THE CONTINUITY OF SUBTRACTION AND THE HAUSDORFF PROPERTY IN SPACES OF BOREL MEASURES

ANDREAS SCHIEF

Summary.

Let X be a topological space, $M_{\sigma}(X)$ the space of all non-negative and finite Borel measures, endowed with the weak topology and $M_{r}(X)$, $M_{t}(X)$, $M_{t}(X)$ the subspaces consisting of all regular, τ -smooth and tight measures. We show that for $\kappa \in \{\sigma, r, \tau, t\}$ the map

$$\Phi_{\kappa}$$
: $\{(\mu, \nu) \in M_{\kappa}(X)^2 : \mu \ge \nu\} \ni (\mu, \nu) \rightarrow \mu - \nu \in M_{\kappa}(X)$

is continuous if and only if $M_{\kappa}(X)$ is a Hausdorff space. Furthermore we establish that $\Phi_{\kappa}(\Phi_r, \Phi_\tau, \Phi_t)$ is continuous if X is perfectly normal (normal, regular, Hausdorff) and that weaker separation axioms are not sufficient.

Notations. Given a topological space X, denote by

- (a) $\mathcal{G}(X)$ the family of all open sets in X,
- (b) $\mathcal{F}(X)$ the family of all closed sets in X,
- (c) $\mathcal{K}(X)$ the family of all compact sets in X,
- (d) $\mathcal{B}(X)$ the family of all Borel sets in X.

The set of all non-negative and finite Borel measures is called $M_{\sigma}(X)$. Recall that a measure $\mu \in M_{\sigma}(M)$ is

(a) regular, if for each $B \in \mathcal{B}(X)$

$$\mu(B) = \sup \{ \mu(F) : F \subset B, F \in \mathscr{F}(X) \},$$

(b) τ -smooth, if for each subfamily $\mathscr{G} \subset \mathscr{G}(X)$ that is directed upwards by inclusion

$$\mu(\cup \mathcal{G}) = \sup \{\mu(G): G \in \mathcal{G}\},\$$

Received May 12, 1987

(c) tight, if for each $B \in \mathcal{B}(X)$

$$\mu(B) = \sup \{ \mu(K) \colon K \subset B, K \in \mathcal{K}(X) \cap \mathcal{B}(X) \}.$$

The subsets of all regular, τ -smooth and tight measures in $M_{\sigma}(X)$ are denoted by $M_{r}(X)$, $M_{r}(X)$ and $M_{r}(X)$ respectively. We endow all these spaces of measures with the weak topology, i.e. the topology generated by the requirements (see [3])

$$\mu \to \mu(X)$$
 is continuous,
 $\mu \to \mu(G)$ is lower semicontinuous for $G \in \mathcal{G}(X)$.

The results. First of all we define the considered mapping. Abbreviate for $\kappa \in \{\sigma, r, \tau, t\}$

$$H_{\kappa}(X) = \{(\mu, \nu) \in M_{\kappa}(X)^2 \colon \mu \ge \nu\}$$

and define (suppressing the index X)

$$\Phi_{\kappa}$$
: $H_{\kappa}(X) \in (\mu, \nu) \to \mu - \nu \in M_{\kappa}(X)$.

If the weak topology is generated by the mappings $\mu \to \int f d\mu$ for bounded continuous real functions f on X, the map Φ_{κ} is obviously continuous. But in general continuity of Φ_{κ} is a non-trivial problem.

THEOREM 1. Let X be a topological space. For each $\kappa \in \{\sigma, r, \tau, t\}$ the following are equivalent:

- (i) Φ_{κ} is continuous,
- (ii) $M_{\kappa}(X)$ is a Hausdorff space.

PROOF. (i) \Rightarrow (ii): Given a net ρ_{α} , $\alpha \in A$, in $M_{\kappa}(X)$ and $\mu, \nu \in M_{\kappa}(X)$ such that $\rho_{\alpha} \to \mu$ and $\rho_{\alpha} \to \nu$, we have to show $\mu = \nu$. Define the constant nets $\mu_{\alpha} = \mu$, $\alpha \in A$, and $\nu_{\alpha} = \nu$, $\alpha \in A$. Then (i) and the continuity of addition in $M_{\kappa}(X)$ yield

$$\mu_{\alpha} = (\mu_{\alpha} + \rho_{\alpha}) - \rho_{\alpha} \rightarrow \mu + \nu - \mu = \nu,$$

$$\nu_{\alpha} = (\nu_{\alpha} + \rho_{\alpha}) - \rho_{\alpha} \rightarrow \nu + \mu - \nu = \mu.$$

So μ and ν cannot differ on $\mathcal{G}(X)$ and are therefore equal.

