COMPARISON OF STATES AND DARBOUX-TYPE PROPERTIES IN VON NEUMANN ALGEBRAS

STANISŁAW GOLDSTEIN and ADAM PASZKIEWICZ

0. Introduction and preliminaries.

In connection with his study of quantum comparative probability [3], W. Ochs considered the following problem. Let φ be a normal state on B(H) and let \leq_{φ} be the relation defined for pairs of projections from B(H) by $p \leq_{\varphi} q \stackrel{\text{df}}{=} \varphi(p) \leq \varphi(q)$. Does $\leq_{\varphi} = \leq_{\psi}$ imply $\varphi = \psi$? We give the complete solution to the problem for a not necessarily normal state on an arbitrary von Neumann algebra in Section 3. The comparison of states on finite-dimensional von Neumann algebras is described in Section 4.

In [1], H. Choda, M. Enomoto and M. Fujii proved an interesting result: if φ and ψ are states on a non-atomic von Neumann algebra M, with φ normal, and if, for every projection p of M, $\varphi(p) = \frac{1}{2}$ implies $\psi(p) = \frac{1}{2}$, then $\varphi = \psi$. One easily notices the strong connection between the theorem and the problem of Ochs (see Section 3). In order, however, that the theorem be applicable to the problem in a nontrivial way, it should be appropriately generalized. We do not require the state φ to be normal, and the algebra M (although possibly atomic) should not contain a direct summand of type I_n , $n < \infty$. The above-mentioned theorem was proved in [1] by using a "dyadic" method and a simple Darboux-type property of a normal state φ : if $\varphi(p) = \alpha > 0$ for some projection p, then φ takes all values less than α (but ≥ 0) at some subprojections of p. So to generalize the theorem, one should generalize the property. Our Darboux-type properties (being of interest in themselves) are described in section 1, and the generalized theorem in section 2.

In the sequel, M denotes a von Neumann algebra, Z its center, Proj M the lattice of all orthogonal projections of M and φ, ψ (not necessarily normal) positive linear functionals on M. Moreover, for $r \in \text{Proj } M$ we put

$$\mathcal{L}_r = \{ q \in \operatorname{Proj} M ; q \leq r \},$$

$$\mathcal{P}_r = \{ q \in \mathcal{L}_r ; q \sim r - q \sim r \}$$

(with $\mathcal{P} = \mathcal{P}_1$).

Received December 16, 1986; in revised form April 29, 1987.

The following theorem is the generalization of the "dyadic" method of [1], suited to our purposes.

THEOREM 0.1. Fix $r \in \text{Proj } M$. Let $Q \subset \mathcal{L}_r$, $Q \neq \phi$, satisfy the following conditions:

- (i) if $q \in Q$, then $r q \in Q$;
- (ii) if $0 < \gamma < \varphi(q)$ for some $q \in Q$, then there is a $q_0 \in Q$, $q_0 \leq q$ such that $q q_0 \in Q$ and $\varphi(q_0) = \gamma$.

Assume that $0 < \alpha < \varphi(r)$ and $0 \le \beta$, and suppose that $\varphi(p) = \alpha$ implies $\psi(p) = \beta$ for $p \in Q$.

Then $\psi(q) = (\beta/\alpha)\varphi(q)$ for $q \in Q$.

PROOF. Note that $\varphi(q_1) = \alpha/n$ implies $\psi(q_1) = \beta/n$ for any projection $q_1 \in Q$ and a positive integer n satisfying $\alpha(n+1)/n \le \varphi(r)$. Indeed, by (i), $r-q_1 \in Q$, and since $\varphi(r-q_1) \ge \alpha$, there exist by (ii) mutually orthogonal projections $q_i \in Q$, $q_i \le r-q_1$ (i=2,3,...,n+1) such that $\varphi(q_i) = \alpha/n$ for each i. Denote $p = \sum_{i=1}^{n+1} q_i$. By supposition,

$$\varphi(p-q_1) = \varphi(p-q_i) = \alpha$$

implies

$$\psi(p-q_1) = \psi(p-q_i) = \beta$$
 for $i = 2, 3, ..., n+1$.

Thus $\psi(q_1) = \psi(q_i)$ and $\psi(q_i) = \psi(p - q_1)/n = \beta/n$.

Take now an arbitrary $q \in Q$. If $0 < \varphi(q) < \varphi(r)$, then there are positive integers k, n (with n arbitrarily great) such that $\alpha k/n \le \varphi(q) \le \alpha (k+1)/n$ and that $\alpha (k+1)/n \le \varphi(r)$. Hence, mutually orthogonal projections $q_i \in Q$ $(i=1,2,\ldots,k+1)$ can be chosen satisfying $\sum_{i=1}^k q_i \le q \le \sum_{i=1}^{k+1} q_i$ and $\varphi(q_i) = \alpha/n$ for each i. Therefore, $\beta k/n \le \psi(q) \le \beta (k+1)/n$ and the conclusion follows. If $\varphi(q) = \varphi(r)$, find $q_1,q_2 \in Q$ such that $0 < \varphi(q_i) < \varphi(r)$ and that $q_1+q_2=q$, and apply the above result to each of the q_i (i=1,2) to obtain $\psi(q)=(\beta/\alpha)\varphi(q)$. Similarly, $\psi(r)=(\beta/\alpha)\varphi(r)$. If $\varphi(q)=0$, then $\varphi(r-q)=\varphi(r)$ and what we have got so far shows that $\psi(q)=0$. All the cases having been considered, the proof of the theorem is finished.

