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SETS OF MINIMAL POINTS IN L, ([0, 1],dt)

JAN-OVE LARSSON

0. Introduction.

The notion minimal point with respect to a subset M of a Banach space X
was introduced in [1] and further studied in [2] and [3]. In this paper we study
the geometric properties of this notion in L, spaces. We start by giving some
definitions and basic facts. Let X be a Banach space and assume that
M € X is a subset.

DeriniTION 0.1. We call x € X minimal with respect to M if
ly —ml < llx —m|, VmeM=y=x
The set of all minimal points with respect to M is denoted by min M.
DerFiniTiON 0.2. A subset M & X is said to be optimal if min M = M.
As a starting point we have the following two results from [2].

TheoreM 0.1. If X is reflexive, smooth and strictly convex and of dimension
larger than two, then X is isometric to a Hilbert space if and only if the closed
unit ball is optimal.

ProposiTioN 0.1. There exists a function
o:[1, Od] - [1, 2]
such that

i)  e(p)B) & minB, S o(p)B, and
ii) minB, = 2B}, where B, denotes the closed unit ball in L,([0, 1],dt).

It'is easy to see that B, is optimal. For if f e L, ([0, 1],dt) and ||f]| > 1,
then

lg—mil = lIf—mll, VmeB,,
where g(x) = sgn(f(x))min(|f (x)|, 1). Hence f ¢ minB,, .
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This paper deals with the structure of min B, and thus with the function .
Section 1 contains some preliminary topological results which in particular show
that min B, = g(p)B,, that is min B, is closed, if I < p < co. In Theorem 2.1
of section 2 we reduce the problem of determining ¢(p) to a finite dimensional
problem. From this reduction we are able, in Theorem 3.1, to obtain estimates
of ¢ and, in Theorem 3.2, to show that ¢:[1, oo [ [1, 2] is continuous. The
estimates we get show however that g is discontinuous at oo, since

0(0) =1 # 2= lim g(p).
p—
Finally, in section 4, we apply a theorem of Kakutani to get a characterization
of Hilbert space in terms of the notion optimal set.
We mention a few basic properties of the notion minimal point.

min(AM) = AminM if AieR,.

If M is a subset of a ball of radius r, then min M is a subset of a ball of radius 2r.
And if X is a Hilbert space, then min M = cvx M. Thus the operation of taking
minimal points generalizes the one of taking the closed convex hull in Hilbert
space. In general, however, there is only little knowledge of the geometrical
properties of the set of all minimal points. For example it is remarked in [2]
that it seems unknown if min M is convex whenever M is.

We are grateful to T. Figiel for valuable discussions.

1. Some topological properties.

If (X, |- 1}) is a Banach space, we denote the unit sphere {x e X ;||x|| = 1} by
S(X). Let M & X be a subset. We will show that under some boundedness
assumptions on M and some convexity assumptions on the norm, min M
is closed.

DeriniTioN 1.1, The Banach space X is said to be strictly convex if
IIx+ il =lixll+livll, x.yeX,
implies that x =ty for some t 20 or y = 0.

This is the same as to say that S(X) does not contain any nontrivial line
segments.

DeriniTION 1.2. The Banach space X is said to be uniformly convex whenever
given ¢ > 0 there exists d(¢) > 0 such that if x,y e S(X) and ||x —y|| 2 ¢, then
lIx+ ¥l = 2(1=6(e)).

We have the following easy consequence.
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Fact. Let X be a uniformly convex Banach space. Then given ¢ > 0 there
exists d(¢) > 0 such that whenever ||y|| < ||x|| =1 and |lx—y|| 2 ¢, then
llx+yll = 2(1-6()).

ProrosiTiON 1.1. Let X be a strictly convex Banach space and let M S X be
a compact subset. Then min M is closed.

