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GENERALIZATIONS OF FURTWANGLER’S CRITERIA
FOR FERMAT'S LAST THEOREM
AND SOME RELATED RESULTS

K. INKERI

1. Introduction and history.

1. In a recent paper Azuhata [1] has proved among other things, the
following result.

THEOREM 1. If there exist relatively prime integers x, y, z such that
(1) Xy =0,

where | is an odd prime and n a positive integer, then a prime p satisfies
the congruence

) p'"!=1(modI*")

in each of the following four cases:

(1) plx, 14 x,

() plx—y, 14X x*—y?

(i)  plx*—yz, X xy+yz+zx,

(iv) pix?+yz, X x(y—z)(x*+yz).

For n=1 the cases (i) and (ii) state the well-known first and second
theorem of Furtwangler (iii) and (iv) Donnell’s two theorems (see [12] or [6]).
The primary proofs of all these theorems are based on Eisenstein’s reciprocity
law.

In (iii) the latter condition may be replaced by I ¥ x* — yz or [} x* + xy + y?
or also may be, according to Pollaczek [11], omitted. In his proof of Theorem 1
Azuhata applies some results (particularly Stickelberger’s relation)
of the theory of the cyclotomic field Q({,,) (m =1"), where {,, is a primitive
mth root of unity. Applying only the theory of the field Q(()), a similar theorem

Received April 8, 1987.



118 K. INKERI

has been proved in [6], in which, however, there is at the place (2)
the weaker congruence

3) p'~'=1(modI"*").

The treatment for the verification of this theorem implies new proofs for
Furtwingler’s (and also Donnell’s) theorems, the background of which is of
the slenderest possible.

Moriya [10] had already earlier proved the cases (i) and (ii) of the latter
result by making use of a rather deep result, namely of a generalization by
Hasse [2] of Eisenstein’s reciprocity law. Hellegouarch [3], [4] has made a
attempt to verify in a similar way the cases (i) and (ii) of Theorem 1, but

. (on account of an omission) only Moriya’s result has been attained. By
*the way, it could be a very interesting task to prove Theorem 1 by Hasse’s
result.

In order to derive some formulae concerning the so-called singular integers,
the theory of the field Q((,) has been appealed to in [7], as in [1]. As an
application a generalization of Furtwangler’s first theorem has been treated.
(The fact of taking a stand in advance that d in the condition (16) in [7]
could be divisible by I/, a presumption which is not true, has proved to be
an obstacle, preventing the author from seeing that case (i) of Theorem 1
follows from this condition on a few lines; see [1, Lemma 2].)

Making use of the ideas of the papers [6], [7] we will prove in Sections 7-11
some theorems and corollaries related to Theorem 1. The most general of
these results seems to be Theorem 4, which e.g. contains as a corollary
Theorem 1 and may give new cases in addition to the above four.

Particularly Furtwingler’s theorems have had many applications in the
research concerning Fermat’s last theorem. For instance, the very important
criteria of Wieferich and Mirimanoff follow from these theorems and it seems
that this way presupposes the most concise background for proving these
criteria (cf. [6] and also [7]).

2. Preliminaries.

2. We denote by r a positive primitive root modulo m = " and by r; the
smallest positive residue of ¥ modulo m. So ' = r;(mod m), 1 <r; <m — 1. Let

1 o] ,
4 Qi=;n‘(r"i—"i+1)s Q(U)=_ZOQ—N',

where @ = @(m)=1""1)(I—1) (Euler function) and ¢ = ({,,:{",) a substitution



GENERALIZATIONS OF FURTWANGLER'S CRITERIA ... 119

generating Gal(K/Q) (K = Q({,,)). It is easily seen that the coefficients g; are
nonnegative integers. Let D be the ring of algebraic integers in K.

Stickelberger’s well-known relation (see e.g. [8] or [13] is the source of the
results in question. Here the following related tool will be the basis of our
considerations.

