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COMPARISON OF STATES AND DARBOUX-TYPE
PROPERTIES IN VON NEUMANN ALGEBRAS

STANISLAW GOLDSTEIN and ADAM PASZKIEWICZ

0. Introduction and preliminaries.

In connection with his study of quantum comparative probability [3],
W. Ochs considered the following problem. Let ¢ be a normal state on
B(H) and let =, be the relation defined for pairs of projections from
B(H) by p éwqdé ¢(p) = ¢(q). Does =, = =, imply ¢ = y? We give the
complete solution to the problem for a not necessarily normal state on an
arbitrary von Neumann algebra in Section 3. The comparison of states on
finite-dimensional von Neumann algebras is described in Section 4.

In [1] H. Choda, M. Enomoto and M. Fujii proved an interesting result :
if ¢ and y are states on a non-atomic von Neumann algebra M, with ¢
normal, and if, for every projection p of M, ¢(p) = % implies y(p) = 1, then
¢ = y. One easily notices the strong connection between the theorem and
the problem of Ochs (see Section 3). In order, however, that the theorem be
applicable to the problem in a nontrivial way, it should be appropriately
generalized. We do not require the state ¢ to be normal, and the algebra M
(although possibly atomic) should not contain a direct summand of type I,,
n < . The above-mentioned theorem was proved in [1] by using a
“dyadic” method and a simple Darboux-type property of a normal state ¢ : if
¢(p) = a > 0 for some projection p, then ¢ takes all values less than «
(but = 0) at some subprojections of p. So to generalize the theorem, one should
generalize the property. Our Darboux-type properties (being of interest in
themselves) are described in section 1, and the generalized theorem in section 2.

In the sequel, M denotes a von Neumann algebra, Z its center, ProjM
the lattice of all orthogonal projections of M and ¢, ¥ (not necessarily normal)
positive linear functionals on M. Moreover, for r e ProjM we put

¥, =qeProjM;q = r},
Sr=qe & iq~r—q~r)
(with 2 = 2,).
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The following theorem is the generalization of the “dyadic” method of [1],
suited to our purposes.

THEOREM 0.1. Fix re ProjM. Let Q < &,, Q + @, satisfy the following con-
ditions

(i) ifqeQ,thenr—qeQ;

(i) if0 < y < @(q) for some qeQ, then there is a qo€Q, qo = ¢ such that
4—4o€Q and ¢(qo) = -

Assume that 0 < a < @(r) and 0 = B, and suppose that @(p) = o implies
¥(p) = B for peQ.
Then y(q) = (B/2)o(q) for g€ Q.

Proor. Note that ¢(q,) = a/n implies ¥(q,) = f/n for any projection g, € Q
and a positive integer n satisfying a(n+1)/n £ ¢(r). Indeed, by (i), r—q, € Q,
and since ¢(r—q,) = «, there exist by (ii) mutually orthogonal projections
q,€0,q; =r—q, (i=2,3,...,n+1) such that ¢(q;) = a/n for each i. Denote
p = Y7 1q;. By supposition,

o(p—q1)=o(p—q) =«
implies
w(ip—q) =y(p—q)=pB fori=23,..,nt+1l

Thus y(q,) = v(q:) and y(q;) = ¥(p—q,)/n = B/n.

Take now an arbitrary ge Q. If 0 < ¢(q) < ¢(r), then there are positive
_integers k,n (with n arbitrarily great) such that ak/n < ¢(q) < a(k+1)/n and
that a(k+1)/n < @(r). Hence, mutually orthogonal projections gq;€Q
i=1,2..,k+1) can be chosen satisfying Z:;lqi Sq= Z:‘:,lq, and
@(q;) = a/n for each i. Therefore, Bk/n = y(q) = B(k+ 1)/n and the conclusion
follows. If ¢(q) = ¢(r), find q,,9,€Q such that 0 < ¢(q;) < @(r) and that
q:+q, = q, and apply the above result to each of the g; (i = 1,2) to obtain
¥(q) = (B/x)p(q). Similarly, y(r) = (B/x)e(r). If (q) = 0, then o(r—q) = ¢(r)
and what we have got so far shows that y(q) = 0. All the cases having been
considered, the proof of the theorem is finished.