ProoF. Given x¢ minM there exists y # x with |ly—m| £ |Ix —m||,
Vme M. By strict convexity ||(y+x)/2—m|| < ||x—m]|. For each me M, put
a(m) = ||x —m|| —||(y +x)/2—m]| > 0. Each set

Vo = {ze XslIx—zll = l(y +x)/2=z|| > a(m)/2},

defined for m € M, contains an open neighborhood of m. By compactness the
covering {V,,}mem Of M has a finite subcovering, say {¥,,}i-,. Put

m

¢ = min {a(m;)/2}.
IsisN

Then
lIx—m||—l(v+x)/2—m| >¢&, VmeM.

Clearly the set
X eX;lIx'—m|| Z |(y+x)/2—ml|l, VmeM]

contains an open neighborhood of x, which is disjoint from min M. Hence min
M is closed.

In case of uniform convexity it is sufficient that M is bounded to conclude
that min M is closed. We use the notation d(x, M) for the distance of a point x
to a set M, that is

d(x, M) = inf ||x—ml]|.

meM

PROPOSITION 1.2. Let X be a uniformly convex Banach space and let 6(€) be its
modulus of convexity. Suppose that M € X is a bounded subset and that
x ¢ min M. Then

(1.1) BO (x,é(—lul——>d(x,M)> AminM = @,

sup ||x —mi|
meM

foreveryy e{yeX;|ly—m| £ |lx—m||,Yme M}. In particular,min M is closed.

Proor. Given x ¢ min M there exists y # x with |ly—m|| = [Ix —m||, Vme M.
Fix mgyeM. The ‘Fact’ applied to the elements (x—m)/|lx —moll,
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(y — mo)/llx — mo |, and & = &, = lly — x||/llx — mo| yields
Iy + x)/2 — moll < (1 — (em))llx — mpll.
If we set y' = (y+x)/2, then

Ily—xl|
sup |lx —ml|
meM

Iy —ml| éllx—mll—é( )d(X,M). YmeM.
The proof is now easily completed.

CoroLrary L1 If 1 < p < o0, then min B, = ¢(p)B,,.

Proor. Combine Propositions 0.1 and 1.2.

Given a function f outside min B, 1 < p < co. Proposition 1.2 gives some
information about the closed, convex set

Uy = {geL,([0.1].dt);llg—ml|| < ||f—mll, Yme B,}

of all functions that are closer than f to each function in B,. More precisely
we have

CoRrOLLARY 1.2. There exists a constant k, > 0, | < p < oo, depending only
on p, such that if f ¢ min B, then U, S B(f,r) where

L (l+||j'll)<"‘f”_g(p)

1i(p)
A/ N= Ap) y _ .
kp(I1A 11— l)) and (p) = max(2, p)

ProoF. Let J,(¢) be the modulus of convexity of L,([0,1],dt), | < p < o0,
and assume that ge U,. By (1.1) we have

lg = fl lg — £l )
- 26, ————d(f,B,) = _ —

Since there exists, cf. [4], k, > 0 such that d,(¢) 2 k¢ we get

A= ep) 2 ky(llg =S/ +ILINPASN=1)

or equivalently

g —/II= (IS = ek = 1DV, YgeU,.

ProposiTions 1.1 and 1.2 are related to the following results of [2].

ProrosiTiON 1.3. Let X be a reflexive and strictly convex Banach space.
If M & X is a compact subset, then min M is weakly compact (and hence closed).
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PropPoOSITION 1.4. Let X be a reflexive and locally uniformly convex Banach
space. If M & X is a compact subset, then min M is compact.