1. Darboux-type properties.

We shall need the following simple result (cf. [5; Lemma 1]).

PROPOSITION 1.1. Let $p, q \in \text{Proj } M, p \sim q, pq = 0$ and $\varphi(p) \leq \gamma \leq \varphi(q)$. Then there is a projection r such that

$$\varphi(r) = \gamma, r \leq p + q$$
 and $r \sim p \sim p + q - r$.

PROOF. Let $u \in M$ be such that $u^*u = p$, $uu^* = q$. Define a norm-continuous function $\omega: [0, 1] \to \operatorname{Proj} M$ by

$$\omega(\lambda) = (1 - \lambda^2)p + \lambda^2 q + \lambda(1 - \lambda^2)^{\frac{1}{2}}(u + u^*).$$

Then $\omega(0) = p$, $\omega(1) = q$, and the sought – for projection r may be chosen from among the values of the function ω .

A stronger result will be proved below (Theorem 1.4). We shall use the following Wold-type decomposition [4; Theorem 1.1].

THEOREM 1.2. If $e+r \sim e+s$ for mutually orthogonal $e,r,s \in \text{Proj } M$, then there are mutually orthogonal projections $r_1, r_2, s_1, s_2, f, g_n, h_n$ $(n \ge 1)$ such that $r = r_1 + r_2, s = s_1 + s_2$,

$$e = f + \sum_{n \ge 1} (g_n + h_n)$$

and $r_1 \sim s_1$, $r_2 \sim g_n$, $s_2 \sim h_n$ for $n \ge 1$.

LEMMA 1.3. Any equivalent projections $p,q \in M$ can be decomposed (in Proj M) as follows:

$$p = r + f + \sum_{n \ge 1} (g_n + h_n),$$

$$q = \tilde{s} + \tilde{f} + \sum_{n \ge 1} (\tilde{g}_n + \tilde{h}_n)$$

so that, for any $K \subset \mathbb{N}$ with $\#K = \#\mathbb{N} \setminus K$, the projections

$$p_K = r + f + \sum_{n \in K} (g_n + h_n)$$

and

$$q_K = \tilde{s} + \tilde{f} + \sum_{n \in K} (\tilde{g}_n + \tilde{h}_n)$$

are unitarily equivalent.

PROOF. Choose $t \in \text{Proj } M$ so that pt = tp and q = vtv for some unitary $v \in M$ (see, for example, [4; 3.9]). Put e = pt, r = p - e, s = t - e and apply Theorem 1.2. Let further

$$p_{K} = f + r + \sum_{n \in K} (g_{n} + h_{n}), \quad t_{K} = p_{K} - r + s.$$

Then

$$\begin{split} p_K &= f + r_1 + \left(r_2 + \sum_{n \in K} g_n \right) + \sum_{n \in K} h_n \\ &\sim f + s_1 + \sum_{n \in K} g_n + \left(s_2 + \sum_{n \in K} h_n \right) = t_K, \\ 1 - p_K &= 1 - (e + r + s) + s_1 + \sum_{n \notin K} g_n + \left(s_2 + \sum_{n \notin K} h_n \right) \\ &\sim 1 - (e + r + s) + r_1 + \left(r_2 + \sum_{n \notin K} g_n \right) + \sum_{n \notin K} h_n = 1 - t_K \end{split}$$

Put now $\tilde{s} = vsv^*$, $\tilde{f} = vfv^*$, $\tilde{g}_n = vg_nv^*$, $\tilde{h}_n = vh_nv^*$ and conclude that p_K and $q_K = vt_Kv^*$ are unitarily equivalent.

THEOREM 1.4. Let $p \sim q$ for some $p,q \in \text{Proj } M$, and let $\varepsilon > 0$. Then there exists a continuous (in norm) function $\omega : [0,1] \to \text{Proj } M$ such that

1°
$$\omega(0) \leq p$$
, $\omega(1) \leq q$;

$$2^{\circ} \varphi(\omega(0)) > \varphi(p) - \varepsilon, \ \varphi(\omega(1)) > \varphi(q) - \varepsilon.$$

PROOF. Consider the decomposition from lemma 1.3 and take a sequence of disjoint subsets $N_i \subset \mathbb{N}$ with $\# N_i = \# \mathbb{N} \setminus N_i$. For one of them, the inequalities

$$\varphi\left(\sum_{n\in N_i} (g_n + h_n)\right) < \varepsilon, \quad \varphi\left(\sum_{n\in N_i} (\hat{g}_n + \tilde{h}_n)\right) < \varepsilon$$

hold. The projections

$$\omega(0) = r + f + \sum_{n \neq N} (g_n + h_n),$$

$$\omega(1) = \hat{s} + \tilde{f} + \sum_{n \notin N_i} (\hat{g}_n + \tilde{h}_n)$$

satisfy 1° and 2°, and are unitarily equivalent. Thus the required function ω exists (see, for example, [2; Theorem 1], or use the connectedness of the unitary group of M).