LEMMA 1. Let a be an integer of D prime to .= 1—{,, such that the prime
ideal factors of the ideal (a) are of first degree. If o satisfies the condition

(5) (o) = A%,
where A is an ideal in D and a a positive rational integer, then
©) a2 = L1 pr

where the left-hand side is a symbolic power in the usual sense, [ a rational
integer and B belongs to D.

In [7] we have presented for this lemma the sketch of a proof. Now we
will detail it, keeping the treatment as elementary as possible. It seems that the
background of our results will thus become apparent.

We consider any prime ideal Q of first degree and different from (1). Let g
be the prime belonging to Q, g a primitive root mod g and g—1=mm’,
where m’ is an even integer. As usual, let ind 4 be defined by

gindh-ih(modq)’ 0§lndh§q_2a
when g4 h.

3. To begin with, we deduce some properties of Gauss sum (Lagrangian
resolvent)

q—1
(Cn)= 3 (indhph
h=1
where 7 is a primitive gth root of unity and { a mth root of unity (later
also primitive).
Clearly, (1,7) = —1. Assume now { # 1. We consider the product

(€ n) (Ct n = z Z cmdh+nndh htk

k=1 h=1

For fixed k,h can be replaced by jk, where j is determined by jk = h (mod q),
1= j<q—1. Here j runs with h through the numbers 1,2,...,9—1. Hence
the double sum may be written as

q—1 q-1

(7) Y {indj Y (le+ Dindkgk(j+1)
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(i) mt+1, that is, t = — 1 (mod m). Now the sum becomes

q-1 q-1 q-1
Z Cmdj( Z ,’k(j+l)__1>= Cind(q—l)q_ Z Cindj =gq,

i=1 k=0 j=1

since ind(g—1)=4(¢—1)=0(modm) and by { # 1,
q-1 -2
Z {indj = Z ['=0.
j=1 i=0

Thus we have shown that

@ ¢ m)=q and ({n)+0.

(i) mA t+1. Assume { is a primitive mth root of unity. Since (**! # 1
and therefore

q—1
Z C(Hr- 1)indk — 0,
k=1

the sum (7) can be written in the form

q-2 q-1
Z Cindj—(t+l)ind(j+l) Z C(t+1)indk(j+1)nk(j+l)_

j=1 k=1

Here the last sum is equal to ({'*',n) for each j in question, as k(j+1)
runs with k through the complete set of reduced residues (modgq). Con-
sequently, we have

®) &) = a (O L),
where
q—2
(10) a(l) = z {indj—(e+1)ind(j+1)
ji=1

is a number of D.
Taking in (9), t=1,2,...,i—1 =m—2 and multiplying these relations, we
obtain

(11) Eny =€ may ©)... 01 (),

because ({',n) # 0. Taking here i =m—1 and. observing (8), it follows that

(12) Em™ = a1 (0). . .am-2(0) = 0(0)

with w = w({) belonging to D.
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From (12), w({") = ({",n)™. Now, by (11), we find easily

- Enry\"
13 r a= = m
(13) 0 <(C',rr)> Y7,

where y belongs to D. If @ denotes the complex conjugate and ¥ = 1o,
then from (8) and (12) we see immediately that

(14) wd = o'+ = g™,

4. After these preliminary considerations we are now going to prove relation
(6). Since g = 1 (mod m), then all prime ideal factors of the principal ideal (q)
are of first degree and

o—1
(@=[190°,
i=0
where Q is any prime factor of (g).
There is a prime factor Q of (q) such that

(15) { =g ™ (modQ).

To see this, notice that
m—1 ,
gl —1= H (g™ —¢*)=0 (mod Q)
a=0

for any prime factor Q of (¢). If now Q|g™ —{(° then U a, as otherwise
g""'™ =1(mod Q) and also (mod gq),

contrary to the definition of g. Therefore, there is an integer i such that
ar’' = — 1 (mod m). Obviously, the prime Q7 satisfies the condition (15).

