DOMINATED AND UNIFORMLY DOMINATED FAMILIES OF LOEB-MEASURES

DIETER LANDERS and LOTHAR ROGGE

Abstract.

It is shown in this paper that each dominated family of Loeb-measures, derived from an internal family of probability contents, is uniformly dominated. As a corollary we obtain some surprising “nonstandard equivalences” for uniform domination in the standard world. An essential tool is an extension of a well-known theorem of Halmos and Savage which is proven by nonstandard methods in a rather direct way.

1. Notations.

Let P and Q be probability contents (p-contents) on an algebra \mathcal{C}. Then

Q weakly dominates P iff $C \in \mathcal{C}$ and $Q(C) = 0$ imply $P(C) = 0$;

Q dominates P iff for each $\varepsilon > 0$ there exists $\delta > 0$ such that $C \in \mathcal{C}$ and $Q(C) < \delta$ imply $P(C) < \varepsilon$.

If P, Q are p-measures on a σ-algebra then both concepts coincide.

Let \mathcal{P} be a family of p-contents on \mathcal{C}. Then \mathcal{P} is (weakly) dominated iff there exists a p-content Q, which (weakly) dominates \mathcal{P}; that is Q (weakly) dominates each $P \in \mathcal{P}$.

\mathcal{P} is uniformly dominated iff there exists a p-content Q, which uniformly dominates \mathcal{P}; i.e. for each $\varepsilon > 0$ there exists $\delta > 0$ such that $C \in \mathcal{C}$ and $Q(C) < \delta$ imply $P(C) < \varepsilon$ for all $P \in \mathcal{P}$.

We assume in this paper that we have a structure containing the real numbers \mathbb{R}, and a polysaturated nonstandard model of this structure.

Let \mathcal{A} be an internal algebra, and $Q: \mathcal{A} \rightarrow \ast[0, 1]$ be an internal p-content. Then $Q_L(B) := \circ(Q(B)), B \in \mathcal{A}$, defines a p-measure on \mathcal{A} and the system $L(Q)$ of all sets C with

$$\sup\{Q_L(B) : C \supset B \in \mathcal{A}\} = \inf\{Q_L(B) : C \subseteq B \in \mathcal{A}\}$$

Received May 21, 1987; in revised form September 7, 1987.
is the \(\sigma \)-algebra of all Carathéodory-measurable sets with respect to \(Q_L|\mathcal{B} \). The common value of the above expressions defines the unique extension of \(Q_L|\mathcal{B} \) to a measure on the complete \(\sigma \)-algebra \(L(Q) \). This extension is also denoted by \(Q_L; Q_L \) is the Loeb-measure associated with \(Q \). The described construction was given in [3], [4]. Put

\[
L_n(\mathcal{B}) = \bigcap \{ L(Q) : Q \text{ internal } p\text{-content on } \mathcal{B} \}.
\]

If \(\mathcal{B} \) is a family of internal \(p\)-contents on \(\mathcal{B} \), let \(\mathcal{G}_L|\mathcal{B} = \{ Q_L|\mathcal{B} : Q \in \mathcal{G} \} \).

2. The results.

The following Theorem of Halmos and Savage (see [1]) is an important tool in mathematical statistics and especially in the theory of sufficiency. We give a short and transparent proof using nonstandard techniques.

If \(P \) is a \(p \)-content on an algebra \(\mathcal{A} \), put

\[
N(P) := \bigcup \{ \ast N : N \in \mathcal{A}, P(N) = 0 \}.
\]

As our model is polysaturated, Theorem 1 of [2] implies that \(N(P) \in L_n(\ast \mathcal{A}) \) and \(\ast P_L(N(P)) = 0 \).

The following Lemma will be used several times in the proofs of our results.

1. Lemma. Let \(Q \) be an internal \(p \)-content on an internal algebra \(\mathcal{B} \).

1. If \(Q_L|\mathcal{B} \) is weakly dominated by a \(p \)-content \(v|\mathcal{B} \), then it is dominated by \(v|\mathcal{B} \).

2. If \(P|\mathcal{B} \) is an internal \(p \)-content such that \(P_L \) dominates \(Q_L \) on \(\mathcal{B} \), then it dominates \(Q_L \) on \(L_n(\mathcal{B}) \).

3. Let \(P \) and \(Q \) be \(p \)-contents on an algebra \(\mathcal{A} \). Then \(P|\mathcal{A} \) dominates \(Q|\mathcal{A} \) iff \(\ast P_L|L_n(\ast \mathcal{A}) \) dominates \(\ast Q_L|L_n(\mathcal{A}) \).

Proof. (1) As \(\mathcal{B} \) is an internal algebra, \(v|\mathcal{B} \) is a \(p \)-measure and can be extended to a unique \(p \)-measure on \(\sigma(\mathcal{B}) \). It suffices to show that \(v|\sigma(\mathcal{B}) \) weakly dominates \(Q_L|\sigma(\mathcal{B}) \). Let \(C \in \sigma(\mathcal{B}) \) with \(v(C) = 0 \). Assume indirectly that \(Q_L(C) > 0 \). Then there exists \(B \in \mathcal{B} \) with \(B \subset C \) and \(Q_L(B) > 0 \), contradicting \(v(B) = 0 \).

