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THE CONTINUITY OF SUBTRACTION AND THE
HAUSDORFF PROPERTY IN SPACES OF BOREL
MEASURES

ANDREAS SCHIEF

Summary.

Let X be a topological space, M,(X) the space of all non-negative and finite
Borel measures, endowed with the weak topology and M,(X), M,(X), M,(X) the
subspaces consisting of all regular, T-smooth and tight measures. We show that
for ke {a,r,1,t} the map

@, {(mLv)eM (X)) p 2 via(mwv) = u—veM(X)

is continuous if and only if M, (X)is a Hausdorff space. Furthermore we establish
that @,(®,, ¢, ®P,) is continuous if X is perfectly normal (normal, regular,
Hausdorff) and that weaker separation axioms are not sufficient.

Notations. Given a topological space X, denote by

(a) 9(X) the family of all open sets in X,

(b) # (X) the family of all closed sets in X,

(c) A'(X) the family of all compact sets in X,

(d) 48 (X) the family of all Borel sets in X.

The set of all non-negative and finite Borel measures is called M,(X). Recall
that a measure ye M, (M) is

(a) regular, if for each Be A(X)
u(B) = sup {u(F): F = B, Fe #(X)},

(b) 7-smooth, if for each subfamily 4 < %(X) that is directed upwards by
inclusion

wW(u%) = sup {(G): Ge %},
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(c) tight, if for each Be #(X)
w(B) = sup {(K): K = B, Ke X' (X)n B(X)}.

The subsets of all regular, t-smooth and tight measures in M,(X) are denoted by
M, (X), M(X) and M,(X) respectively. We endow all these spaces of measures
with the weak topology, i.e. the topology generated by the requirements (see [3])

u— u(X) is continuous,
u— u(G) is lower semicontinuous for G € 4(X).

The results. First of all we define the considered mapping. Abbreviate for
kel{o,r1,t}

H(X) = {(n,v)e M(X)*: p 2z v}
and define (suppressing the index X)
?,: H(X)e(p,v)—> p—veM(X).

If the weak topology is generated by the mappings u — [fdu for bounded
continuous real functions f on X, the map &, is obviously continuous. But in
general continuity of @, is a non-trivial problem.

THEOREM 1. Let X be a topological space. For each k€ {a,r,1,t} the following
are equivalent:

(i) @, is continuous,

(i) M, (X) is a Hausdorff space.

PROOF. (i) = (ii): Given a net p,, a€ 4, in M,(X) and pu,ve M, (X) such that
p, — nand p, — v, we have toshow u = v. Define the constantnets u, = p, a€A,
and v, = v, a€ A. Then (i) and the continuity of addition in M, (X) yield

Mo = (e + po) —Pa o p+v—p=y,
Va“'("a"‘l’a)—l’a—"""#—":ll-

So u and v cannot differ on 4(X) and are therefore equal.

(ii) = (i): Let (u,,v,), a€ A4, be a net in H,(X) converging to (u,v)e H (X). We
will show that each subnet u; — v, BeB, of u, — v,, a€ A, contains a subnet
converging to u — v.

(1) The net u; — v4, Be B, has an accumulation point in D(u) = {pe M, (X):
p < p}. Otherwise for each p e D(u) there would be an open set I', = M,(X) and
B,€ B such that u; — vg¢ T, for all p = B,. Since D(u) is quasicompact (see
[2,(3.1)]) there are p,,...,p,€ D(p) and an index By 2 B,, 1 < i = n, such that

D(wyc U{l,: 1 <i<n} =T and py — vg¢ T for all f = f,.
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Following the remark (2) in section 3 of [2], we get D(u,) < I' eventually: Since
Ug — vg€ D(u,) the contradiction is derived.

(2) Denote by p € D(u) an accumulation point of u; — v4, fe B. Then there is
a subnet u, — v,, yeC, converging to p. So

#y=(ﬂy—"y)+"y_’l’+"
implies together with (ii) that p + v = g, thatis, p = u — v.

The following theorem includes results of Topsee, concerning the Hausdorff
property of M (X) and M,(X) (see [3, p. 49]).

THEOREM 2. Let X be a topological space and k € {o,r,7,t}. Each of the condi-
tions

(a) x = o and X perfectly normal,

(b) x =r and X normal,

(¢) k =t and X regular,

(d) k =t and X a Hausdorff space,
implies that &, is continuous and M,(X) is a Hausdorff space.