We show now that every «,({) in (12) is nondivisible by the prime Q
satisfying (15). Observing the presentation (10) of «,({) in terms of { we see
from (15) that

q_z N i M N q_l - .
BQ)=alg ™)=Y guinditeindi+D = Y ju(j+1)°(mod Q),
j=1 ji=1

j=

where u = q—1—m’, v = m'(t + 1). By binomial theorem the last sum becomes

c v < +h+u
Z h Z J ‘
h=0 j=1

Furthermore, here the last sum is congruent to —1 or 0 modulo g according
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as h+u, that is h—m', is divisible by g—1 or not. But
—(g-l)<—-m=h-m<vEmm-1)<qg-1

andsoq — 1|h — m'iff h = m'. Now we can write

() = (mi) + 0(mod Q),

since m' <v <gq.
S. From (12) and (14) we infer that

(W) = Qot@ot..+ap10°"! | < g <y

= U; =TI,

where ay, =1 by virtue of the above. In order to determine the other coeffi-
cients a; (i=1,...,¢—1) observe that "= w’y™ (see (13)). This implies that
only the conjugates of Q may be the prime factors of (y) and therefore

(16) ra;=a;_;(modm) (i=1,2,...,0—1).

Recall that r; is the smallest positive integer such that r'=r;(modm).
Clearly, ro = 1 = ay. By induction we conclude from (16) that always a; =r_,.
If, namely, a;_; =r_;,, then by (16), a;=r"'r "' =r " =r_;(mod m) and
hence a; =r_;, as both these numbers belong to the interval (1,m—1). Thus
we have shown that

17 (w)=QR® with R(@)=ro+r_o+...4+r_,, 097 L.

Raising the relations (13), (14), and (17) to the symbolic ¢'(i=1,...,0—1)
power we conclude that every conjugate of Q and also of w satisfies the
relations of the same forms. Furthermore, we see that R(c) is independent of g
and so the same properties are valid for every prime ideal Q(+(4)) of first
degree.

For A in (5) we can write 4 =0Q,0,..., where every Q; denotes a prime
ideal of first degree (and different from (4)). Raising (5) to the R(g)
power, yields, by (17),

OCR(”) = E(wl wz e )a’

where ¢ is a unit in D and every w = w; satisfies the conditions (13) and (14).
We wish to specify ¢. Raising the above equation to the 1+ ¢ and observing
that R(c)(1+0%) may be replaced by mZ:"gla", we find

N(a)" = €8(q192--- )"

where N () is the norm of o in K. From this it can be seen that &£ is rational
and positive. So this unit must be necessarily unity. Also [¢”| =1, i.e. the
absolute values of all the conjugates of ¢ are equal to 1. Then it follows
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immediately (see e.g. [5, Satz 48]) that ¢ = £{° Therefore
aR(a) =+ Ceéa

with § = w,w,... . Finally, raising to the r —o power and observing (13), we
obtain

ame) = (o,

and, further, taking the mth root of each side, we obtain (6). This completes
the proof of Lemma 1.

3. Theorems and their proofs.

6. We still introduce some lemmas for later use. Let

u'+o!

utv

Q,v) = with u+v+#0, (u,v)=1.

It is well-known (cf. e.g. [9, Sitze 1042, 1043]) that [> ¥ Q(u,v) and
ged(u + v,Q(u,v) = | or 1 according as u' + v' is divisible by [ or not.
By these facts we can easily prove the following.

LEMMA 2. Let

Qou,v) = u+v, Qnu,v)=Qu" ", o) (mz=1).

If 1 X u+v, then the numbers Q,,(u,v) (m = 0, 1,...) are pairwise relatively prime
integers, and if llu+v, then the same holds for the numbers

1
7 Qm(u’ U)-

In the latter case 1> X Q,u,v) for m = 1,2,... and so, if I°|ju""+1", then
g Zn+1and I "u+o.