1. Darboux-type properties.

We shall need the following simple result (cf. [5; Lemma 1]).

PROPOSITION 1.1. Let p,qeProj M, p ~ q, pg = 0 and ¢(p) £ y < ¢(q). Then
there is a projection r such that

o(ry=y,r<p+q and r~p~p+q-r.
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Proor. Let u € M be such that u*u = p, uu* = q. Define a norm-continuous
function w:[0,1] — Proj M by
o(d) = (1-2)p+22q+A(1 = 22) (u+u*).

Then w(0) = p, w(l) = q, and the sought — for projection r may be chosen
from among the values of the function w.

A stronger result will be proved below (Theorem 1.4). We shall use the
following Wold-type decomposition [4; Theorem 1.1].

THeOREM 1.2. If e+r ~ e+s for mutually orthogonal e,r,s € ProjM, then
there are mutually orthogonal projections ry,r,,81,52,f,9n hy (n 2 1) such that
r = r1+r2, S =sl+sZ,

e=f+ Y (gut+h)

nz1

and ry ~ S, 7y, ~ g, Sa ~h, forn=1.

LEMMA 1.3. Any equivalent projections p,q € M can be decomposed (in Proj M)
as follows:

p=r+f+ Y (g.+h,),

nz1

a=5+7+ Y @.+h,)

nz1

so that, for any K < N with # K = # N\K, the projections

pk=r+f+ Y (g, +h)

nek
and

neK

are unitarily equivalent.

Proor. Choose te€ProjM so that pt = tp and q = vtv for some unitary
veM (see, for example, [4;3.9]). Put e = pt, r = p—e, s = t—e and apply
Theorem 1.2. Let further

pxk =f+r+ Z (gnt+ha), tx =px—r+s.
nekK
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Then

Px=f+r1+<”2+ Zgn>+ Z h,

neK neK

~f+sl+zgn+<52+zhn):tka

neK neK

l—px=1—(e+r+s)+s,+ Z gn+ (sz+ Z h,,)
n¢K n¢K

~1—(e+r+s)+r,+<r2+ Zg,,)-l— Y h,=1—tg

n¢K n¢K

Put now § = vsv*, f = vfv*, §, = vg,v*, h, = vh,v* and conclude that py and
qx = vtgv* are unitarily equivalent.

THEOREM 1.4. Let p ~ q for some p,qeProjM, and let ¢ > 0. Then there
exists a continuous (in norm) function w: [0, 1] - Proj M such that

1" w©) = p, (1) = q;

2" @(@(0) > @(p)—&, @(w(1)) > @(g)—¢.
Proor. Consider the decomposition from lemma 1.3 and take a sequence of
disjoint subsets N; = N with # N, = #N\N,. For one of them, the in-
equalities

CP( ) (y..+h,.)><8, tp(Z (g“,.+ﬁ,,)><s

neN; neN,

hold. The projections
©O) =r+f+ 3 (gath),

né¢N,
o) =5++ Y @.+h)
né¢N;

satisfy 1° and 2°, and are unitarily equivalent. Thus the required function
w exists (see, for example, [2; Theorem 1], or use the connectedness of the
unitary group of M).

Two more Darboux-type properties will be used in the sequel.

ProOPOSITION 1.5. Let peProjM be properly infinite and let @(p) >y > 0.
Then ¢(r) = y for some r e ProjM such that r S pandr ~p—r ~ p.

Proor. There is a sequence {p,} of mutually orthogonal projections from M
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such that p, ~p and p = ) p, (see [7; Proposition 4.12]). If g = p, with
sufficiently large n, then ¢(q) < y, @(p—gq) > y and, obviously, g ~ p—q ~ p.
By Proposition 1.1, there is a projection r in M such that ¢(r) =y and
r~p—r~p.