- (ii) \Rightarrow (i): Let $(\mu_{\alpha}, \nu_{\alpha})$, $\alpha \in A$, be a net in $H_{\kappa}(X)$ converging to $(\mu, \nu) \in H_{\kappa}(X)$. We will show that each subnet $\mu_{\beta} \nu_{\beta}$, $\beta \in B$, of $\mu_{\alpha} \nu_{\alpha}$, $\alpha \in A$, contains a subnet converging to $\mu \nu$.
- (1) The net $\mu_{\beta} \nu_{\beta}$, $\beta \in B$, has an accumulation point in $D(\mu) = \{ \rho \in M_{\kappa}(X) : \rho \leq \mu \}$. Otherwise for each $\rho \in D(\mu)$ there would be an open set $\Gamma_{\rho} \subset M_{\kappa}(X)$ and $\beta_{\rho} \in B$ such that $\mu_{\beta} \nu_{\beta} \notin \Gamma_{\rho}$ for all $\beta \geq \beta_{\rho}$. Since $D(\mu)$ is quasicompact (see [2, (3.1)]) there are $\rho_1, \ldots, \rho_n \in D(\mu)$ and an index $\beta_0 \geq \beta_{\rho_i}$, $1 \leq i \leq n$, such that

$$D(\mu) \subset \bigcup \{ \Gamma_{\rho_i} : 1 \leq i \leq n \} = \Gamma \text{ and } \mu_{\beta} - \nu_{\beta} \notin \Gamma \text{ for all } \beta \geq \beta_0.$$

Following the remark (2) in section 3 of [2], we get $D(\mu_{\beta}) \subset \Gamma$ eventually: Since $\mu_{\beta} - \nu_{\beta} \in D(\mu_{\beta})$ the contradiction is derived.

(2) Denote by $\rho \in D(\mu)$ an accumulation point of $\mu_{\beta} - \nu_{\beta}$, $\beta \in B$. Then there is a subnet $\mu_{\gamma} - \nu_{\gamma}$, $\gamma \in C$, converging to ρ . So

$$\mu_{\gamma} = (\mu_{\gamma} - \nu_{\gamma}) + \nu_{\gamma} \rightarrow \rho + \nu$$

implies together with (ii) that $\rho + \nu = \mu$, that is, $\rho = \mu - \nu$.

The following theorem includes results of Topsøe, concerning the Hausdorff property of $M_r(X)$ and $M_r(X)$ (see [3, p. 49]).

THEOREM 2. Let X be a topological space and $\kappa \in \{\sigma, r, \tau, t\}$. Each of the conditions

- (a) $\kappa = \sigma$ and X perfectly normal,
- (b) $\kappa = r$ and X normal,
- (c) $\kappa = \tau$ and X regular,
- (d) $\kappa = t$ and X a Hausdorff space,

implies that Φ_{κ} is continuous and $M_{\kappa}(X)$ is a Hausdorff space.

PROOF. We will show the continuity of Φ_{κ} . So we have to establish that the map

$$H_{\kappa}(X) \in (\mu, \nu) \rightarrow \mu(G) - \nu(G)$$

is lower semicontinuous for each $G \in \mathcal{G}(X)$ (The continuity of this map in case of G = X is evident). To this end it suffices to show

$$(+) \quad \mu(G) - \nu(G) = \sup \left\{ \mu(G') - \nu(F') \colon G \supset G' \subset F', \ G' \in \mathcal{G}(X), \ F' \in \mathcal{F}(X) \right\}$$

for $\mu, \nu \in M_{\kappa}(X)$.

Since

$$(\mu - \nu)(G) \ge (\mu - \nu)(G') \ge \mu(G') - \nu(F')$$

holds for $G \supset G' \subset F'$, only the inequality " \leq " of (+) remains to be shown. Let a real d be given such that $\mu(G) - \nu(G) > d$.

- (a) In perfect spaces each open set is a union of countably many closed sets. So each Borel measure is regular and (a) is only a special case of (b).
- (b) There are closed sets F_1 , F_2 such that $F_1 \subset G$, $F_2 \subset X \setminus G$ and $\mu(F_1) \nu(X \setminus F_2) > d$. Since X is normal there exist disjoint open sets G_i such that $F_i \subset G_i$ for i = 1, 2. Choosing now $G' = G \cap G_1$ and $F' = X \setminus G_2 \supset G_1 \supset G'$, we get

$$\mu(G') - \nu(F') \ge \mu(F_1) - \nu(X \setminus F_2) > d.$$

(c) Since X is regular, the family of all open sets whose closure is contained in G is directed upwards by inclusion and converges to G. So there is an open set G'

whose closure F' is a subset of G such that $\mu(G') - \nu(G) > d$. Hence

$$\mu(G') - \nu(F') \ge \mu(G') - \nu(G) > d.$$

(d) Since in a Hausdorff space compact sets can be separated as points, we get a proof of (d) by replacing in (b) closed sets by compact ones.

The following examples ensure that the separation properties in Theorem 2 are well chosen.