2. Minimal points with respect to B,.

In this section we will study the function g:[1, 0] —[1,2] which was
introduced in Proposition 0.1. By Theorem 0.1, Proposition 0.1, and
Corollary 1.1, minB, = ¢(p)B,, 1 < p # 2 < o0, for some g(p) > 1, while
o(1) = 2 and ¢(2) = g(o0) = 1. Below we obtain some expressions for g(p),
which in the next section will be applied to get estimates of g(p) and to prove
that g is continuous on [1, oo [. It turns out that the simple functions which
only take two, respectively three, values will be of special interest. We there-
fore introduce the notation m = (f, f>, f3; 41, 42, 43) for the (right continuous)
decreasing simple function that takes the values f,, f, and, f; on intervals of
lengths 4,,4,, and A;, respectively, where ZL 1A= 1. The function
(f1, /2, f35 A1, 42, 0) will be denoted by (f1, /2341, 42).

The main effort will be to prove

THEOREM 2.1.

(i) If 1 <p < oo, then
o(p) = sup{aeR:3Im = (f1, f2; A1, 22) € S(L,) with
Y- k(fi—alfi—alP™2 2 0}

(i) If 2 < p < o0, then

o(p) = sup{aeR:3Im = (f\,f2; 41, A2) € S(L,) with
|fi—al?~2 = [§lm@t)—al?*m(t)dt- [P~ i = q,2, and.
Yo A(fi—a)lfi—alP"? 2 0}

=sup{aeR:3Im = (f},f2; 41, 42) € S(L,) with
|fi—alP~2 = [§Im@t)—alP2m(t)dt- fP~', i = 1,2, and
allm||p=1 < 1}.
THEOREM 2.1 easily implies

THEOREM 2.2. If 1 < p < o0, then

o(p) = sup
0sxs 2"“"‘”((1-—])_"
O<ysl

{—"(l+x"")‘“’+X(1 —y”—l)”p}

x+y

PrOOF OF THEOREM 2.2 AssUMING THEOREM 2.1 (i). Let (f1,f3;4;, 4;) € S(L,).
where f; > f;. Then 4, = (1-f8)/(ff—/%) and 4, = (/f-1/(/F—/%).



156 JAN-OVE LARSSON

By inserting this one easily checks that

2
Y Z(fi—a)lfi—al’”* 2 0 if and only if

i=1

e g . AG AN
a S (fi+ LA S+ AL L)), where A(fy. /) = (1 - ,g)

Hence, by Theorem 2.1 (i),
(2.1) o(p) = lSUI; {(i +2A(f1, 2)/ (L +A(fy, 12))}-
05/ <1

In the supremum it is, however, sufficient to consider f;’s with f; < 2(a—1)! "7
To see this, assume that

J(fi—alP™ ! 2 La—f>)P" ", where f; > 2.
Then
Ha—1P~ ' = (A=frP)a— 1P~ = Mhla—fo)P 7! = L(fi—aP™!
Sfort =1

which shows that f; <2(@—1)!"?. The substitution x = (f¥—1)/*~D
y = (1—£8)"*~ 1 now completes the proof of Theorem 2.2.

lIA

Let

A= {aeR+ :sup {|lg—ml|l—|la—m|} >0, Va $geLp}

meB,
and

A = {aeFL ssup {lle=m||=Jla—m|} >0,V0 = ¢ < a}.

meB,

By Proposition 0.1
(22)  o(p) = sup{a;aeA}.

Obviously A" 2 A. We will, however, prove the reverse inequality, sot that in
fact A = A". Note that

A = {aeR+: sup {llc—=m|lP=lla—m||’} >0, V0 = ¢ < a}.
meS(L,)

Given real numbers a and ¢ with 0 = ¢ < a, the functional I,.:L, - R
defined by

I.(m) = |lc —m||”—la —ml||?,

will be of interest.
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As a first step we have

LemMa 2.1. Let 1 < p < 00and0 = ¢ < a = 2 be given. Then1,.:S(L,) = R
attains its supremum.

Proor. Let s = SUPmes(z,)lac(m): Assume that (f,);-; & S(L,) is a
maximizing sequence, i.e. lim,_, I, (f,) = s. The idea of the proof is to show
that there exists a subsequence (f, )= which converges pointwise a.e. to an
element f € S(L,), and that I, attains its supremum at f.