ProposiTiON 1.6. Let peProjM be finite and continuous and let
@(p) Z y 2 0. Then @(r) = y for some r e ProjM with r < p.

Proor. We may assume that M is of type II;, p = 1 and ¢(p) = 1. Note
also that it suffices to prove the proposition for 0 < y = 1/2. There are two
possibilities :

1. ¢(q) = 1/2 for each q € Proj M such that g ~ 1 —gq.

Let T denote the canonical center-valued trace on M, p a positive linear
functional on Z, and let t = po T. Moreover, put

Q = {peProjM: T(p) = Bl for some B, 0 = B < 1}.

By assumption, T(q) = (1/2)1 implies ¢(q) = 1/2 for q € Proj M. In view of
the Darboux-type property of T (see [7; Proposition 7.17]), we may apply
Theorem 0.1 with t and ¢ in place of ¢ and ¥ to conclude that T(q) = 1
implies ¢(q) = B for each f€[0,1] and geProj M. Hence, ¢(r) =y for a
(clearly existing) projection r such that T(r) = y1.

2°. @) =06<1/2<1—-0=¢(l — q)for some ge Proj M

satisfying g ~ 1 — q. There are positive integers k,n k < 2" such that
B = 2"y/ke [6,1—6]. By Proposition 1.1, ¢(s) = B for some s e ProjM. By
repeated use of Proposition 1.1, we get a sequence of mutually orthogonal
projections ry,...,r» from M such that ¢(r,,) = /2" for each m, 1 < m = 2",
and thatri+...+rp =s. Put r =r; +...+r, to get o(r) = kB/2" = y.

2. A sufficient condition for the equality of states.

LemMMA 2.1. Let M be properly infinite (respectively of type 11,), 0 < a < ¢(1)
and 0 £ B. If ¢(p) = o implies y(p) = B for pe P (respectively p e Proj M),
then y(a) = (B/x)Q(q) for each qeP (respectively qe ProjM). (For the
definition of P see Introduction.)

Proor. Follows at once from Proposition 1.5 (respectively Proposition 1.6)
and Theorem 0.1 with Q = 2 (respectively Q = Proj M).

LEMMA 2.2. Let M be properly infinite. If @ =y on P, then ¢ =y
(on Proj M).
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Proor. Will be carried out in two steps.

Step 1. ¢ =y on 2, for any zeZ. Fix pe#, and ¢ > 0. By Proposi-
tion 1.5, we may find a projection qe 2, _, satisfying ¢(q) < ¢, ¥(q) < &.
Note that p+qe 2. By assumption, ¢(p+49) = y(p+q) and, consequently,
W (p)— o)l < 2.

Step 2. ¢ = y on Proj M. Fix peProjM. By the comparability theorem
(see [6; Theorem V.1.8]), there are x,yeZ such that x+y =1,
px < (1—p)x, (1—p)y < py. Choose gq,,...,q,€ProjM so that q,+¢q;
=(1-p)x, q1~4q2~A-p)x, q3+49s =py, 43 ~qs~py. Note that
41,92 € Px, 43,94 € 2,, and px = x—q, —¢,. By Step 1,

v(p) = y(px)+y(py)

= Y(x—q)—¥(q2)+¥(q3)+¥(q4) = @(p),

which ends the proof.

THEOREM 2.3. Let M be a von Neuman algebra without a direct summand
of type I, (n < ), 0 < a < (1) and 0= B. If @(p) = o implies y(p) = B
for peProjM, then y = (B/a)e. In particular, if @ and Y are states, then
@ =y (and a = p).

PrOOF. Let z be the maximal projection in the center Z of M, such that
M, is of type II,. Then M(1—z) is properly infinite. Let us note that, by
Propositions 1.5 and 1.6, Q = £+ 2, _, satisfies the assumptions of Theorem
0.1. Thus ¥ = (B/a)p on £,+2,_. and the equality must hold on 2, _.,
on %, and, by Lemma 2.2, on ¢, _.. The proof is finished.