Two more Darboux-type properties will be used in the sequel.

PROPOSITION 1.5. Let $p \in \text{Proj } M$ be properly infinite and let $\varphi(p) > \gamma > 0$. Then $\varphi(r) = \gamma$ for some $r \in \text{Proj } M$ such that $r \leq p$ and $r \sim p - r \sim p$.

PROOF. There is a sequence $\{p_n\}$ of mutually orthogonal projections from M

such that $p_n \sim p$ and $p = \sum p_n$ (see [7; Proposition 4.12]). If $q = p_n$ with sufficiently large n, then $\varphi(q) < \gamma$, $\varphi(p-q) > \gamma$ and, obviously, $q \sim p-q \sim p$. By Proposition 1.1, there is a projection r in M such that $\varphi(r) = \gamma$ and $r \sim p-r \sim p$.

PROPOSITION 1.6. Let $p \in \text{Proj } M$ be finite and continuous and let $\varphi(p) \ge \gamma \ge 0$. Then $\varphi(r) = \gamma$ for some $r \in \text{Proj } M$ with $r \le p$.

PROOF. We may assume that M is of type II₁, p = 1 and $\varphi(p) = 1$. Note also that it suffices to prove the proposition for $0 < \gamma \le 1/2$. There are two possibilities:

1°.
$$\varphi(q) = 1/2$$
 for each $q \in \text{Proj } M$ such that $q \sim 1 - q$.

Let T denote the canonical center-valued trace on M, μ a positive linear functional on Z, and let $\tau = \mu \circ T$. Moreover, put

$$Q = \{ p \in \operatorname{Proj} M : T(p) = \beta 1 \text{ for some } \beta, \ 0 \le \beta \le 1 \}.$$

By assumption, T(q) = (1/2)1 implies $\varphi(q) = 1/2$ for $q \in \operatorname{Proj} M$. In view of the Darboux-type property of T (see [7; Proposition 7.17]), we may apply Theorem 0.1 with τ and φ in place of φ and ψ to conclude that $T(q) = \beta 1$ implies $\varphi(q) = \beta$ for each $\beta \in [0, 1]$ and $q \in \operatorname{Proj} M$. Hence, $\varphi(r) = \gamma$ for a (clearly existing) projection r such that $T(r) = \gamma 1$.

2°.
$$\varphi(q) = \delta < 1/2 < 1 - \delta = \varphi(1 - q)$$
 for some $q \in \text{Proj } M$

satisfying $q \sim 1 - q$. There are positive integers $k, n \ k \leq 2^n$, such that $\beta = 2^n \gamma/k \in [\delta, 1 - \delta]$. By Proposition 1.1, $\varphi(s) = \beta$ for some $s \in \text{Proj } M$. By repeated use of Proposition 1.1, we get a sequence of mutually orthogonal projections r_1, \ldots, r_{2^n} from M such that $\varphi(r_m) = \beta/2^n$ for each $m, 1 \leq m \leq 2^n$, and that $r_1 + \ldots + r_{2^n} = s$. Put $r = r_1 + \ldots + r_k$ to get $\varphi(r) = k\beta/2^n = \gamma$.

2. A sufficient condition for the equality of states.

Lemma 2.1. Let M be properly infinite (respectively of type II_1), $0 < \alpha < \phi(1)$ and $0 \le \beta$. If $\phi(p) = \alpha$ implies $\psi(p) = \beta$ for $p \in \mathscr{P}$ (respectively $p \in \operatorname{Proj} M$), then $\psi(a) = (\beta/\alpha)Q(q)$ for each $q \in \mathscr{P}$ (respectively $q \in \operatorname{Proj} M$). (For the definition of \mathscr{P} see Introduction.)

PROOF. Follows at once from Proposition 1.5 (respectively Proposition 1.6) and Theorem 0.1 with $Q = \mathcal{P}$ (respectively Q = Proj M).

LEMMA 2.2. Let M be properly infinite. If $\varphi = \psi$ on \mathcal{P} , then $\varphi = \psi$ (on Proj M).

Proof. Will be carried out in two steps.

STEP 1. $\varphi = \psi$ on \mathscr{P}_z for any $z \in Z$. Fix $p \in \mathscr{P}_z$ and $\varepsilon > 0$. By Proposition 1.5, we may find a projection $q \in \mathscr{P}_{1-z}$ satisfying $\varphi(q) < \varepsilon$, $\psi(q) < \varepsilon$. Note that $p+q \in \mathscr{P}$. By assumption, $\varphi(p+q) = \psi(p+q)$ and, consequently, $|\psi(p) - \varphi(p)| < 2\varepsilon$.

