THE CONTINUITY OF SUBTRACTION AND THE HAUSDORFF PROPERTY IN SPACES OF BOREL MEASURES

ANDREAS SCHIEF

Summary.

Let X be a topological space, $M_\sigma(X)$ the space of all non-negative and finite Borel measures, endowed with the weak topology and $M_r(X), M_\tau(X), M_t(X)$ the subspaces consisting of all regular, τ-smooth and tight measures. We show that for $\kappa \in \{\sigma, r, \tau, t\}$ the map

$$\Phi_\kappa: \{(\mu, v) \in M_\kappa(X)^2: \mu \geq v\} \ni (\mu, v) \mapsto \mu - v \in M_\kappa(X)$$

is continuous if and only if $M_\kappa(X)$ is a Hausdorff space. Furthermore we establish that $\Phi_\kappa(\Phi_r, \Phi_r, \Phi_t)$ is continuous if X is perfectly normal (normal, regular, Hausdorff) and that weaker separation axioms are not sufficient.

Notations. Given a topological space X, denote by

(a) $\mathcal{G}(X)$ the family of all open sets in X,
(b) $\mathcal{F}(X)$ the family of all closed sets in X,
(c) $\mathcal{K}(X)$ the family of all compact sets in X,
(d) $\mathcal{B}(X)$ the family of all Borel sets in X.

The set of all non-negative and finite Borel measures is called $M_\sigma(X)$. Recall that a measure $\mu \in M_\sigma(M)$ is

(a) regular, if for each $B \in \mathcal{B}(X)$

$$\mu(B) = \sup \{\mu(F): F \subset B, F \in \mathcal{F}(X)\},$$

(b) τ-smooth, if for each subfamily $\mathcal{G} \subset \mathcal{G}(X)$ that is directed upwards by inclusion

$$\mu(\cup \mathcal{G}) = \sup \{\mu(G): G \in \mathcal{G}\},$$

Received May 12, 1987
(c) tight, if for each $B \in \mathcal{B}(X)$

$$\mu(B) = \sup \{\mu(K) : K \subset B, K \in \mathcal{K}(X) \cap \mathcal{B}(X)\}.$$

The subsets of all regular, τ-smooth and tight measures in $M_\sigma(X)$ are denoted by $M_\sigma(X)$, $M_\tau(X)$ and $M_t(X)$ respectively. We endow all these spaces of measures with the weak topology, i.e. the topology generated by the requirements (see [3])

$$\mu \to \mu(X) \text{ is continuous},$$
$$\mu \to \mu(G) \text{ is lower semicontinuous for } G \in \mathcal{G}(X).$$

The results. First of all we define the considered mapping. Abbreviate for $\kappa \in \{\sigma, \tau, \tau, t\}$

$$H_\kappa(X) = \{ (\mu, \nu) \in M_\kappa(X)^2 : \mu \geq \nu \}$$

and define (suppressing the index X)

$$\Phi_\kappa : H_\kappa(X) \ni (\mu, \nu) \to \mu - \nu \in M_\kappa(X).$$

If the weak topology is generated by the mappings $\mu \to \int f d\mu$ for bounded continuous real functions f on X, the map Φ_κ is obviously continuous. But in general continuity of Φ_κ is a non-trivial problem.

Theorem 1. Let X be a topological space. For each $\kappa \in \{\sigma, \tau, \tau, t\}$ the following are equivalent:

(i) Φ_κ is continuous,

(ii) $M_\kappa(X)$ is a Hausdorff space.

Proof. (i) \Rightarrow (ii): Given a net $\rho_\alpha, \alpha \in A$, in $M_\kappa(X)$ and $\mu, \nu \in M_\kappa(X)$ such that $\rho_\alpha \to \mu$ and $\rho_\alpha \to \nu$, we have to show $\mu = \nu$. Define the constant nets $\mu_\alpha = \mu, \alpha \in A$, and $\nu_\alpha = \nu, \alpha \in A$. Then (i) and the continuity of addition in $M_\kappa(X)$ yield

$$\mu_\alpha = (\mu_\alpha + \rho_\alpha) - \rho_\alpha \to \mu + \nu - \mu = \nu,$$
$$\nu_\alpha = (\nu_\alpha + \rho_\alpha) - \rho_\alpha \to \nu + \mu - \nu = \mu.$$

So μ and ν cannot differ on $\mathcal{G}(X)$ and are therefore equal.

(ii) \Rightarrow (i): Let $(\mu_\alpha, \nu_\alpha), \alpha \in A$, be a net in $H_\kappa(X)$ converging to $(\mu, \nu) \in H_\kappa(X)$. We will show that each subnet $\mu_\beta - \nu_\beta, \beta \in B$, of $\mu_\alpha - \nu_\alpha, \alpha \in A$, contains a subnet converging to $\mu - \nu$.