Proor. By the above this holds for m = 0, 1. Suppose that Lemma 2 has
been verified for m =0,1,..,n—1 (n > 1).

Now ("' +v""", Q,(u,v)) equals 1 or I according as [ 4 u+v or lju+uv,
and 1> ¥ Q, also by virtue of the above. But

n—1
ul' " o = [ Qmlu,v) .
0

m=

and we may conclude that respectively (Q,,Q) =1 or [ for 0Ss<t=n
Lema 2 follows immediately.
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LEMMA 3. If an integer a belonging to the exponent f modulo I (s = 1)
satifies the condition
a’ = 1(mod I**1),
then f|l—1 and a belongs to f also modulo I' for t = 1,2,...,s+1.

Proor. Evidently, f|I°"!(I—1) and a belongs to the exponent f modulo
I*1If it were f = le, then

a’—1=(@=1)@" " V+... +a+1).

Here the product is divisible by F*!, but the latter factor only by I There-
for a® = 1 (mod F), contrary to the assumption. Thus I 4 f and so f]I—1.

If a belongs to f; modulo [, then f;|f and f = hf,, where h is not divisible
by I. Now

=L =ahth-D4  +1=h#0(modl)
ah—1 ’

which implies that a/+ = 1 (mod I). Hence f; = f and the result follows readily.

LEMMA 4. Let P be a prime ideal factor of (p), where p is a prime # l. If
(18) {* = o (mod P),
where | X d and « is a number in K prime to P, then
(19) I™*"N(P)—1, thatis p/ =1(modI™*")
and f, the degree of P, satisfies the condition f|l—1.

Proor. Assume [||[N(P)—1 (so a 2 n). Let b = min(a, m). Raising (18) to
the (N(P)—1)I"® power we arrive by Fermat’s theorem at

(PPN =) = g(NP)=DI"™" = | (mod P).

Since p # I, I" must divide the exponent on the left. But [ ¥ d and therefore
P*"|N(P) — 1 so that a 2 b + n and b = m. Consequently. (19) is valid, which
completes the proof by the preceding lemma (cf. [5, Satz 122]).

7. As a beginning we consider the Diophantine equation

u +o"

T T & lerm,
ul™

(20) Q,u,v)=
where [ is an odd prime, m and n positive integers and ¢ an integer 2 0.
(So m has a new meaning).

Assume that the nonzero integers u,v,w with u+v #0, (u,0,w) =1,
I X w satisfy this equation.
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Now we may suppose that | 4 (u,r). Then e =0 or 1 and (u,v) = (u, w)
= (v,w) = 1. From now on, let { be a primitive ["th root of unity. (Other
notations are as before.)

Equation (20) may be put in the form

o—1

(21) [T @+C"e) = lew" (@ = " 1(I—1)).
h=0

(i) e =0. It is easy to see that the factors on the left are pairwise
relatively prime. Therefore,

(u+iry= A"

where A4 is an ideal of D. Moreover, the prime ideal factors of 4 are of first

degree: if, namely, P|A, then P*|(u+("r) (i=1,...,0—1) and so these P’s

are distinct ideals. (An elementary verification of this fact: all the prime factors

of the expression (20) are of the form kI"+1; cf. e.g. [6, Lemma IV, p. 27].)
Lemma 1 shows now that

(22) (u+ L) = fag!”
where o belongs to D and is prime to [.

We look for the residue of the exponent ¢ modulo / in terms of the numbers
u,r,and r. Set b = —r(u+0r)" ", where (u+v)u+r) ! = 1 (mod!). Then

Su+le)= (1=bA)u+r—iv) = u+r—(c+bu+r))i
= u+r(mod A%).

Since N(4) = I, « is congruent to a rational integer modulo %, and so is o
modulo 42, Multiply (22) by

Cme) — L.'hQ(r).

The relation obtained implies
(et = ¢(mod A?)

where ¢ is an integer. Since now Alc—1 and hence l|c—1, this congruence
yields
a= —bQ(r) = v(u+r) 'Q(r)(modl).