(2) Let \(C \in L_n(\mathcal{B}) \) with \(P_L(C) = 0 \). If \(Q_L(C) > 0 \), we obtain a contradiction as in (1).

(3) By transfer it can be seen that \(P|\mathcal{A} \) dominates \(Q|\mathcal{A} \) iff \(\ast P_L|\ast \mathcal{A} \) dominates \(\ast Q_L|\ast \mathcal{A} \). Now by (2), applied to \(P|B = \ast P_L|\ast \mathcal{A} \) and \(Q|B = \ast Q_L|\ast \mathcal{A} \), we obtain (3).

2. Theorem. Let \(\mathcal{P} \) be a dominated family of \(p \)-measures on a \(\sigma \)-algebra \(\mathcal{A} \). Then there exists \(P_n \in \mathcal{P}, n \in \mathbb{N} \), such that \(\sum_{n \in \mathbb{N}} 2^{-n} P_n \) dominates \(\mathcal{P} \).
\textbf{Proof.} Let \mathcal{P} be dominated by a p-content μ. Let $\{P_n : n \in \mathbb{N}\} \subset \mathcal{P}$ be such that
\begin{equation}
*\mu_L \left(\bigcap_{n \in \mathbb{N}} N(P_n) \right) = \inf \left\{ *\mu_L \left(\bigcap_{P \in \mathcal{P}_0} N(P) \right) : \mathcal{P}_0 \subset \mathcal{P} \text{ countable} \right\}.
\end{equation}

By (1) we have for each $Q \in \mathcal{P}$ that
\[N := \bigcap_{n \in \mathbb{N}} N(P_n) \subset N(Q) \quad *\mu_L|_{L^*(\mathcal{A})}\text{-a.e.} \]

As $*Q_L|_{L^*(\mathcal{A})}$ is dominated by $*\mu_L|_{L^*(\mathcal{A})}$ according to Lemma 1, we obtain $N \subset N(Q) \ *Q_L$-a.e. Put
\[P_0 := \sum_{n \in \mathbb{N}} \frac{1}{2^n} P_n \]
and let $A \in \mathcal{A}$ with $P_0(A) = 0$. Then $*A \subset N(P_0) \subset \bigcap_{n \in \mathbb{N}} N(P_n) = N$. Hence $Q(A) = *Q_L(*A) = 0$ for all $Q \in \mathcal{P}$.

Using once more nonstandard techniques, we obtain the following generalization of the Theorem of Halmos-Savage.

3. Corollary. Let \mathcal{P} be a dominated family of p-contents on an algebra \mathcal{A}. Then there exist $P_n \in \mathcal{P}$, $n \in \mathbb{N}$, such that $\sum_{n \in \mathbb{N}} 2^{-n} P_n$ dominates \mathcal{P}.

\textbf{Proof.} Let \mathcal{P} be dominated by a p-content μ. By Lemma 1 we have that $\{ *P_L : P \in \mathcal{P} \}$ is dominated by $*\mu_L$ on $\sigma(*\mathcal{A})$, the σ-algebra generated by $*\mathcal{A}$. According to Theorem 2 there exist $P_n \in \mathcal{P}$, $n \in \mathbb{N}$, such that $\sum_{n \in \mathbb{N}} 2^{-n} (P_n)_L$ dominates $\{ *P_L : P \in \mathcal{P} \}$ on $\sigma(*\mathcal{A})$. Hence $\sum_{n \in \mathbb{N}} 2^{-n} P_n$ dominates \mathcal{P}.

Now we prove a result for certain families of Loeb-measures which is obviously false for general families of measures.

4. Theorem. Let \mathcal{B} be an internal algebra and let \mathcal{G} be an internal family of p-contents on \mathcal{B}. If $\mathcal{G}_L|_\mathcal{B}$ is weakly dominated, then there exists an internal p-content $v|_\mathcal{B}$ such that $v_L|_\mathcal{B}$ uniformly dominates $\mathcal{G}_L|_\mathcal{B}$.

\textbf{Proof.} According to Lemma 1, $\mathcal{G}_L|_\mathcal{B}$ is dominated. Hence there exist $Q_n \in \mathcal{G}$, $n \in \mathbb{N}$, such that $\sum_{n \in \mathbb{N}} 2^{-n} (Q_n)_L$ dominates $\mathcal{G}_L|_\mathcal{B}$ (use Corollary 3). Since \mathcal{G} is an internal set, and since our model is polysaturated, there exists an internal extension $(Q_H)_{H \in \ast \mathbb{N}} \subset \mathcal{G}$ of $(Q_n)_{n \in \mathbb{N}}$. Put
\[v = \sum_{H \in \ast \mathbb{N}} \frac{1}{2^H} Q_H. \]

Then $v|_\mathcal{B}$ is an internal p-content. Furthermore, $v_L|_\mathcal{B}$ dominates $\mathcal{G}_L|_\mathcal{B}$.
If $B \in \mathcal{B}$ and $v_L(B) = 0$, then $Q_n(B) \approx 0$ for all $n \in \mathbb{N}$ and hence $Q_L(B) = 0$ for all $Q \in \mathcal{G}$; therefore \mathcal{G}_L is dominated by v_L according to Lemma 1.