STEP 2. $\varphi = \psi$ on Proj M. Fix $p \in \text{Proj } M$. By the comparability theorem (see [6; Theorem V.1.8]), there are $x, y \in Z$ such that x + y = 1, $px \lesssim (1-p)x$, $(1-p)y \lesssim py$. Choose $q_1, \ldots, q_4 \in \text{Proj } M$ so that $q_1 + q_2 = (1-p)x$, $q_1 \sim q_2 \sim (1-p)x$, $q_3 + q_4 = py$, $q_3 \sim q_4 \sim py$. Note that $q_1, q_2 \in \mathscr{P}_x$, $q_3, q_4 \in \mathscr{P}_y$, and $px = x - q_1 - q_2$. By Step 1,

$$\psi(p) = \psi(px) + \psi(py)$$

$$= \psi(x - q_1) - \psi(q_2) + \psi(q_3) + \psi(q_4) = \varphi(p),$$

which ends the proof.

THEOREM 2.3. Let M be a von Neuman algebra without a direct summand of type I_n $(n < \infty)$, $0 < \alpha < \varphi(1)$ and $0 \le \beta$. If $\varphi(p) = \alpha$ implies $\psi(p) = \beta$ for $p \in \text{Proj } M$, then $\psi = (\beta/\alpha)\varphi$. In particular, if φ and ψ are states, then $\varphi = \psi$ (and $\alpha = \beta$).

PROOF. Let z be the maximal projection in the center Z of M, such that M_z is of type II₁. Then M(1-z) is properly infinite. Let us note that, by Propositions 1.5 and 1.6, $Q = \mathcal{L}_z + \mathcal{P}_{1-z}$ satisfies the assumptions of Theorem 0.1. Thus $\psi = (\beta/\alpha)\varphi$ on $\mathcal{L}_z + \mathcal{P}_{1-z}$ and the equality must hold on \mathcal{P}_{1-z} , on \mathcal{L}_z and, by Lemma 2.2, on \mathcal{L}_{1-z} . The proof is finished.

We have proved, in fact, the following

Proposition 2.4. Let $0 < \alpha < \varphi(1)$, $0 \le \beta$, and, for a projection $z \in Z$, let

- (i) $0 < \gamma < \varphi(p)$, $p \in \mathcal{L}_z$, imply $\varphi(q) = \gamma$ for some $q \in \mathcal{L}_p$;
- (ii) M(1-z) be properly infinite.

If $\varphi(p) = \alpha$ implies $\psi(p) = \beta$ for $p \in \mathcal{L}_z \mathcal{P}_{1-z}$, then $\psi = (\beta/\alpha)\varphi$.

It follows easily from Theorem 3.3 that if $M \neq C1$ and M has a nonzero direct summand of type I_n (for some $n < \infty$), then there are two distinct (and equivalent) states φ, ψ on M such that $\varphi(p) = 1/2$ implies $\psi(p) = 1/2$ for $p \in \text{Proj } M$. However, we have the following

Corollary 2.5. Let M be a von Neumann algebra with no factor of type I_n , $n < \infty$, as a direct summand, $0 < \alpha < \varphi(1)$ and $0 \le \beta$. Suppose that φ is

normal (at least on the finite discrete part of M), and that $\varphi(p) = \alpha$ implies $\psi(p) = \beta$ for $p \in \text{Proj } M$. Then $\psi = (\beta/\alpha)\varphi$.

PROOF. Let z be the smallest projection in Z such that M(1-z) is properly infinite. Then $Mz = M_1 \oplus M_2$, where M_1 is of type II_1 , M_2 is (finite, discrete and) non-atomic and φ is normal on M_2 . By Proposition 1.6 and [1; Theorem 1] (see Introduction), the conditions $0 < \gamma < \varphi(p)$, $p \in \operatorname{Proj} Mz$, imply $\varphi(q) = \gamma$ for some $q \in \mathcal{L}_p$. Thus, Proposition 2.4 can be used to end the proof.

3. Equivalent and exclusive states.

Each state φ on a von Neumann algebra M gives rise to the following relation of comparative probability (cf. [3]) on the lattice of projections of M:

$$p \leq_{\omega} q$$
 iff $\varphi(p) \leq \varphi(q)$, $p,q \in \operatorname{Proj} M$.

A state ψ is said to be equivalent to a state φ if $\leq_{\varphi} = \leq_{\psi}$, i.e. if, for $p,q \in \operatorname{Proj} M$,

$$\varphi(p) \leq \varphi(q)$$
 is equivalent to $\psi(p) \leq \psi(q)$.

We shall also say that ψ is similar to φ if, for $p,q \in \text{Proj } M$,

$$\varphi(p) < \varphi(q)$$
 implies $\psi(p) \le \psi(q)$.

We denote by $E(\varphi)$ (respectively $S(\varphi)$) the set of all states equivalent (respectively similar) to φ . If $E(\varphi) = \{\varphi\}$ (respectively $S(\varphi) = \{\varphi\}$), then the state φ is called exclusive (respectively strongly exclusive). Note that the equivalence is, in fact, an equivalence relation, and that $\psi \in S(\varphi)$ iff $\varphi \in S(\psi)$ i.e., the relation of similarity is symmetric.

The notions of quantum comparative probability, equivalence and exclusiveness of states were introduced by Ochs [3]. He showed that (with the equivalence relation restricted to the set of normal states) each normal state on a factor of type I_{∞} is exclusive. He also stated a necessary and sufficient condition for the exclusiveness of a state on a factor of type I_n , $n < \infty$, and proved that each nonfaithful state on such a factor is exclusive.