Here Q(r) = I""(r¢+! —r) % O(mod /) for n > | always and also for n =1
if r is chosen as a primitive root of /2.
From (22) it follows that

(23) (u+§l.)(l~0*)Q(a) = "dﬂl""

where d = 2r(u+0r)” 'Q(r)(mod ) and B is in K.
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(ii) e = 1. We see easily that now | 4 ur and all the factors of the product
in (21) are divisible by 4. Thus

¢—1 u+€".l‘ n
l_[ <1_Crr)= (w)",

h=0

where the principal ideals on the left-hand side are pairwise relatively prime
and prime to (4). As in the previous case we conclude that

u+ ¢ -
(1~c)=A“

where all the prime ideal factors of the ideal A are of first degree. Again
we deduce from Lemma 1 that

u+CU Q(O’)_ -

where a is an integer and o belongs to D. Clearly, l|lu+¢ so that
A u+Cr) = 2" u+r)—r = —v(mod A?)
for I" > 3. Now the relation (24) implies
{4 = 1(mod 4%),
whence it follows that a must be divisible by I. Since
(=0 = =g,

we obtain from (24) also now a relation of the form (23) where, however, this
time d = 2a+Q(r) = Q(r)(mod!).

8. We are now going to prove the following four theorems (and also
Theorem 1).

THeoreM 2. If the nonzero integers u,v,w satisfy the equation (20) with
u+r #0, (u,r,w)=1, X w, I"> 3, then for a prime p

(25) p'~' = 1(modI™*")
in the following two cases

(i) plv, X v

(i) plud—c? 14 u?—r2

Proor. Clearly, (u,v) =1 and ¢ = 0 or 1 in both cases. We have shown
above that

(26) (u+ ey =e0e) = [dpr,
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where

_ 20(u+v)"'Q(r)(mod!l) ife=0
| Q(r)(mod1) ife=1
and Q(r) = (r**! — r)l™" # Q(mod I).

(i) Both for e=0 and e=1 it is obvious that [td. Since plv, we
obtain from (26) the congruence of the form (18). It is easily seen that a may
be assumed prime to the ideal P. The result (25) follows at once from Lemma 4.

(ii) Now I u+rv, e =0 and u+{r = u(1 £{)(mod p). Here (u(1£),p) = (1),
since 1—{|l, 1+ is a unit in D and plu? —t?, (u,v) = 1. As

(1x0)' - = ¢,
we have from (26) for any prime ideal factor P of (p) again
(9 =4 = 4I"(mod P),
where a is a number in K prime to P, d = 2v(u+1)” 'Q(r)(mod ). But
w+e)1 —2v+r) Y)y=u-~r % 0(modl)
so that [ 4 Q(r)—d. Again, by Lemma 4, (25) holds as desired.
The following is actually a corollary of Theorem 2 (cf. [1, Theorem 1]).

THEOREM 3. If the integers x, y, z satisfy the equation
x4y 42" =0

with (x,y,z) = 1, then for a prime p congruence (25) is valid in both of the cases
(1) plx, 14 x;
(i)  plx2—y% 14 x2—y

Proor. We may assume that [ > 3, since Fermat’s last theorem is true for
I =3. It is evident that the trivial solutions can be omitted, in other
words, we may assume that xyz = Q.

Clearly, x+y # 0 (x,y) = 1 and (cf. the facts associated with Lemma 2)

Q) = 1 or LK Q,

Hence
Q,(x,y) = Iz,

where z,|z,14 z,, e =0 or 1, (x,y,z) = 1. Now the result follows in both
cases immediately from the preceding theorem.
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Naturally Theorem 3 implies the validity of the parts (i) and (ii) of
Theorem 1.