EXAMPLES. The following conditions are not sufficient either for the continuity of Φ_{κ} or the Hausdorff property of $M_{\kappa}(X)$:

- (a') $\kappa = \sigma$ and X normal,
- (b') $\kappa = r$ and X completely regular,
- (c') $\kappa = \tau$ and X a Hausdorff space,
- (d') $\kappa = t$ and X a T_1 -space.
- PROOF. (a') Let ω_1 be the first uncountable ordinal, $X = [0, \omega_1]$ endowed with the the order topology, $v_1 \in M_{\sigma}(X)$ the Dieudonné measure (see [1], p. 231, (10)) and v_2 the Dirac measure in ω_1 . Since $v_2(G) \leq v_1(G)$ is true for $G \in \mathcal{G}(X)$, each neighbourhood of v_2 contains also v_1 . So $M_{\sigma}(X)$ fails to be a T_1 -space.
- (b') Let ω_2 be the first ordinal of greater cardinality than ω_1 , $X_i = [0, \omega_i]$ endowed with the order topology and $v_i \in M_r(X_i)$ the Dieudonné measures for i = 1, 2, i.e. $v_i(B) = 1$ for each $B \in \mathcal{B}(X_i)$ containing a closed unbounded subset and $v_i(B) = 0$ else. Consider

$$X = [0, \omega_1] \times [0, \omega_2] \backslash \{(\omega_1, \omega_2)\}$$

and the measures $\rho_i \in M_r(X)$, which are defined as image measures of v_i with respect to the mappings

$$p_1\colon\thinspace X_1\in x\to (x,\omega_2)\in X, \qquad p_2\colon\thinspace X_2\in x\to (\omega_1,x)\in X.$$

Assuming now $\rho_i \in \Gamma_i \in \mathcal{G}(M_r(X))$ for i = 1, 2, we will show $\Gamma_1 \cap \Gamma_2 \neq \emptyset$. Since the measures ρ_i are 0-1-measures there are sets $G_i \in \mathcal{G}(X)$ and $\varepsilon > 0$ such that

$$\rho_i \in \{ \rho \in M_r(X) : \ \rho(G_i) > 1 - \varepsilon \text{ and } \rho(X) < 1 + \varepsilon \} \subset \Gamma_i.$$

The existence of a Dirac measure in $\Gamma_1 \cap \Gamma_2$ is now ensured by establishing $G_1 \cap G_2 \neq \emptyset$.

Since $p_1^{-1}(X \setminus G_1)$ is a closed set of v_1 -measure 0 it is bounded. This implies the existence of an ordinal $x_1 < \omega_1$ such that $]x_1, \omega_1[\times \{\omega_2\} \subset G_1$. Analogously there is an ordinal $x_2 < \omega_2$ such that $\{\omega_1\} \times]x_2, \omega_2[\subset G_2$. Setting $U =]x_1 \cdot \omega_1[\times]x_2, \omega_2[$ and denoting the cardinality of a set A by |A|, we get

$$|(X \setminus G_1) \cap (\{x\} \times]x_2, \omega_2[)| < \omega_2$$
 for each $x \in]x_1, \omega_1[$,

hence

$$|(X \setminus G_1) \cap U| \leq \omega_1 \cdot \omega_1 = \omega_1$$

and

$$|G_2 \cap (]x_1, \omega_1[\times \{x\}] > 1$$
 for each $x \in]x_2, \omega_2[$,

hence

$$|G_2 \cap U| \ge \omega_2$$
.

So
$$G_1 \cap G_2 \supset G_1 \cap G_2 \cap U \neq \emptyset$$
.

(c') Let λ denote Lebesgue measure on [0,1] and $C \subset [0,1]$ be a set of inner Lebesgue measure 0 and outer Lebesgue measure 1. Endow X = [0,1] with the topology generated by the Euclidean open sets and C. Open sets of X are therefore of type $G_1 \cup (G_2 \cap C)$ with Euclidean open sets G_i . Since any Borel set in X is of type $(B_1 \cap (X \setminus C)) \cup (B_2 \cap C)$ with Euclidean Borel sets B_i , by

$$\rho_i((B_1 \cap (X \setminus C)) \cup (B_2 \cap C)) = \lambda(B_i),$$

we get well defined measures $\rho_i \in M_{\sigma}(X)$ (see [1, p. 71(2)]). These measures are τ -smooth since X has a countable basis.

Given Euclidean open sets G_i , it follows

$$\rho_1(G_1 \cup (G_2 \cap C)) = \lambda(G_1) \le \lambda(G_1 \cup G_2) = \rho_2(G_1 \cup (G_2 \cap C)).$$

So each neighbourhood of ρ_1 contains ρ_2 .

(d') Take any T_1 -space which is not a Hausdorff space. Since one point sets are Borel measurable in X, the map $X \in X \to \varepsilon_X \in M_t(X)$ is an embedding. So $M_t(X)$ cannot be a Hausdorff space.

REFERENCES

- 1. P. R. Halmos, Measure Theory, van Nostrand, New York, 1959.
- 2. A. Schief, Topological properties of the addition map in spaces of Borel measures, Math. Ann. 282 (1988), 23-31.
- 3. F. Topsøe, *Topology and Measure*, Lecture Notes in Math. 133, Springer-Verlag, New York, 1970.

MATH. INST. LUDWIG-MAXIMILIANS-UNIV. THERESIENSTR. 39 D-8000 MÜNCHEN 2 WEST GERMANY