In this section we shall describe those von Neumann algebras which admit only exclusive states. The subsequent section contains a thorough description of the sets $E(\varphi)$ and $S(\varphi)$ for factors of type I_n , $n < \infty$.

We shall start with two simple lemmas.

LEMMA 3.1. Let K be a commutative von Neumann algebra. There is a state φ on K such that $\varphi(\text{Proj }K) = \{0, 1\}$.

PROOF. We may assume that $K = L^{\infty}(\Omega, \mathcal{F}, \nu)$ where $(\Omega, \mathcal{F}, \nu)$ is a finite measure space. Let U be an ultrafilter in Ω containing the complements of all ν -negligible subsets of Ω . For $A \in \mathcal{F}$, put $\mu(A) = 0$ when $A \notin U$ and $\mu(A) = 1$ when $A \in U$. Since μ is a finitely additive measure on \mathcal{F} , absolutely continuous with respect to ν , it yields a state φ with the desired property.

LEMMA 3.2. Let M(1-z) be of type II_1 and let Mz be properly infinite for some $z \in Z$. If ψ is similar to φ , then $\varphi(p) = 1/2$ implies $\psi(p) = 1/2$ for any $p \in \mathcal{L}_{1-z} + \mathcal{P}_z$.

PROOF. Let $\varphi(p) = 1/2$, $p \in \mathcal{L}_{1-z} + \mathcal{P}_z$, and $\varepsilon > 0$. By Propositions 1.5 and 1.6, we can always find mutually orthogonal projections $r_n \in \mathcal{L}_{1-z} + \mathcal{P}_z$, $r_n \leq p$, satisfying $\varphi(r_n) > 0$ for every n. For sufficiently large n_0 , $\psi(r_{n_0}) < \varepsilon$. Hence, $\varphi(p) < \varphi(1-p+r_{n_0})$ implies

$$\psi(p) \leq \psi(1-p+r_{n_0}) < \psi(1-p)+\varepsilon.$$

Thus, $\psi(p) \le \psi(1-p)$ and, replacing p by 1-p, $\psi(p) \ge \psi(1-p)$, which gives the assertion of the lemma.

THEOREM 3.3. For a von Neumann algebra M, the following conditions are equivalent:

- (i) M = C1 or M has no direct summand of type I_n , $n < \infty$;
- (ii) each state on M is strongly exclusive;
- (iii) each state on M is exclusive.

PROOF. (i) \Rightarrow (ii). We may assume that M has no direct summand of type I_n , $n < \infty$. By virtue of Lemma 3.2 and Proposition 1.6, we can use Proposition 2.4 with $\alpha = \beta = 1/2$ to obtain (ii).

- (ii) ⇒ (iii). Obvious.
- (iii) \Rightarrow (i). Assume the contrary. There are two cases:
- 1°. M has a nonzero commutative direct summand K and $M \neq C1$. We may assume that $M = K \oplus N$ for some nonzero von Neumann subalgebra N. Let φ be state on K such that $\varphi(\operatorname{Proj} K) = \{0, 1\}$, which exists by Lemma 3.1, and let ψ be any state on N. Put

$$\varphi_1 = (2/3)\varphi \oplus (1/3)\psi$$
 and $\varphi_2 = (3/4)\varphi \oplus (1/4)\psi$.

Then the inequality

$$\varphi_i(p \oplus r) \leqq \varphi_i(q+s)$$

is equivalent to the alternative $\varphi(p) < \varphi(q)$ or $\varphi(p) = \varphi(q)$, $\psi(p) \le \psi(q)$. Hence, φ_1 and φ_2 are distinct and equivalent.

2°. M has a nonzero direct summand M_n of type I_n , $1 < n < \infty$. Write

 M_n as $F_n \otimes K$ where F_n is a factor of type I_n and K is commutative. By Theorem 4.5, there are two distinct and equivalent states ψ_1 , ψ_2 on F_n . Let φ be a state on K such that $\varphi(\operatorname{Proj} K) = \{0, 1\}$ (Lemma 3.1). Define a Fubini mapping h on $F_n \otimes K$ by $h(a \otimes b) = a\varphi(b)$ (cf. [6; Section 9.8]). Since $F_n \otimes K$ is norm-dense in M_n , we may extend h to the whole algebra M_n . It is easy to see that h is a homomorphism of M_n onto F_n . Hence, $\psi_1 \circ h$ and $\psi_2 \circ h$ are distinct and equivalent states on M_n which can be extended to distinct and equivalent states on M in an obvious way. Thus, the proof of the theorem is finished.

4. Equivalence and similarity of states in factors of type I_n , $n < \infty$.

Throughout this section, M is a factor of type I_n , $n < \infty$, τ is the normalized trace on M, $\zeta = \{e \in \operatorname{Proj} M : \tau(e) = 1/n\}$ and $\zeta_p = \zeta \cap \mathscr{L}_p$ for any $p \in \operatorname{Proj} M$. The following lemma generalizes Lemma 2 from [3].