9. We are going to prove the following general theorem, which contains
Theorem 1 as an easy consequence.

THEOREM 4. Let x,y,z be nonzero integers such that
(ay "4yt =0, (x,y,z)=1,
and let u, vy, w; for i = 1,2,..,k be these integers in some order. Denote by p

a prime not equal to l. If there is a product

T =
i

i+ Chey (L4 hyk; #0),

=

1

which is prime to p and congruent to a rational (or, more generally, to a real)
number (mod p) and if

k
(27) d=Y hkd; # 0(mod I)
i=1
with
_[=2ew7 Q@) for 14 wiww ' = 1(modl))
@ “= {Q(r) for Iw,

then congruence (2) holds.

Proor. The numbers u = u;, v = r; satisfy (20), where now w|w; and m = n.
Since (h for |4 h; is a primitive I"th root of unity, we have by our
presentation in section 7 and in the proof of Theorem 2

(4 Ch Y1 =01000) = Cheo

Here «; is a number in K and d; is determined modulo [ by (28), as
u;+v;+w; = 0(mod!l) because of (1) and so (u;+v;)"! = —w; '(modl).
Applying the above relation for i = 1,...,k to = we obtain

q1=0*)Q(0) = (—dpr,

where f is a number in K prime to p and d is determined by (27). But
nt'=7") = 1(mod p) by assumption and therefore this equation gives for any
prime ideal factor P of (p)

¢4 = B"(mod P).

Now the validity of congruence (2) follows, once more, from Lemma 4. The
proof is complete.
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As a consequence we wish to verify Theorem 1. At once it is seen that in
all four cases xyz #0.

(i) Choose m = y+{x. Since p|x, p4 yz, and n = y(modp) so that
(r,p) =(1). Now d =2xz"'Q(r) or d = —Q(r)(mod!) according as |tz or
l|z. Thus [ } d, that is (27) is valid.

(ii) Let © = (y+{x)(x+{y)~'. From p|x —y it follows that y+{x = x+{y
= x(1+4{)(mod p), where 1+ is a unit and p 4 x. So = is prime to p and
7 = 1(mod p). Furthermore, I z, as | ¥ x+y. Hence

d=2xz"'Q(r)—2yz7'Q(r) = 2z7 ' (x —y)Q(r) # O(mod ).

(i) Without loss of generality we may assume that I|z if {|yz. Let now
m = (y+{x)(x+{z)"!. Noting p|x*>—yz and (1), we find that p 4 xyz and
hence (y+{x,p) = (x+{z,p) = (1). Moreover n = y/x(mod p). To see that also
the condition (27) holds, we firstly consider the case /A yz. Then
= —2(zy ' —xz"1)Q(r)(mod!). But

yz(zy ' =xz"') = 22 —xy = x? + xy+y* # O(mod /).

Since x+y+z = 0(mod!). (The last step is true according to Pollaczek [11];
notice also xy+yz+zx = — (x2 —yz)(mod[).) At any rate | £ d.

If secondly /|yz and so |z because of our assumption made at the beginning,
then

= —Q(r)(1+2zy~") = —Q(r) # O(mod /).
(iv) As before we may assume that /|z if /|yz. Choose
m=(x+{2)(y+ix)y+L2)7 "

Noting that p|x®>+yz, we see that p4 xyz and = is prime to p. Also
(x+Lz)(y +{x) = x(y +{*z)(mod p) so that & = x(mod p).
By assumption, [ £ x. If | X z, then also [ 4 y. Then

d= (2zy ' +2xz7 ' —4zx"1)Q(r)(mod ).
Using the congruence x+y+z = O0(mod /) we may easily infer that
xyzd = 2(y —z)(x2 + yz)Q(r)(mod ]).

By assumption we notice that d % O(mod ).
If I}z, then

= —(—2zy '+ 1+4zx"1)Q(r) = —Q(r) # O(mod ).

We have seen that in all these four cases the assumptions of Theorem 4
hold so that the validity of Theorem 1 follows.
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4. Applications.
10. As an aplication of Theorem | we present the following generalization of
a result of Vandiver (see [9, Satz 1046], or [12]) and one of Inkeri [6].
THEOREM 5. Let x,y, z be integers satisfying the conditions (1). Then
29) x'=x, y'=y, z'=z(modP").