We may assume that each f, is positive and decreasing, so that
fi(x) £ x~ 7. Let (r)-, be an enumeration of Qn[0,1]. By a diagonal
procedure we can extract a subsequence of (f,) which converges pointwise on
Q ~ [0,1]. For simplicity in notation, assume that (f,) already has this
property, i.e. assume that lim,_, . f,(r,) = fi, k = 1,2,3,.... Define a function
fo:[0,1] = R by letting fo(ry) = f, for k =1,2,3,.... If xe[0,1]\Q we let
folx) = lim, . . fo(qys), where (q,) is any decreasing sequence in Q n [0, 1]
with lim, ., .q, = x.

Let xe[0,1]\Q. If (s;)j<, is an increasing sequence and (f;)jL; is a
decreasing sequence in Q n [0, 1], both convergent to x, then for every j

(2.3) folt)) = lim £,(t))  lim f,(x) £ Tm f,(x) £ lim £,(5;) = fo(s;).

fo is positive, decreasing and, for each & > 0, bounded on Q ~ [J, 1]. Hence
fo can have at most countable many discontinuity points.
Consequently

lim fo(t;) = lim fo(s;) = fo(x) for almost all x.

j—= j—

By (2.3), lim, ., . f,(x) = fo(x) ae..

Fatou’s lemma implies that ||fo|l £ 1. Thus each maximizing sequence in
S(L,) has a subsequence which is almost everywhere pointwise convergent to
a function in B,. We will show that, actually, f, € S(L*) and that the supremum
is attained at f.

Choose 0 < ¢ < 1. The contribution to I, on [0,¢] will be shown to be
0(¢) as &€ — 0. For simplicity, we suppress the dependence on a and ¢ and let
1, denote the restriction of I, . to the measurable subset 4 & [0,1], ie.

If) = j(lc —fx)P—la—f(x)P)dx, f€ B,

A
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Let f € B, be positive and set
A, = {xe[0,¢e]; f(x) >a+1}
A, = {xe[0,e];(@a+c)2 < f(x)Sa+1}
A; = {xe€[0,¢]; f(x) S (a+c)/2}.

Then

4,/ = JIC —f(x)IPdx = (a+1—c)Pe = 3%,

A,

i a, () = jla—f(x)l”dx S afe £ 2%
As

and

g, (N = fp(a —)(f (x)—c)P~ dx

4,

=2 ~[f(x)"“dx < (Holder’s inequality)

Ay

(p—$)/p 1/2p
=2 < Jf(x)"’dx) ( Jf(x)’”dx)
4, 4,

S 2p(a+1)"12g12p < Qpgli2e,
Thus
(2.4) Hpo, (/) = 37+ 2P)e+ 2pel/?P,
The proof is now easily completed. Choose n, so large that
(2.5) s=1,.(f,)<e ifnzn
By the dominated convergence theorem, we can choose n, = n, so large that
(2.6) Hge () =T (o)l < & if n 2 n,.
For n 2 n, we get

s —1Io,13(fo) = s—Io,13Un) + 0.0 (fn) — Tpo, () + 1o 1) — I e 1)
< (37 +27)e+2pe'/2P 4 2¢.
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Since ¢ > 0 was arbitrary,

sup I, (m) =1, .(fo)
meS(L,)

By the definition of I, ., we obviously must have || fol| = 1.
We derive a necessary condition in

LEMMA 2.2, Let 1 <p < oo and 0 = c < a =2 be given. If I,.:S(L,) >R
attains its supremum at f, then f satisfies the equation

2.7) le=f )P sgnle—f(x))—la—f ()P~ " sgn(a—f(x))
1
= fxyr! j(lf —f@OF 'sgnlc—f () —la—f @O sgnla—f(0)f (t)de

0

almost everywhere.

The proof uses a lemma, cf. [5], in which we use the notation E(p) for
the integer part of p.