LEMMA 4.1. Let $\varphi = \tau(v \cdot)$ and $\psi = \tau(w \cdot)$ be two arbitrary hermitian functionals on M with density operators

$$v = \sum_{i=1}^{k} \alpha_i p_i, \quad w = \sum_{i=1}^{m} \beta_i q_i,$$

where $p_1, ..., p_k$ (respectively $q_1, ..., q_m$) are nonzero mutually orthogonal projections from M,

$$\sum_{i=1}^{k} p_i = \sum_{i=1}^{m} q_i = 1$$

and $\alpha_1 < ... < \alpha_k$, $\beta_1 < ... < \beta_m$. If ϕ is not a multiple of τ and

$$\varphi(e) < \varphi(f)$$
 implies $\psi(e) < \psi(f)$ for $e, f \in \zeta$,

then k = m, $p_i = q_i$ for i = 1, ..., k and $\beta_i = \gamma \alpha_i + \delta$ for some $\gamma, \delta \in \mathbb{R}$, i = 1, ..., k.

PROOF. Take j < k and assume that $m \ge j$ and $p_i = q_i$ for i < j. Then

- (1) $p_j + \ldots + p_k = q_j + \ldots + q_m$;
- (2) $e \in \zeta_{p_j}$, $f \in \zeta_{p_j + \dots + p_k} \setminus \zeta_{p_j}$ implies $\varphi(e) < \varphi(f)$.

Take $e, f \in \zeta_{p_j}$ and $\varepsilon > 0$. We can choose $g \in \zeta_{p_j + \ldots + p_k} \setminus \zeta_{p_j}$ so that $||f - g|| < \varepsilon$. By (2), $\varphi(e) < \varphi(g)$, which implies $\psi(e) < \psi(g) < \psi(f) + \varepsilon ||\psi||$. Hence

(3) $e, f \in \zeta_{p_j}$ implies $\psi(e) = \psi(f)$.

By (1) and (2), $f \in \zeta_{p_j+\ldots+p_k} \setminus \zeta_{p_j}$ implies $f \in \zeta_{q_j+\ldots+q_m} \setminus \zeta_{q_j}$, so that $\zeta_{q_j} \subset \zeta_{p_j}$. Since $\zeta_{q_j} \neq \emptyset$ and $\zeta_{p_j} \subset \zeta_{q_j+\ldots+q_m}$, therefore (3) implies $\zeta_{q_j} = \zeta_{p_j}$. Thus, $p_j = q_j$ and $m \ge j+1$.

We have proved so far that $m \ge k$ and that $p_i = q_i$ for i < k. Since φ is not a multiple of τ , we must have $k \ge 2$, which implies $p_1 = q_1$. Replacing φ by $-\varphi$ and ψ by $-\psi$, we get $p_k = q_m$, which gives k = m and $p_i = q_i$ for i = 1, ..., k.

Choose now, for each i = 1, ..., k, a projection $e_i \in \zeta_{p}$. Let

$$f_{\lambda} = \lambda e_1 + (1 - \lambda)e_k + \lambda^{1/2}(1 - \lambda)^{1/2}(u + u^*)$$

where $u^*u=e_1$ and $uu^*=e_k$ $(0 \le \lambda \le 1)$. For $i=2,\ldots,k-1$, we choose λ_1 so that $\beta_i=\lambda_i\beta_1+(1-\lambda_i)\beta_k$. Then $\psi(e_i)=\psi(f_{\lambda_i})$, which implies $\varphi(e_i)=\varphi(f_{\lambda_i})$. The last equality yields $\alpha_i=\lambda_i\alpha_1+(1-\lambda_i)\alpha_k$, and the existence of γ and δ such that $\beta_i=\gamma\alpha_i+\delta$ follows. This ends the proof of the lemma.

Now, let φ be a state on M. We shall examine the following sets of states:

$$\begin{split} X_{\varphi} &= \left\{ \psi \, ; \varphi(p) < \varphi(q), \, \tau(p) = \tau(q) \text{ imply } \psi(p) < \psi(q) \\ &\quad \text{for } p, q \in \operatorname{Proj} M \right\}; \\ Y_{\varphi} &= \left\{ \psi \, ; \varphi(p) < \varphi(q), \, \tau(p) \neq \tau(q) \text{ imply } \psi(p) < \psi(q) \\ &\quad \text{for } p, q \in \operatorname{Proj} M \right\}; \\ Z_{\varphi} &= X_{\varphi} \, \cap Y_{\varphi}. \end{split}$$

Observe that

- (4) $E(\varphi) = \{ \psi \in Z_{\omega} ; \varphi \in Z_{\psi} \} \subset Z_{\omega} ;$
- (5) $\psi \in S(\varphi)$ iff $(1-\varepsilon)\psi + \varepsilon \varphi \in Z_{\varphi}$ for each $0 < \varepsilon \le 1$.