Proor. If xyz =0, then x,y,z are in some order equal to the numbers
0,1, —1 and therefore the congruences (29) are trivially true. We can thus
assume that xyz # 0, and also, without loss of generality, that | 4 xy. It follows
that y+z # 0, [ £ y" +z"". Therefore, by Lemma 2,

(30) o(y,z)=al,yl+z! = b,

where alx,b|x"""" and y+z=b#*0(modl), a"=b'"'=1(modl) because
of Fermat’s theorem.

From the last congruence we obtain further ¢ = 1(mod/). On the other
hand, since a|x and I £ x,

a' = a(mod I*")
an account of Theorem 1, (i).
(@—1)(Q(a, —1)—1) = 0(mod I>").

Here the quotient is divisible by I, whence a = 1(mod*") and further (e.g.
by Lemma 2)

a" = 1(mod ")
This congruence yields in connection with (30)
(31) V' + 2=y + z(mod I*").

In the same way (or by symmetry) one obtains

(32) x!'+z' = x+z(mod I*")

and also, if 1 £ z,
x'+y' = x+y(mod I*").

From these three congruences (29) follows immediately.
If /|z, only congruences (31) and (32) are at our disposal. Adding up these
congruences, we have

x' 4+ y' 422" = x+y+2z(mod I*").
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Let I" be the highest power of ! dividing z. By Lemma 2 it follows from
equation (1)’ that
M (x4, X+ YY)

But hl"—n 2 n(l—1)+1—n 2 2 and hence h = 2 by virtue of the last con-
gruence. Therefore, hi"—n 2 n(2l—3)+1 > 3n and from that congruence it
still follows that

z' = z(mod I*"),

i.e., I°"|z. Finally, by subtracting this congruence from (31) and (32) we have
the other conditions of (29). The proof is ready.

THEOREM 6. Let x,y,z be integers satisfying (1). If l|x —y, then

(33) x = y(mod *"), 2'"! = I(mod I*").
Proor. By the preceding theorem

29y x"=x,y" =y, zI" = z(mod I>").

Hence

x"—yI" = x — y(mod I*")
or
(=" = y")/(x —y)— 1) = O(mod I*").

But here the quotient is divisible by [ and so the first congruence in (33) is
valid.

To prove the latter assertion in (33), we note firstly, by (1) and (29,
x+y= —z(mod [3"). Since [3"|x —y, it follows from this and Lemma 2 that

2x = —z(mod I*"), x" = y"mod I*").
These congruences combining with (1) give
'xI = —2" 2xI" = —ZI"(mod I*"),
whence
2" = 2(mod I*").
For brevity let Q = (I"—1)/(I—1). We have
-1 = Q-1 =1)QRU=-D@-Dyp 4201 41).

Since here the latter factor is congruent to Q modulo / and therefore non-
divisible by I, we infer by virtue of the above congruence that also the latter
assertion in (33) is valid. This finishes the proof.
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11. As a consequence of Theorem 1 we have the following corollary, which
is a simple generalization of a well-known result concerning the case n = 1.

CoroLLARY 1. If (1) has a solution x,y,z in integers such that none of the
numbers x, y, z is divisible (a) by 21, (b) by 3l, then

(34) 25t =1 or 37! = 1(mod "),
respectively.

Proor. Clearly, xyz # 0. Without loss of generality we may also assume in
both of the cases that (x,y,z) = 1.

(a) One of the numbers x,y,z is even and according to the assumption
this number is not divisible by I. From Theorem 1 (i) the validity of the first
congruence in (34) now follows.

(b) If one of x,y,z is divisible by 3, then the assertion follows as in the
preceding case.