LEMMA. Let 1 < p < . There exists a constant M ,, depending only on p
such that

Ep) .
(2.8) la + bl” — (lal” + plal”~ ' sgn(@)b + 3, (f) Jal~! sgn(a)'b')l
: i=2
< M,bPP, VabeR.

Proor oF LEMMA 2.2. Suppose that I, .: S(L,) — R attains its supremum at f.
A necessary condition is

d : :
LA+ + 160 = 0. VgL,

provided that the derivative exists. To determine this condition, let g € S(L,)
be arbitrary. Integration in (2.8) and in the case p > 2, use the Holder’s
inequality give (note that f(x) = 0 a.e.)
1
Ilf+tgll” = 1+1p jf(X)””‘g(X)derO(t"), y = min(p, 2).

0

Putting v = [§f(x)?” 'g(x)dx we get

1
i (f+tg)/llf +tgll = % (f+tg)(l+tv+0@) ! = E(f+tg)(l —tv+0(t")
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or

1
(2.9) L=~ (f+tg/f +igll = (1 = f/e) = (tg/c —tvf[c+O(")).

Thus
1
J(IC— (f+eg)llf +glllP—lc—f1P)dx
° 1
= JC"(!I = (/) + g/l f + tgll|P — 11 — f/c]P)dx = (2.8) — (2.9)
0
1
= Jc"pll —f/elP~ tsgn(1 —f/c)[ —tg/c+tvf [c+O(t")]dx +
0
1
+ jc"O(I —tg/c+tvf fc+O(t")P)dx
0
and hence

31112 (llc = (f+eg)/ILf +tglllP —llc = f11)/t
1
= pjcpll — flelP~ ! sgn(l — fle)(—g/c + vf/c)dx

0
1

=p j le—f1P7" sgnlc —f)(—g+vf )dx.

0
The condition (d/dt)], .((f+tg)/llf +tgl)l,=0 = O implies that

I {le=f1P~'sgn(c—f)—la—f17""sgn(a—f)}

V]
1
{—g+ff f"_’gdt}dx.= 0, VgelL,.
V]

We thus arrive at the necessary condition
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le—f ()P~ " sgn(c —f (x))~la—f(x)|”~* sgn(a—f (x))

1
=fl)y! J (e =S @IP~ " sgnlc—f©))~la—f (@©)I"~ " sgna—f(t)))f (t)dt
V]

almost everywhere. This is equation (2.7).

'Remark. The values f(x) must, for almost all x, solve the equation
(2.10) le—yI?~ " sgn(c~y)—la—y|?~'sgn(@—y) = y*~'2

for some negative number 4. We observe that given a, ¢, and A there are at
most three solutions to (2.10).

The next step will be to show that if ae A’, then there exists me S(L,),
with I, .(m) > 0 simultaneously for all ce[0,a[. Let ae A’ and choose an
increasing sequence (cc)i=, with lim,_ ¢, = a. Let (m)i-, S S(L,) be a
sequence of decreasing simple functions satisfying (2.7) with ¢ = ¢, respect-
ively, and 1, . (m,) > 0. Since I, ,(m,) = 0 and I, is convex in ¢ we have that
I,.(m) > 0if 0 = ¢ = ¢, As in the proof of Lemma 2.1 we may assume that
m(x) = m(x) a.e. (note that the class of decreasing simple functions taking at
most three values and of norm less than or equal to one is closed under
pointwise limits, thus m is of this kind, too) where ||m|| =1 and I, (m) 20
for every 0 = ¢ < a. If ||m|| < 1 we can increase I, (m) further. Thus we can
assume that |jm|| = 1. It follows that

0
(2.11) = L, (m)c<, 0.
dc ¢

Conversely, if (2.11) holds for some meS(L,), then I, .(m)>0if 0= c <aq,
since S(L,) does not contain any line segments. We have proven

LEMMA 2.3. Let 1 < p < o0 and 0 < a < 2 be given. Then

sup I, (m)>0VY0<c<a ifandonlyif

meS(Lp)

S ., 0
Im = (flva’f3;Al,lZaAS)GS(Lp) with 5; Ia,c(m)|c=a é 0.