The following characteristic δ_{φ} of φ will play an important role in the sequel:

$$\delta_{\varphi} = \gamma_1 + \ldots + \gamma_s - \gamma_{n-s+2} - \ldots - \gamma_n \quad \text{with } n = 2s \text{ or } n = 2s - 1$$

$$(\delta_{\varphi} = \gamma_1 \quad \text{for } n = 1, 2),$$

where $\varphi = \operatorname{tr}(v \cdot)$ and

$$(6) \quad v = \sum_{i=1}^{n} \gamma_i e_i$$

with $\gamma_1 \leq \ldots \leq \gamma_n$ and mutually orthogonal $e_i \in \zeta$ ($\sum_{i=1}^n e_i = 1$). Obviously, $\delta_{\varphi} \leq \gamma_1 \leq 1/n$, and $\delta_{\varphi} = 1/n$ iff $\varphi = \tau$. Moreover, if $\varphi \neq \tau$, $\gamma > 0$ and $\psi = \gamma \varphi + (1 - \gamma)\tau$, then

(7) $(\psi \ge 0 \text{ and then } \delta_{\psi} > 0) \text{ iff } \gamma < (1 - n\delta_{\varphi})^{-1}.$

LEMMA 4.2. X_{τ} is the set of all states on M, and

$$X_{\varphi} = \{ \psi = \gamma \varphi + (1 - \gamma)\tau; \gamma > 0, \psi \ge 0 \} \text{ for } \varphi \ne \tau.$$

PROOF. The assertion is, of course, valid for $\varphi = \tau$. If $\varphi \neq \tau$, the inclusion " \supset " is obvious and the inclusion " \subset " is an immediate consequence of Lemma 4.1.

LEMMA 4.3. If $\delta_{\omega} > 0$, then $Y_{\omega} = \{ \psi ; \delta_{\psi} > 0 \}$.

PROOF. Step 1. Let $\varphi={\rm tr}(v\,\cdot)$ with v given by (6). Then the condition $\delta_{\omega}>0$ is equivalent to:

$$\tau(p) < \tau(q)$$
 implies $\varphi(p) < \varphi(q)$ for $p, q \in \text{Proj } M$.

In fact, it is not difficult to check that the following conditions are equivalent:

$$\gamma_1 + \ldots + \gamma_s > \gamma_{n-s+2} + \ldots + \gamma_n, \text{ where } n = 2s \text{ or } n = 2s-1;$$

$$\gamma_1 + \ldots + \gamma_j > \gamma_{n-j+2} + \ldots + \gamma_n, \text{ for each } j = 1, \ldots, n;$$

$$\varphi(e_1 + \ldots + e_j) = \gamma_1 + \ldots + \gamma_j > \gamma_{n-1+1} + \ldots + \gamma_n = \varphi(e_{n-i+1} + \ldots + e_n)$$
for each $0 \le i < j \le n$;

$$\varphi(q) > \varphi(p)$$
 for each $p, q \in \text{Proj } M$, $\tau(p) = i/n < j/n = \tau(q)$.

STEP 2. Assume that $\delta_{\varphi} > 0$. By Step 1, the condition $\varphi(p) < \varphi(q)$, $\tau(p) \neq \tau(q)$ is equivalent to $\tau(p) < \tau(q)$. Using Step 1 once more (with φ replaced by ψ), we get $\psi \in Y_{\varphi}$, iff $\delta_{\psi} > 0$.

LEMMA 4.4. If $\delta_{\varphi} < 0$, then $Z_{\varphi} = \{\varphi\}$.

PROOF. Let $\delta_{\varphi} < 0$. By Lemma 4.2, it is enough to prove that $\psi = \gamma \varphi + (1 - \gamma)\tau \in Y_{\varphi}$ implies $\gamma = 1$. There are two cases to be considered:

1°.
$$\gamma_s > 0$$
 ($n = 2s$ or $n = 2s - 1$, γ_i as in (6)). Put

$$p = e_1 + ... + e_{s-1}, \quad q = e_{n-s+2} + ... + e_n.$$

Then pq = 0, $p \sim q$ and $\varphi(p) < \varphi(p + e_s) < \varphi(q)$. For any sufficiently small $\varepsilon > 0$, there are, by Proposition 1.1, projections $r_1, r_2 \sim p$ satisfying

$$\varphi(r_1) = \varphi(p + e_s) - \varepsilon, \quad \varphi(r_2) = \varphi(p + e_s) + \varepsilon.$$

Thus

$$\tau(r_1) = \tau(r_2) = \tau(p + e_s) - 1/n, \ \psi(r_1) < \psi(p + e_s) < \psi(r_2)$$

and, consequently, $-\varepsilon\gamma/n < 1 - \gamma < \varepsilon\gamma/n$. Hence $\gamma = 1$.

2°. $\gamma_s = 0$. Then $\psi \ge 0$ implies $\gamma \le 1$ and, for p,q and r_2 as in 1°, we have $\psi(p+e_s) < \psi(r_2)$ and $1-\gamma < \varepsilon \gamma/n$. Hence $\gamma = 1$.

The proof is finished.