Proor. We will show the continuity of @,. So we have to establish that the
map

H (X)e(uv) —» wG)— vG)
is lower semicontinuous for each G € 4(X) (The continuity of this map in case of
G = X is evident). To this end it suffices to show
(+) w(G) —vG)=sup{uG)—vF): GG cF, Ge¥X), FeFX)}

for pu,ve M, (X).
Since

(1 =v)(G) 2 (k= )(G) 2 p(G) — WF)

holds for G = G’ = F’, only the inequality “ <” of (+) remains to be shown. Let
a real d be given such that u(G) — v(G) > d.

(a) In perfect spaces each open set is a union of countably many closed sets. So
each Borel measure is regular and (a) is only a special case of (b).

(b) There are closed sets F,, F, such that F; = G, F, « X\ G and u(F,) —
v(X\ F,) > d. Since X is normal there exist disjoint open sets G;such that F; c G;
fori =1,2. Choosing now G' = Gn G, and F' = X\ G, © G, o G', we get

HG') — v(F) 2 WFy) — X\ F;) > d.

(c) Since X is regular, the family of all open sets whose closure is contained in
G is directed upwards by inclusion and converges to G. So there is an open set G’
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whose closure F' is a subset of G such that u(G') — v(G) > d. Hence
WG') — W(F) 2 W(G") — v(G) > d.

(d) Since in a Hausdorff space compact sets can be separated as points, we get
a proof of (d) by replacing in (b) closed sets by compact ones.

The following examples ensure that the separation properties in Theorem 2 are
well chosen.

EXAMPLES. The following conditions are not sufficient either for the continuity of
@, or the Hausdorff property of M, (X):

(a') k = ¢ and X normal,

(b') k = r and X completely regular,

(') k¥ =t and X a Hausdorff space,

(d') « = tand X a T;-space.

PROOF. (a') Let w, be the first uncountable ordinal, X = [0,w,] endowed
with the the order topology, v, € M,(X) the Dieudonné measure (see [1], p. 231,
(10)) and v, the Dirac measure in w,. Since v,(G) < v,(G)is true for G € 4(X),each
neighbourhood of v, contains also v,. So M, (X) fails to be a T;-space.

(b’) Let w, be the first ordinal of greater cardinality than w,, X; = [0, w;[
endowed with the order topology and v;e M,(X,) the Dieudonné measures for
i=1,2,ie. v{(B) =1 for each Be #(X;) containing a closed unbounded subset
and v,(B) = 0 else. Consider

X =[0,0,] x [0,0, ]\ {(w;, w;)}

and the measures p; € M,(X), which are defined as image measures of v; with
respect to the mappings

Pi: X €x—(x,w,)eX, Py X,€x = (wy,x)eX.
Assuming now p;e I';e (M, (X)) for i = 1,2, we will show I', n I', # (. Since
the measures p; are 0-1-measures there are sets G;€ 4(X) and ¢ > 0 such that
pie{peM(X) p(G)>1—¢cand p(X)<1+¢} < T,

The existence of a Dirac measure in I', n I, is now ensured by establishing
GinG +J.

Since p; ' (X\ G,)is a closed set of v;-measure 0 it is bounded. This implies the
existence of an ordinal x, < w, such that Jx,,w,[ x {w,} = G,. Analogously
there is an ordinal x, <w, such that {w,} x Ix;,w,[ = G,. Setting
U = Jx; o[ x ]x,,w,[ and denoting the cardinality of a set A by |4|, we get

(X\G,) n({x} x Ix,,0;30)l < w, foreach xe]x,w,[,
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hence
(XNG)NU| £ 0, 0, =ay,
and
Gy n(Jxp,00 x {x}]>1 foreach xe]x,,w,[,
hence

G, nU| Z w,.
S0G, NG, G, nG,NU £+ .

(c') Let A denote Lebesgue measure on [0,1] and C < [0, 1] be a set of inner
Lebesgue measure 0 and outer Lebesgue measure 1. Endow X = [0, 1] with the
topology generated by the Euclidean open sets and C. Open sets of X are
therefore of type G, U (G, n C) with Euclidean open sets G;. Since any Borel set
in X is of type (B; n(X\ C)) v (B, n C) with Euclidean Borel sets B;, by

Pi(B; N (X\C) L (B, n C)) = A(By),

we get well defined measures p,e M, (X) (see [1, p. 71(2)]). These measures are
7-smooth since X has a countable basis.
Given Euclidean open sets G, it follows

(G, U (G, () = UGy) £ UG,V Gy) = pp(G,u(G,n O)).

So each neighbourhood of p, contains p,.

(d’) Takeany T,-space which is not a Hausdorff space. Since one point sets are
Borel measurable in X, the map X € x — ¢, € M,(X) is an embedding. So M,(X)
cannot be a Hausdorff space.
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