We have proved, in fact, the following
PrOPOSITION 2.4. Let 0 < a < @(1), 0 £ B, and, for a projection ze Z, let

i) 0<y<o(p),pe., imply p(q) =7 for some g€ £,
(i) M(1—z) be properly infinite.

If @(p) = o implies Y(p) = B for pe L. P, then ¥ = (B/2)¢-

It follows easily from Theorem 3.3 that if M # Cl and M has a nonzero
direct summand of type I, (for some n < o), then there are two distinct
(and equivalent) states ¢, on M such that ¢(p) = 1/2 implies y(p) = 1/2
for p e Proj M. However, we have the following

COROLLARY 2.5. Let M be a von Neumann algebra with no factor of type
I,, n < o0, as a direct summand, 0 < o < @(1) and 0 = B. Suppose that ¢ is
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normal (at least on the finite discrete part of M), and that ¢(p) = a implies
Y(p) = B for pe ProjM. Then y = (B/a)op.

Proor. Let z be the smallest projection in Z such that M(l1—z) is
properly infinite. Then Mz = M; ®.M,, where M, is of type II;,, M, is
(finite, discrete and) non-atomic and ¢ is normal on M,. By Proposition 1.6
and [1; Theorem 1] (see Introduction), the conditions 0 <7y < ¢@(p),
peProjMz, imply ¢(q) = y for some qe %, Thus, Proposition 2.4 can be
used to end the proof.

3. Equivalent and exclusive states.

Each state ¢ on a von Neumann algebra M gives rise to the following
relation of comparative probability (cf. [3]) on the lattice of projections of M :

p=,q9 il @(p) = (), pqeProjM.

A state l// is said to be equivalent to a state ¢ if =, = =,, ie if, for
p,qe ProjM,

o(p) = ¢(q) is equivalent to y(p) = y(q).
We shall also say that y is similar to ¢ if, for p,q € Proj M,

o(p) < ¢(q) implies y(p) = v(q).

We denote by E(@) (respectively S(¢)) the set of all states equivalent
(respectively similar) to ¢. If E(p) = {¢} (respectively S(¢) = {@}), then the
state ¢ is called exclusive (respectively strongly exclusive). Note that the
equivalence is, in fact, an equivalence relation, and that y € S(¢p) iff p e S(y)
i.e., the relation of similarity is symmetric.

The notions of quantum comparative probability, equivalence and exclu-
siveness of states were introduced by Ochs [3]. He showed that (with the
equivalence relation restricted to the set of normal states) each normal state
on a factor of type I, is exclusive. He also stated a necessary and sufficient
condition for the exclusiveness of a state on a factor of type I,,n < o0, and
proved that each nonfaithful state on such a factor is exclusive.

In this section we shall describe those von Neumann algebras which admit
only exclusive states. The subsequent section contains a thorough description
of the sets E(¢) and S(¢) for factors of type 1,, n < 0.

We shall start with two simple lemmas.

LeMMA 3.1. Let K be a commutative von Neumann algebra. There is a state
¢ on K such that ¢(ProjK) = {0, 1}.
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Proor. We may assume that K = [°(Q, %, v) where (Q, %, v) is a finite
measure space. Let U be an ultrafilter in Q containing the complements of all
v-negligible subsets of Q. For 4 €%, put u(4) = 0 when A¢ U and p(4) = 1
when A e U. Since p is a finitely additive measure on &, absolutely continuous
with respect to v, it yields a state ¢ with the desired property.

LEMMA 3.2. Let M(1 — z) be of type 11, and let Mz be properly infinite for

some zeZ. If y is similar to ¢, then @(p) = 1/2 implies y(p) = 1/2 for any
pel,_,+2..

Proor. Let ¢(p) =1/2, pe £, _.+?,, and ¢ > 0. By Propositions 1.5 and
1.6, we can always find mutually orthogonal projections r,e ¥, _,+ 2.,
r. < p, satisfying ¢(r,) > 0 for every n. For sufficiently large no, y(r,) < e.
Hence, ¢(p) < ¢(1—p+r,, ) implies

w(p) Sw(l—p+r,) <w(l—p)+e.