Let $\varepsilon \in \mathbb{R}_+$ be fixed and put for each $\delta \in \mathbb{R}_+$

$$\mathcal{G}_{\delta} := \{Q \in \mathcal{G} \mid (\forall B \in \mathcal{B})(v(B) < \delta \Rightarrow Q(B) < \varepsilon)\}.$$

As $v_L|\mathcal{B}$ dominates $\mathcal{G}_L|\mathcal{B}$, we obtain $\mathcal{G} = \bigcup_{\delta \in \mathbb{R}_+} \mathcal{G}_{\delta}$. As \mathcal{G} and \mathcal{G}_{δ}, $\delta \in \mathbb{R}_+$, are internal sets and since our model is polysaturated, there exists $\delta \in \mathbb{R}_+$ such that $\mathcal{G} = \mathcal{G}_{\delta}$. Consequently $\mathcal{G}_L|\mathcal{B}$ is uniformly dominated by $v_L|\mathcal{B}$.

5. Theorem. Let \mathcal{A} be an algebra, and let \mathcal{G} be an internal family of p-contents on \mathcal{A}. If for each $Q \in \mathcal{G}$ there exists a p-content $P|\mathcal{A}$ such that $*P_L|\mathcal{A}$ dominates $Q_L|\mathcal{A}$, then there exists a p-content $\mu|\mathcal{A}$ such that $*\mu_L|\mathcal{A}$ uniformly dominates $\mathcal{G}_L|\mathcal{A}$.

Proof. Let $\varepsilon, \delta \in \mathbb{R}_+$, $P|\mathcal{A}$ be a p-content and put

$$\mathcal{G}_{P,\delta,\varepsilon} := \{Q \in \mathcal{G} \mid (\forall A \in \mathcal{A})(*P(A) < \delta \Rightarrow Q(A) < \varepsilon)\}.$$

By assumption we obtain for each $\varepsilon \in \mathbb{R}_+$ that $\mathcal{G} = \bigcup \{\mathcal{G}_{P,\delta,\varepsilon} : \delta \in \mathbb{R}_+, P|\mathcal{A}$ p-content $\}$. Since \mathcal{G} and $\mathcal{G}_{P,\delta,\varepsilon}$ are internal and since our model is polysaturated there exists p-contents $P_{\varepsilon}^1, \ldots, P_{n(\varepsilon)}^\varepsilon$ on \mathcal{A} and $\delta(\varepsilon) \in \mathbb{R}_+$ such that for all $A \in \mathcal{A}$ and all $Q \in \mathcal{G}$:

$$*P_i^\varepsilon(A) < \delta(\varepsilon) \quad \text{for } i = 1, \ldots, n(\varepsilon) \Rightarrow Q(A) < \varepsilon.$$

Let P_n, $n \in \mathbb{N}$, be a denumeration of $\{P_n^\varepsilon : \nu \leq n(\varepsilon), \varepsilon = 1/m, m \in \mathbb{N}\}$ and put $\mu = \sum_{n \in \mathbb{N}} 2^{-n}P_n$. Then $*\mu_L|\mathcal{A}$ uniformly dominates $\mathcal{G}_L|\mathcal{A}$.

6. Corollary. Let \mathcal{P} be a family of p-contents on an algebra \mathcal{A}. Then the following four conditions are equivalent:

(i) $\mathcal{P}|\mathcal{A}$ is uniformly dominated;
(ii) $*\mathcal{P}_L|\mathcal{A}$ is weakly dominated;
(iii) $*\mathcal{P}_L|\mathcal{A}$ is uniformly dominated;
(iv) for each $Q \in *\mathcal{P}$ there exists a p-content $P|\mathcal{A}$ such that $*P_L|\mathcal{A}$ dominates $Q_L|\mathcal{A}$.

Proof. (i) \Rightarrow (iv) by transfer; (iv) \Rightarrow (iii) by Theorem 5; (iii) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (i): If (ii) holds, then by Theorem 4 there exists an internal p-content $v|\mathcal{A}$ such that $v_L|\mathcal{A}$ uniformly dominates $*\mathcal{P}_L|\mathcal{A}$. Hence $\mathcal{P}|\mathcal{A}$ is uniformly dominated by the p-content $P|\mathcal{A}$, given by $P(A) := v_L(A)$ for $A \in \mathcal{A}$.

REFERENCES