Let us now justify our interest in the functional I, . by showing, as promised
in the beginning of this section, that A’ & A.

LEMMA 2.4. Let | < p < o0 and ae R, be given. Then
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sup {llc—mll—lla=m|l} >0 Y0O=c<a if
meS(L,)

sup {llg—mll—lla—mll} >0 Va#gelL,.
meS(L,)

Proor. The sufficiency is trivial. To prove the necessity we first consider a
decreasing function ge L, with 0 = g(x) = a, x€[0,1]. By Lemma 2.3 there
exists a positive, decreasing, simple function my = (fy, f3, f3: 41, 42, 43) such
that I, (my) > 0 for each 0 = ¢ < a.

Let (g.)F-, be a pointwise decreasing sequence of decreasing simple
functions with

lim g,(x) = g(x), x€[0,1].
k— o

Suppose that g, takes the values ¢} on intervals I} 1= < N, Let
(M%)}, be an enumeration of all intersections of the form ﬂf‘:ﬂ}, where
1 £ j; £ N;. Suppose that m, is any rearrangment of m, such that, for all v,
m, takes the values f,, f>, and f; on subintervals of M% of lengths
A IME|, Z;IM%|, and /;|M%|, respectively. (Here |-| denotes Lebesque
measure.) We then use the following properties

(i) (gx(x))=, is decreasing for every x €[0, 1],

(i) Mgw—m)aellP =@ —m)lpgell? > 0, k= 1,2,3,...,
(i) A = [[(A=m)|ppll” —[l(a —m)|ppu]|P is convex,
(iv) (M**1)%:%is a refinment of (M)}

v=1»

to conclude that

lgn —mllP —lla —my||? = |lgy —my 1 |17 —lla —my |]P
(iv)

S Ngk+1 =M 1P =lla —my 41|17,
(i-1il)

But
lla —myll = lla —my |l

since m, is just a rearrangement of m,. Therefore (|lg,—myll—Ila —mll)i-
is increasing. This sequence is also positive and bounded. Put

lim [lg,—m|—lla —m|| = ¢ > 0.
k— o

We get

(g —mll = lla — mylD) = (g — mll = lla — my )]

= |llg—mll—llgi—mlll £ llg—gill =0 as k — co.
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Hence

sup {llg—mll—lla—mll} Z ¢ > 0.
meS(L,)

Clearly

sup {llg—mll—lla—ml||} >0
meS(L,)

for every positive function g€ L,,. If g is an arbitrary function in L, we can
choose m e S(L,) such that m(x) 2 0 a.e. and

lg —ml = lla —m| 2 |ligl — m| — lla —m|| > 0.
We can now give the

ProOOF OF THEOREM 2.1.: (i) Calculation of (9/dc)l, (m)|.-, for a function

m = (fi, f2» f3; 41, 42, 43) and combination of (2.2). Lemma 2.3, and Lemma 2.4
proves that

Q(p) = Sup{ae R'am = (fl’fZ’fS;)”1’12113)6S(Lp) With

3
Y A — alfi — a2 2 0).
i=1

It remains to show that it is sufficient, in the supremum, to consider step
functions that takes only two values. Assume that (fy, /2, f3:1;,12,13) € S(L,)
satisfies

3
Y lL(fi—a)lfi—alP"? 20,
i=1

and consider the function
3
F(iy,22,23) = Y, A(fi—a)lfi—al?™?
i=1

on D = {(4y, 4, 43)eR3: Z?zl}u,- =1 and Z,!:,iiff’ = 1}. By convexity
and since F(l,,l,,13) 20 we must have F(49,49,43) = F(l;,1,,13) 2 0 for
some point (49, 29,73) on the boundary of D. We conclude that precisely
one of the A”’s equals zero. Hence