Thus, y(p) = (1 —p) and, replacing p by 1 —p, y(p) 2 y(1 —p), which gives
the assertion of the lemma.

TueoreM 3.3. For a von Neumann algebra M, the following conditions are
equivalent :

i) M = C1 or M has no direct summand of type 1,, n < c0;
(i1)  each state on M is strongly exclusive;
(ii1)  each state on M is exclusive.

PrOOF. (i) = (ii)). We may assume that M has no direct summand of type
I,, n < oo. By virtue of Lemma 3.2 and Proposition 1.6, we can use
Proposition 2.4 with o = = 1/2 to obtain (ii).

(ii) = (iii). Obvious.

(iil) = (i). Assume the contrary. There are two cases:

1°. M has a nonzero commutative direct summand K and M # Cl. We
may assume that M = K @ N for some nonzero von Neumann subalgebra N.
Let ¢ be state on K such that ¢(ProjK) = {0, 1}, which exists by Lemma 3.1,
and let y be any state on N. Put

@y = (2/3)p @ (1/3)y and ¢, = (3/4)¢ & (1/4)y.
Then the inequality
ep®r) = 9lg +5)

is equivalent to the alternative ¢(p) < @(q) or @(p) = ¢(q), ¥(p) = v(q).
Hence, ¢, and ¢, are distinct and equivalent.
2°. M has a nonzero direct summand M, of type I,, 1 <n < oco. Write
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M, as F,® K where F, is a factor of type I, and K is commutative. By
Theorem 4.5, there are two distinct and equivalent states y,, ¥, on F,. Let
¢ be a state on K such that ¢(ProjK) = {0, 1} (Lemma 3.1). Define a Fubini
mapping h on F,® K by h(a ® b) = ap(b) (cf. [6; Section 9.8]). Since
F, ® K is norm-dense in M,, we may extend h to the whole algebra M,.
It is easy to see that h is a homomorphism of M, onto F,. Hence, y,oh
and y,oh are distinct and equivalent states on M, which can be extended
to distinct and equivalent states on M in an obvious way. Thus, the proof
of the theorem is finished.

4. Equivalence and similarity of states in factors of type I,,n < co.

Throughout this section, M is a factor of type I,, n < oo, t is the
normalized trace on M, { = {eeProjM; 1(¢) = 1/n} and {,=({ n &, for
any p € Proj M. The following lemma generalizes Lemma 2 from [3].

LEmMMma 4.1. Let ¢ =1(v*) and W = t(w-) be two arbitrary hermitian
functionals on M with density operators

k m
v = Z o;p;, W= Z Biq;,
i=1

i=1

where p,,...,px (respectively q,,...,q,) are nonzero mutually orthogonal
projections from M,

and o) < ... <oy, By < ... < B,. If @ is not a multiple of v and
ple) < o(f) implies yle) <y(f) for efel,
thenk = m,p, = q; fori = 1,....k and B; = yo;+ 9 for some y, 0eR,i = 1,.. k.
ProoF. Take j < k and assume that m 2 j and p; = g; for i < j. Then

(1) pi+...4+p=q;+ ... +qm:
(2) eely, f€l, 4. +p Ly, implies o(e) < @(f).

Take e,fe(, and £>0. We can choose gel, , ., N\, so that

Ilf —gll <& By (2), ¢(e) < @(g), which implies y(e) < y(g) < y(f)+ellyll.
Hence

(3) e.f €, implies y(e) = y().
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By (1) and (2), f(:‘CpJerer‘k \CP, implies feg“qﬁ.ﬁqm \qu, so that
Ly, < Gy Since Ly, * @ and O S therefore (3) implies &, =6,
Thus, p;=¢q;and m 2 j+1.