If none of x,y,z is divisible by 3, then x? = y? = z? = I(mod 3) so that
each of the differences x2—y?, x2—z2%, and y?—z? is divisible by 3. All these
differences may not be divisible by [, for otherwise the congruences
x?=y?=z¥mod!) and x+y = —z(mod!) would give 3x? = O(modl),
which is impossible, since for | = 3 the equation (1) has no solution with
xyz # 0. This completes the proof.

We consider now the equation
(35) X"+ Y427 =0

COROLLARY 2. If the integers x,y,z satisfy equation (35) with (x,y,z) =1
and none of the numbers x, y, x*> —y?* is divisible (a) by 21, (b) by 3I, then

(36) 27! = 1(mod I™*"), 3'"!' = l(modI™*"),
respectively.

Proor. We see at once that one of the numbers x,y,z is divisible by 2
and one by 3. In both of the cases this number is, according to the assump-
tions, nondivisible by I. Now the result follows directly from Theorem 3.

The following analogous result to this corollary holds for equation (20).

CoROLLARY 3. Under the same conditions as in Theorem 2 and under the
additional assumption that none of the numbers u, v and u*> — v* is divisible
(a) by 21, (b) by 31, each of the congruences (36), respectively is valid.

For equation (35) also the case I/|x —y is a matter of considerable interest.

Tueorem 7. If the nonzero integers x,y,z satisfy (35) with l|x—y and
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(x,y,z) =1, then
(37 x = y(mod [™*"), 2!"1 = 1(mod M),

where M = max(4m,m+n) for n 2 m and M = max(@dn,m+1) for n = m. If
2|xy, then M = m+n can be taken.

ProoF. It follows from the assumptions that [ 4 xyz. Theorem 3 (i) shows
that

(38) x'"l=1, y"!'=1(modIm*").

Hence

"

xI'=x, y" = y(modI"*"),

from which it follows in the same way as in the proof of Theorem 6 that the
first congruence in (37) is true.

The case 2|xy is clear from the above. The same result is valid also for
2|z if n = m, as we see when writing (35) in the form

xln + (yln—m)lm +Zlm — 0

and applying again Theorem 3 (i).
For n 2 m equation (35) takes also the form

eI+ =0,

from which we find by Theorem 6 that (37) holds for M = 4m.
Now we can be restricted to the case n = m. The first congruence in (37)
yields

x"" = y"(mod [™*?").
Consequently, (35) implies
2x" = — 2" (mod I"*2").
Raising this to the /| —1 power gives
2071 = Z"=D(mod [m+2"),

since by (38) x"=1) = I(mod [™*?"). Using Euler’s theorem to eliminate z,
we arrive at the following comparatively weak result

271 = 1(mod ["*1).
We write (35) still in the form

x4yl + (") =0.
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Remembering that I|x —y we may apply Theorem 6 to give
27! = 1(mod I*").

Combining this with the preceding congruence yields the final result required
forn = m.

In conclusion we state without any proof the following result, which is an
improvement on our theorem presented in [6]. Making use of Theorem 1
this result can be proved in the same way as we have done in the above-
mentioned paper (cf. pp. 32-37).

THEOREM 8. If equation (1) is solvable in integers such that | X xyz, then
p'~! = 1(mod I*") in the following cases:

(@) p=23,

(b) p=S5andl#1,9(mod 20),

() p=5,7and 2'"! % 1(mod I*"),

(d) p=11and 2'"! % 1(mod I*") and in addition | = *2(mod 5).

Evidently, Corollary 1 implies the case (a).

ReMARK. Some generalizations in. which the numbers of the ring of the
algebraic integers of the cyclotomic field Q({;) or Q({») have been substituted
for the rational integers as the values of x, y,z in the correponding Fermat’s
eqution have been presented in papers [6] and [1]. Unfortunately, the factor p
for instance in the conditions (i)-(iv) of Theorem 1 remains however, un-
changed as a rational prime. Is it possible in this context to replace p by any
prime ideal factor P of the ideal (p)? We are waiting for a solution to this
really interesting question.
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