2
Y Alfi—a)lfi—alP"? 20 for some (fy, fo;41,4,) € S(L,).
i=1

This proves (i).
We turn to the proof of (ii). Let m = (fi, f2: 41, 42) € S(L,). Then

1

L2 I, (m)= J(m(XFa)Im(x)—al"—zdx.
p dc “

0
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We define a functional F:S(L,) - R by
1

F(m) = f (m(x)—a)lm(x)—al? 2dx.

0

To complete the proof it is sufficient to show that

(@) F attains its suprema at some function 'my = (f}, f2: 4y, 42),
(b) if F attains its supremum at mg, then

1
Im(x)—alP~? = j|m(t)—a|”‘2m(t)dt-m(x)"'l ae.,
0

and finally,
() if m= (f},f2; A1, 42)€S(L,) satisfies (b), then

2

Y Afi—a)lfi—alP"2 20 iff alm|pX S 1.

i=1

That F attains its supremum (at some function) is proven in the same way
as in the proof of Lemma 2.1. Assume it is attained at me S(L,), and let
g€ S(L,) be arbitrary. Clearly m(x) = 0 a.e.. We have

F((m + tg)/|lm + tgll) — F(m)

1
_J(sn(m+tg —-a> m+tg —a
B0\ fim+ 11l lim+tg]]
0

1

= J{sgn (”:::Z” —a> |:|m—a|"“l +(p—1)m—al?~?sgn(m—a)-
0

1

p—1

—sgn(m—a)lm—a|"">dx

'(—mt Jm"“‘gdy+tg) +0(t2)] —sgn(m—-a)lm—al"”‘}dx
0

1

j(sgn ("::g” —a) —sgn(m—a)) m—alP~! +
[4]

1

m+tg _
+(p—1)tjsgn< —a)lm——al” 2sgn(m—a)-

m+ gl gn(m—a)
0

1

(g—m fmp"lgdy>dx+0(t2).
o
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This implies easily that

T m+tg _
0= lim [F <||m+t.qll) F(m)] t

1 1

= (p—l)J(lm—al”"2~ (Jlm—alp_zmdy)m”_‘)gdx, for every ge L,
0 0

Thus, if F attains its supremum at me S(L,), then a necessary condition
is that

1

(2.12) m(x)—al?P~?% = J|m(t)—a|”‘2m(t)dt~m(x)"_‘a.e.

0

Since it is enough to consider decreasing functions (2.12) shows that F attains
its supremum at some m = (fi, f2, f3; 41, 42, 43)€S(L,). But, by a previous
argument, we see that the supremum is in fact attained at some
mo = (f1, f2; 41, 42). Finally, by (2.12) it follows that

Ll moleu = 3 Afi—alfi—al?
p' oc aclMo)le=u = Z L(fi—allfi—a

i=1

2

2
Z liﬁ'lﬁ—aP_z“aAZ liU}—alp‘z

i=1 i=1

1
= J|mo(t)‘alp_2mo(f)dt(1 —allmoII;';Ii s
0

which is Z 0 if and only if allmo||5Z] < 1. This completes the proof of (ii).

Remark. The necessity of Lemma 2.4 follows from Lemma 1V.2.1 of [2],
but we think the proof here contributes to a better understanding.

3. Bounds and continuity of p.

As a first application of Theorem 2.1 we show that the closed unit ball
B, in L,([0, 1].dt) is optimal only if p = 2 or .