We have proved so far that m = k and that p, = g; for i < k. Since ¢ is
not a multiple of 1, we must have k = 2, which implies p, = ¢,. Replacing ¢
by —¢ and ¥ by —y, we get p, = q,,, which gives k = m and p; = g; for
i=1..,k

Choose now, for each i = 1,...,k, a projection ¢;€(,. Let

fi= e + (1= Ve +AV2(1 =)V (u +u*)

where u*u=¢; and uu* =¢, (0 <A =<1). Fori=2,..,k — 1, we choose 4,
so that B, = 4., + (1 — A)B,. Then Y(e;) = Y(f; ), which implies g(e;) = ¢(f; ).
The last equality yields o; = A, + (1 —4;)oy, and the existence of y and o
such that §; = ya;+ 6 follows. This ends the proof of the lemma.

Now, let ¢ be a state on M. We shall examine the following sets of states:

X, = {¥:0(p) < 0(q). 1(p) = t(q) imply y(p) < y(g)
for p,qe ProjM};

Y, = {¥:0(p) < @(q) 1(p) # t(q) imply ¥(p) < ¥(q)
for p,ge ProjM} ;

Z¢ = Xq, N Yq,.
Observe that

@4) E(@)={yeZ,;0eZ,} cZ,;
(5) veS(p)iff (1—eyy+epeZ, foreach0<e=1.

The following characteristic J, of ¢ will play an important role in the
sequel :

Op = V14 oot Vs Vu-se2—---—¥n Withn=2o0rn=2-1
(0, =y, forn=12)

where ¢ = tr(r-) and

6) v= Z Yi€i

i=1
with y, ... <y, and mutually orthogonal ¢;e{ (}_,e; = 1). Obviously,
0, £y, S 1/n, and 3, = l/n iff ¢ =1. Moreover, if ¢ #1, y>0 and

¥ = v+ (1—1y), then
(7) (¢ 2 0 and then 9, > 0)iff y < (1 —néq,)“‘.
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LeEMMA 4.2. X is the set of all states on M, and

X, ={v=y0+(1-y)1:y>0, 20} for ¢ #1.

Proor. The assertion is, of course, valid for ¢ = 1. If ¢ # 1, the inclusion

>” is obvious and the inclusion “<” is an immediate consequence of
Lemma 4.1.

Lemma 4.3.If 6, > O, then Y, = {y; 9, > O}.

Proor. Step 1. Let ¢ = tr(v-) with ¢ given by (6). Then the condition
0, > 0 is equivalent to:

1(p) < 1(q) implies ¢@(p) < ¢(q) for p,qe ProjM.

In fact, it is not difficult to check that the following conditions are
equivalent:

Yit+ .o+ > Vpose2t ...+, Wheren =2s or n=2-—1;
Vit .o+ > Vuojr2t ...+ foreach j=1,..n;

oley+...4+e) =11+ . +7> V11t F V= Q€+ ... Fe,)
foreach 0 =i < j=n;

¢(q) > ¢(p) for each p,q e Proj M, t(p) = i/n < j/n = 1(q).

Step 2. Assume that J, > 0. By Step 1, the condition ¢(p) < ¢(q),
t(p) # t(q) is equivalent to t(p) < 1(q). Using Step 1 once more (with ¢
replaced by y), we get y € Y, iff 3, > 0.

Lemma 4.4. If 6, <O, then Z, = {o}.

Proor. Let J, <0. By Lemma 4.2, it is enough to prove that
¥ =9+ (1—y)re Y, implies y = 1. There are two cases to be considered :

1°9,>0 (n=2s0orn=2—1, y; as in (6)). Put
P=é+...te_y, q=¢€_542tF ... te,

Then pg =0, p ~ q and @(p) < p(p+e,) < ¢(q). For any sufficiently small
¢ > 0, there are, by Proposition 1.1, projections r,,r, ~ p satisfying

o(ry) = @(p+e)—e. @(ry) = p(ptes)+e.
Thus

w(ry) = (ry) = 1(p + ¢) — 1/n, Y(ry) < Y(p + e,) < Y(r,)

and, consequently, —ey/n < 1 —y < ey/n. Hence y = 1.
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2°. 9, =0. Then ¥ 2 0 implies y £ 1 and, for p,q and r, as in 1°, we have
w(p+e) < y(ry)and 1 —y < gy/n. Hence y = 1.
The proof is finished.

