\big\{Q\in\mathcal{G}|\,(\forall\,B\in\mathcal{B})(v(B)<\delta\Rightarrow Q(B)<\varepsilon)\big\}.$$

As $v_L|\mathcal{B}$ dominates $\mathcal{G}_L|\mathcal{B}$, we obtain $\mathcal{G} = \bigcup_{\delta \in \mathsf{R}_+} \mathcal{G}_{\delta}$. As \mathcal{G} and \mathcal{G}_{δ} , $\delta \in \mathsf{R}_+$, are internal sets and since our model is polysaturated, there exists $\delta \in \mathsf{R}_+$ such that $\mathcal{G} = \mathcal{G}_{\delta}$. Consequently $\mathcal{G}_L|\mathcal{B}$ is uniformly dominated by $v_L|\mathcal{B}$.

5. THEOREM. Let \mathscr{A} be an algebra, and let \mathscr{G} be an internal family of p-contents on $*\mathscr{A}$. If for each $Q \in \mathscr{G}$ there exists a p-content $P|\mathscr{A}$ such that $*P_L|*\mathscr{A}$ dominates $Q_L|*\mathscr{A}$, then there exists a p-content $\mu|\mathscr{A}$ such that $*\mu_L|*\mathscr{A}$ uniformly dominates $\mathscr{G}_L|*\mathscr{A}$.

PROOF. Let $\varepsilon, \delta \in \mathbb{R}_+$, $P | \mathscr{A}$ be a p-content and put

$$\mathscr{G}_{P,\delta,\varepsilon} := \{ Q \in \mathscr{G} | (\forall A \in \mathscr{A})(^*P(A) < \delta \Rightarrow Q(A) < \varepsilon) \}.$$

By assumption we obtain for each $\varepsilon \in \mathbb{R}_+$ that $\mathscr{G} = \bigcup \{\mathscr{G}_{P,\delta,\varepsilon} : \delta \in \mathbb{R}_+, P | \mathscr{A}_{P,\delta,\varepsilon} : \delta \in \mathbb{R}_+ \}$

Since \mathscr{G} and $\mathscr{G}_{P,\delta,\varepsilon}$ are internal and since our model is polysaturated there exists p-contents $P_1^{\varepsilon}, \ldots, P_{n(\varepsilon)}^{\varepsilon}$ on \mathscr{A} and $\delta(\varepsilon) \in \mathbb{R}_+$ such that for all $A \in {}^*\mathscr{A}$ and all $Q \in \mathscr{G}$:

*
$$P_i^{\varepsilon}(A) < \delta(\varepsilon)$$
 for $i = 1, ..., n(\varepsilon) \Rightarrow Q(A) < \varepsilon$.

Let P_n , $n \in \mathbb{N}$, be a denumeration of $\{P_v^{\varepsilon}: v \leq n(\varepsilon), \varepsilon = 1/m, m \in \mathbb{N}\}$ and put $\mu = \sum_{n \in \mathbb{N}} 2^{-n} P_n$. Then $*\mu_L|*\mathscr{A}$ uniformly dominates $\mathscr{G}_L|*\mathscr{A}$.

- 6. COROLLARY. Let \mathcal{P} be a family of p-contents on an algebra \mathcal{A} . Then the following four conditions are equivalent:
- (i) $\mathscr{P}|\mathscr{A}$ is uniformly dominated;
- (ii) $\mathscr{P}_L|^*\mathscr{A}$ is weakly dominated;
- (iii) $*\mathcal{P}_L|*\mathcal{A}$ is uniformly dominated;
- (iv) for each $Q \in {}^*\mathcal{P}$ there exists a p-content $P|_{\mathscr{A}}$ such that ${}^*P_L|_{{}^*\mathscr{A}}$ dominates $Q_L|_{{}^*\mathscr{A}}$.

PROOF. (i) \Rightarrow (iv) by transfer; (iv) \Rightarrow (iii) by Theorem 5; (iii) \Rightarrow (ii) is trivial. (ii) \Rightarrow (i): If (ii) holds, then by Theorem 4 there exists an internal *p*-content $v|^*\mathscr{A}$ such that $v_L|^*\mathscr{A}$ uniformly dominates $\mathscr{A}_L|^*\mathscr{A}$. Hence $\mathscr{P}|\mathscr{A}$ is uniformly dominated by the *p*-content $P|\mathscr{A}$, given by $P(A) := v_L(^*A)$ for $A \in \mathscr{A}$.

REFERENCES

- 1. Paul R. Halmos and L. J. Savage, Application of the Radon-Nikodym theorem to the theory of sufficient statistics, Ann. Math. Stat. 20 (1948), 225-241.
- 2. Dieter Landers and Lothar Rogge, Universal Loeb-measurability of sets and of the standard part map with applications, Trans. Amer. Math. Soc. 304 (1987), 229-243.
- 3. Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probbility theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
- Peter A. Loeb, An introduction to nonstandard analysis and hyperfinite probability theory, in Probabilistic Analysis and Related Topics, Vol. 2, pp. 105-142, ed. A. T. Bharucha-Reid. Academic Press, New York, 1979.

DIETER LANDERS
MATHEMATISCHES INSTITUT
DER UNIVERSITÄT ZU KÖLN
WEYERTAL 86-90
D-5000 KÖLN 41
W. GERMANY

LOTHAR ROGGE FACHBEREICH MATHEMATIK DER UNIVERSITÄT DUISBURG LOTHARSTRASSE 65 D-4100 DUISBURG 1 W. GERMANY