(1) The net $\mu_\beta - \nu_\beta, \beta \in B$, has an accumulation point in $D(\mu) = \{\rho \in M_\kappa(X) : \rho \leq \mu\}$. Otherwise for each $\rho \in D(\mu)$ there would be an open set $\Gamma_\rho \subset M_\kappa(X)$ and $\beta_\rho \in B$ such that $\mu_\beta - \nu_\beta \notin \Gamma_\rho$ for all $\beta \geq \beta_\rho$. Since $D(\mu)$ is quasicompact (see [2,(3.1)]) there are $\rho_1, \ldots, \rho_n \in D(\mu)$ and an index $\beta_0 \geq \beta_\rho, 1 \leq i \leq n$, such that

$$D(\mu) \subset \bigcup \{\Gamma_{\rho_i} : 1 \leq i \leq n\} = \Gamma \text{ and } \mu_\beta - \nu_\beta \notin \Gamma \text{ for all } \beta \geq \beta_0.$$
Following the remark (2) in section 3 of [2], we get $D(\mu_\beta) \subset \Gamma$ eventually. Since $\mu_\beta - \nu_\beta \in D(\mu_\beta)$ the contradiction is derived.

(2) Denote by $\rho \in D(\mu)$ an accumulation point of $\mu_\beta - \nu_\beta$, $\beta \in B$. Then there is a subnet $\mu_\gamma - \nu_\gamma$, $\gamma \in C$, converging to ρ. So

$$\mu_\gamma = (\mu_\gamma - \nu_\gamma) + \nu_\gamma \to \rho + \nu$$

implies together with (ii) that $\rho + \nu = \mu$, that is, $\rho = \mu - \nu$.

The following theorem includes results of Topsøe, concerning the Hausdorff property of $M_t(X)$ and $M_s(X)$ (see [3, p. 49]).

Theorem 2. Let X be a topological space and $\kappa \in \{\sigma, r, \tau, t\}$. Each of the conditions

(a) $\kappa = \sigma$ and X perfectly normal,

(b) $\kappa = r$ and X normal,

(c) $\kappa = \tau$ and X regular,

(d) $\kappa = t$ and X a Hausdorff space,

implies that Φ_κ is continuous and $M_\kappa(X)$ is a Hausdorff space.

Proof. We will show the continuity of Φ_κ. So we have to establish that the map

$$H_\kappa(X) \ni (\mu, \nu) \rightarrow \mu(G) - \nu(G)$$

is lower semicontinuous for each $G \in \mathcal{G}(X)$ (The continuity of this map in case of $G = X$ is evident). To this end it suffices to show

(+) $\mu(G) - \nu(G) = \sup \{\mu(G') - \nu(F'): G \supset G' \subset F', G' \in \mathcal{G}(X), F' \in \mathcal{F}(X)\}$

for $\mu, \nu \in M_\kappa(X)$.

Since

$$(\mu - \nu)(G) \geq (\mu - \nu)(G') \geq \mu(G') - \nu(F')$$

holds for $G \supset G' \subset F'$, only the inequality "\(\leq\)" of (+) remains to be shown. Let a real d be given such that $\mu(G) - \nu(G) > d$.

(a) In perfect spaces each open set is a union of countably many closed sets. So each Borel measure is regular and (a) is only a special case of (b).

(b) There are closed sets F_1, F_2 such that $F_1 \subset G$, $F_2 \subset X \setminus G$ and $\mu(F_1) - \nu(X \setminus F_2) > d$. Since X is normal there exist disjoint open sets G_i such that $F_1 \subset G_i$ for $i = 1, 2$. Choosing now $G' = G \cap G_1$ and $F' = X \setminus G_2 \supset G_1 \supset G'$, we get

$$\mu(G') - \nu(F') \geq \mu(F_1) - \nu(X \setminus F_2) > d.$$

(c) Since X is regular, the family of all open sets whose closure is contained in G is directed upwards by inclusion and converges to G. So there is an open set G'
whose closure F' is a subset of G such that $\mu(G') - \nu(G) > d$. Hence

$$\mu(G') - \nu(F') \geq \mu(G') - \nu(G) > d.$$

(d) Since in a Hausdorff space compact sets can be separated as points, we get a proof of (d) by replacing in (b) closed sets by compact ones.

The following examples ensure that the separation properties in Theorem 2 are well chosen.

Examples. The following conditions are not sufficient either for the continuity of Φ_κ or the Hausdorff property of $M_\kappa(X)$:

(a') $\kappa = \sigma$ and X normal,

(b') $\kappa = r$ and X completely regular,

(c') $\kappa = \tau$ and X a Hausdorff space,

(d') $\kappa = t$ and X a T_1-space.