We sum up our results in the following
THeOREM 4.5. For a state ¢ on M :

(i) &, <0 implies E(p) = S(p) = {o}:

(ii) d, = 0implies E(¢) = {¢}, S(¢) = {yp+(1-7)1; 0=y = 1};

(iii) 0 <3, < 1/nimplies E(p) = {y =¥ + (1 —y)1;0 <y <(1 —nd,) "'},
S@)={Y=y0+(1 -Pt;0<y=(1 —nd,)" '}

(iv) 6, = 1/nis equivalent to @ = 1, and then, E(1) = {1}, S(r) = {y; 9, 2 0}.

ProoFr. (i). Follows from (4), (5), and Lemma 4.4.
(iii). Let 0 < 9, < 1/n. By Lemmas 4.2 and 4.3,

Z,={y=yp+(1—yn:y >0,y 20,4, >0}

Thus 0 <5, <l/nand ¢ =y 'y+(1—y ")1eZ, for y =yp+(1—-y)eZ,.
By (4) and (7),

E(p)=Z,={y =yp+(1=9)1:0 <y < (1—nd,)""'}.
Now, the form of S(¢) is easily obtained from (5).
(iv). By Lemmas 4.2 and 4.3, Z, = {(p;éq, >0}, and 1 ¢ Z, if ¢ # v. Hence,
E(r) = {z] by (4), and S(1) = {¢};0, = 0} by (5).
(i1). Suppose 6, = 0. By (i), (iv), and (iii) with (7), v ¢ E(e) if 3, # 0. Hence
Ew) = {¢:vweklp) = {p;d, =0].

Since E(y) = X, the equality E(y) = {y] follows from Lemma 4.2. Similarly,
by (i),

(8) Sw) = {p:weS(p)] c {@;9, 2 0].

By (5) and Lemma 4.2,

9) SW)c X, =lo=y+(1-4)1;22 0,9 20].
If¢=2Ay+(1-4)t20and 0 <9, < I/n, then, by (iii),

(10) YyeS(@) = lyp+(1—y);0 Sy S (1-nd,)" ' =171,
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By (9), (10) and (iv),
SW) < {p = W +(1-2)t;9 20,0 <8, < 1n} U {r.y)
c{p v eS(p)} = Sy):

Now, if ¢ = Ay + (1 —A)teS(y), then, by (9), 1 = 0. Also, 0, =(1-4)/n 20
by (8). Hence, 0 = 4 = 1, and the proof of the theorem is finished.

REFERENCES

1. H. Choda, M. Enomoto, and M. Fujii, Non-commutative Liapounoff’s theorem, Math. Japon.

28 (1983), 651-653.

S. Maeda, On arcs in the space of projections of a C*-algebra, Math. Japon. 21 (1976),
371-374.

3. W. Ochs, Gleason measures and quantum comparative probability in Quantum Probability and
Applications 11 (Proc. Heidelberg, 1984), eds. L. Accardi and W. von Waldenfels. (Lecture
Notes in Math. 1136), pp. 388-396. Springer-Verlag, Berlin - New York, 1985.

4. A. Paszkiewicz, Wold-type decomposition for equivalent and commuting projections, to appear in
Bull. Polon Acad. Sci. (1989).

. T. Sakaue, M. O’uchi, and S. Maeda, Connected components of projections of a C*-algebra, Math.
Japon. 29 (1984), 427-431.

. S. Stratild, Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, 1981.

7. S. Stratila and L. Zsido, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells,
1979.

W

a

INSTITUTE OF MATHEMATICS
UNIVERSITY OF LODZ

UL. BANACHA 22

90-238 LODZ

POLAND