ProposiTiON 3.1. If 1 £ p+# 2 < oo, then the closed unit ball, B, in
L,([0, 1], dt) is not optimal. ’
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Proor. That B, is not optimal follows from Proposition 0.1. Let
1 <p#2<o0. By (21),

e(p) = sup {(f+gA(f.9)/1+A(f.9))},

1</
0<f, <1

where A(f.g) = (/P—1)/(1—-¢g")"*~ Y. Put f,=1+4pc and g, =1—¢,
where 0 < & < 1. Since (f+gA(f.9))/(1+A(f.g9)) > Liff A(f,.g) < (f—1)/(1—~g)
and since

lim A(f. g.) = lim ((1+3pe)’ — 1)/(1— (1 —¢)?)/?~
=0

=0

p\l/e=D _
it follows that o(p) > 1.

THEOREM 3.1. Let 1 < p < 0. Then

= e
1) o(p) 2 [l + (%l_) 2 p)]l/p/[l N <%i)1/(2 ,,):I

which tends to 2 as p tends to 1,
-1 -
(i) e(p) = 2(%“) Gp—=1)""" = y(p),

which tends to 2 as p tends to 0.
(iit)  If p > 2, then
2(p) S 1+[y(p)2y(p)—1)] P2

Proor. (i) follows immediately from Theorem 2.2 by inserting

— 1/(2-p)
x = <p~2~1) and y =1

To prove (ii) we consider the function (f;, f5;4,,4,) € S(L,) for which f; = ap
and f, = a/2. We have that

I(fi—aP™t Z dyla—fp" i
(1=(@/2P)a(p—)P~" Z (@pP—Di@/2P™ " iff
ab £ (22(p— 1"+ 2)/((p— 1P+ 2pP).
By Theorem 2.1 (i)

o(p) Z (22(p—1)P ™V +2)/((p— 1P~ +2p7) Z 2°(p— 177 V/3p?
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which implies that

-1
o(p) 2 2(%) Bp—1)""".

(iii) will follow from Theorem 2.1 (ii). Fix p > 2 and 1 < a < g(p). Then
suppose that m = (f,g:4,,%,)€ S(L,) satisfies (2.12) and a|lm||5=} < 1. Put

1

o= jlm(x)—al”zm(x)dx.

0

One readily see that 2a—1 < f < 1/ and |m(x)—a| > a— 1. Therefore

1 1
Va2 |Iml|5=7 = Jm(x)"“dx = é Jlm(x)—a|"‘2dx Z 2a—1)a—1y~2
0 (1]
so that (a—1)"~2 = 1/a(2a—1). Since a < g(p) was arbitrary we have
(e(p)—1)*" = 1/0(p)2e(p)—1).
Inserting the estimate (i) finishes the proof.
Finally, we prove the continuity of g.
THEOREM 3.2. ¢:[1, 00 [ = [1,2] is continuous.

ProoFr. Continuity at p = 1 follows from Theorem 3.1 (i) and Proposition
0.1 (ii), while the continuity for 1 < p < oo is immediate from Theorem 2.2.

RemMark. By Theorem 3.1 (ii), ¢ is discontinous at oo since g(o0) = 1 # 2
=lim,_ . o(p).

4. A characterization of Hilbert space.

THEOREM 4.1. Let E be real, strictly convex and 1-complemented in E**.
Then every two-dimensional bounded convex subset is optimal, iff E is isometric
to a Hilbert space.

Proor. The proof is a combination of Proposition 1.2 of [2] and the
following theorem of Kakutani [6]:

THEOREM. Let E be a real Banach space. If for each two-dimensional subspace
G of E, each xo€ ENG and every finite sequence (x;)i., € G, there exists
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Xo € G such that
%o —xill = llxo—xill, 1Sisn.
Then E is a Hilbert space.

Assume that every two-dimensional bounded convex subset of E is optimal,
and let G be a two-dimensional subspace. Suppose x,,x,,...,x,€G and that
X¢ € E\G. Then there exists, by Proposition 1.2 of [2],

Aemin{x;} S mincvx{x;} =cvx{x;} £EG
such that
ly —xill £ lIxo —x;ll, 1Sisn

By Kakutani’s theorem E is a Hilbert space.
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