We sum up our results in the following

THEOREM 4.5. For a state φ on M:

- (i) $\delta_{\varphi} < 0 \text{ implies } E(\varphi) = S(\varphi) = \{\varphi\};$
- (ii) $\delta_{\varphi} = 0$ implies $E(\varphi) = \{\varphi\}$, $S(\varphi) = \{\gamma \varphi + (1 \gamma)\tau$; $0 \le \gamma \le 1\}$;
- (iii) $0 < \delta_{\varphi} < 1/n \text{ implies } E(\varphi) = \{ \psi = \psi \varphi + (1 \gamma)\tau; 0 < \gamma < (1 n\delta_{\varphi})^{-1} \},$ $S(\varphi) = \{ \psi = \gamma \varphi + (1 - \gamma)\tau; 0 \le \gamma \le (1 - n\delta_{\varphi})^{-1} \};$
- (iv) $\delta_{\varphi} = 1/n$ is equivalent to $\varphi = \tau$, and then, $E(\tau) = \{\tau\}$, $S(\tau) = \{\psi; \delta_{\psi} \ge 0\}$.

PROOF. (i). Follows from (4), (5), and Lemma 4.4.

(iii). Let $0 < \delta_{\omega} < 1/n$. By Lemmas 4.2 and 4.3,

$$Z_{\varphi} = \{ \psi = \gamma \varphi + (1 - \gamma)\iota ; \gamma > 0, \psi \ge 0, \delta_{\psi} > 0 \}.$$

Thus $0 < \delta_{\psi} < 1/n$ and $\varphi = \gamma^{-1}\psi + (1 - \gamma^{-1})\tau \in Z_{\psi}$ for $\psi = \gamma \varphi + (1 - \gamma)\tau \in Z_{\varphi}$. By (4) and (7),

$$E(\varphi) = Z_{\varphi} = \{ \psi = \gamma \varphi + (1 - \gamma)\tau; 0 < \gamma < (1 - n\delta_{\varphi})^{-1} \}.$$

Now, the form of $S(\varphi)$ is easily obtained from (5).

- (iv). By Lemmas 4.2 and 4.3, $Z_{\tau} = \{\varphi; \delta_{\varphi} > 0\}$, and $\tau \notin Z_{\varphi}$ if $\varphi \neq \tau$. Hence, $E(\tau) = \{\tau\}$ by (4), and $S(\tau) = \{\varphi\}$; $\delta_{\varphi} \ge 0\}$ by (5).
 - (ii). Suppose $\delta_{\psi} = 0$. By (i), (iv), and (iii) with (7), $\psi \notin E(\varphi)$ if $\delta_{\varphi} \neq 0$. Hence

$$E(\psi) = \{\varphi : \psi \in E(\varphi)\} \subset \{\varphi : \delta_{\varphi} = 0\}.$$

Since $E(\psi) \subset X_{\psi}$, the equality $E(\psi) = {\psi}$ follows from Lemma 4.2. Similarly, by (i),

(8)
$$S(\psi) = \{ \varphi ; \psi \in S(\varphi) \} \subset \{ \varphi ; \delta_{\varphi} \ge 0 \}.$$

By (5) and Lemma 4.2,

(9)
$$S(\psi) \subset \bar{X}_{\psi} = \{ \varphi = \lambda \psi + (1 - \lambda)\tau ; \lambda \geq 0, \varphi \geq 0 \}.$$

If $\varphi = \lambda \psi + (1 - \lambda)\tau \ge 0$ and $0 < \delta_{\varphi} < 1/n$, then, by (iii),

(10)
$$\psi \in S(\varphi) = \{ \gamma \varphi + (1 - \gamma)\tau ; 0 \le \gamma \le (1 - n\delta_{\varphi})^{-1} = \lambda^{-1} \}.$$

By (9), (10) and (iv),

$$S(\psi) \subset \{\varphi = \lambda \psi + (1 - \lambda)\tau; \varphi \ge 0, 0 < \delta_{\varphi} < 1/n\} \cup \{\tau, \psi\}$$
$$\subset \{\varphi; \psi \in S(\varphi)\} = S(\psi):$$

Now, if $\varphi = \lambda \psi + (1 - \lambda)\tau \in S(\psi)$, then, by (9), $\lambda \ge 0$. Also, $\delta_{\varphi} = (1 - \lambda)/n \ge 0$ by (8). Hence, $0 \le \lambda \le 1$, and the proof of the theorem is finished.

REFERENCES

- H. Choda, M. Enomoto, and M. Fujii, Non-commutative Liapounoff's theorem, Math. Japon. 28 (1983), 651-653.
- S. Maeda, On arcs in the space of projections of a C*-algebra, Math. Japon. 21 (1976), 371-374.
- W. Ochs, Gleason measures and quantum comparative probability in Quantum Probability and Applications II (Proc. Heidelberg, 1984), eds. L. Accardi and W. von Waldenfels. (Lecture Notes in Math. 1136), pp. 388-396. Springer-Verlag, Berlin - New York, 1985.
- A. Paszkiewicz, Wold-type decomposition for equivalent and commuting projections, to appear in Bull. Polon Acad. Sci. (1989).
- T. Sakaue, M. O'uchi, and S. Maeda, Connected components of projections of a C*-algebra, Math. Japon. 29 (1984), 427–431.
- 6. Ş. Strătilă, Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, 1981.
- Ş. Strătilă and L. Zsidó, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, 1979.

INSTITUTE OF MATHEMATICS UNIVERSITY OF ŁÓDŹ UL. BANACHA 22 90-238 ŁÓDŹ POLAND