Proof. (a') Let ω_1 be the first uncountable ordinal, $X = [0, \omega_1]$ endowed with the order topology, $v_1 \in M_\sigma(X)$ the Dieudonné measure (see [1], p. 231, (10)) and v_2 the Dirac measure in ω_1. Since $v_2(G) \leq v_1(G)$ is true for $G \in \mathcal{G}(X)$, each neighbourhood of v_2 contains also v_1. So $M_\sigma(X)$ fails to be a T_1-space.

(b') Let ω_2 be the first ordinal of greater cardinality than ω_1, $X_i = [0, \omega_i]$ endowed with the order topology and $v_i \in M_\tau(X_i)$ the Dieudonné measures for $i = 1, 2$, i.e. $v_i(B) = 1$ for each $B \in \mathcal{G}(X_i)$ containing a closed unbounded subset and $v_i(B) = 0$ else. Consider

$$X = [0, \omega_1] \times [0, \omega_2] \setminus \{(\omega_1, \omega_2)\}$$

and the measures $\rho_i \in M_\tau(X)$, which are defined as image measures of v_i with respect to the mappings

$$p_1: X_1 \times (x, \omega_2) \in X, \quad p_2: X_2 \times (\omega_1, x) \in X.$$

Assuming now $\rho_i \in \Gamma_i \in \mathcal{G}(M_\tau(X))$ for $i = 1, 2$, we will show $\Gamma_1 \cap \Gamma_2 \neq \emptyset$. Since the measures ρ_i are 0-1-measures there are sets $G_i \in \mathcal{G}(X)$ and $\varepsilon > 0$ such that

$$\rho_i \in \{\rho \in M_\tau(X): \rho(G_i) > 1 - \varepsilon \text{ and } \rho(X) < 1 + \varepsilon\} \subset \Gamma_i.$$

The existence of a Dirac measure in $\Gamma_1 \cap \Gamma_2$ is now ensured by establishing $G_1 \cap G_2 \neq \emptyset$.

Since $p_1^{-1}(X \setminus G_1)$ is a closed set of v_1-measure 0 it is bounded. This implies the existence of an ordinal $x_1 < \omega_1$ such that $[x_1, \omega_1[\times \{\omega_2\} \subset G_1$. Analogously there is an ordinal $x_2 < \omega_2$ such that $[\omega_1, x_2, \omega_2[\subset G_2$. Setting $U = [x_1, \omega_1[\times [x_2, \omega_2[\subset G_1 \cap G_2$, denoting the cardinality of a set A by $|A|$, we get

$$|(X \setminus G_1) \cap ([x] \times [x_2, \omega_2[)| < \omega_2 \quad \text{for each } x \in [x_1, \omega_1[,$$
hence
\[(X \setminus G_1) \cap U \leq \omega_1 \cdot \omega_1 = \omega_1,\]
and
\[|G_2 \cap \{x_1, \omega_1\} \times \{x\}| > 1 \quad \text{for each } x \in]x_2, \omega_2[,\]
hence
\[|G_2 \cap U| \geq \omega_2.\]
So \(G_1 \cap G_2 \supset G_1 \cap G_2 \cap U \neq \emptyset.\)

(c') Let \(\lambda\) denote Lebesgue measure on \([0, 1]\) and \(C \subset [0, 1]\) be a set of inner Lebesgue measure 0 and outer Lebesgue measure 1. Endow \(X = [0, 1]\) with the topology generated by the Euclidean open sets and \(C\). Open sets of \(X\) are therefore of type \(G_1 \cup (G_2 \cap C)\) with Euclidean open sets \(G_i\). Since any Borel set in \(X\) is of type \((B_1 \cap (X \setminus C)) \cup (B_2 \cap C)\) with Euclidean Borel sets \(B_i\), by
\[\rho_i((B_1 \cap (X \setminus C)) \cup (B_2 \cap C)) = \lambda(B_i),\]
we get well defined measures \(\rho_i \in M_\sigma(X)\) (see [1, p. 71(2)]). These measures are \(\tau\)-smooth since \(X\) has a countable basis.
Given Euclidean open sets \(G_i\), it follows
\[\rho_1(G_1 \cup (G_2 \cap C)) = \lambda(G_1) \leq \lambda(G_1 \cup G_2) = \rho_2(G_1 \cup (G_2 \cap C)).\]
So each neighbourhood of \(\rho_1\) contains \(\rho_2\).

(d') Take any \(T_1\)-space which is not a Hausdorff space. Since one point sets are Borel measurable in \(X\), the map \(X \ni x \to e_x \in M_i(X)\) is an embedding. So \(M_i(X)\) cannot be a Hausdorff space.

REFERENCES

MATH. INST.
LUDWIG-MAXIMILIANS-UNIV.
THERESEIENSTR. 39
D-8000 MÜNCHEN 2
WEST GERMANY