MATH. SCAND. 63 (1988). 109-116

ON REGULAR FROBENIUS BASES

ERNST S. SELMER

1. Definition of regular bases.

In a recent paper [6] in Math. Scand., Marstrander considers the Frobenius
number g(4,) of a basis of k+ 1 positive integers

A, = {ag,ay,a3,..,a4,}; ag > 1, (ag,a,) = 1.

He does not comment the fact that the condition (ag,a;) =1 is really a
restriction for k > 2. It is well-known in Frobenius theory (cf. Rédseth [7])
that we may remove a common factor of all but one of the basis elements,
but not for a smaller number of elements.

If necessary by reindexing a,,as,...,a,, Marstrander gives A4, in ordered
form by

a;=ab;—agc, i=12,..,k+1 (ag,;,=0)
(1.1) 1 =b,<by< " <b,<byy =240
0=C1<CZ<"'<Ck<Ck+1=al.

To obtain this, some dependent bases are excluded (but there may still be
dependencies in a basis in ordered form). We put

Bk={1’b2"“9bk+l}a Chz{O,Cz,...,C,‘+l}.

Many of Marstrander’s results bear a certain resemblance to earlier results
of Hofmeister. In most cases, however, this resemblance is mainly formal. In
one instance (Remark to Theorem 3), Marstrander makes a direct reference to
results in Hofmeister’s lecture notes [3]. These results have later been published
in [4] (not easily accessible). Marstrander’s reference is to Theorem 5 of [4].

For later use, we must quote some more definitions from Marstrander.
Since b, = 1, any positive integer may be expressed by the basis {1, b,, ..., b;},
J£k+1,as n=Yixb; with x; 2 0 (in many ways). Following Hofmeister,
we denote the (unique) regular representation by n = Yieb, We then
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introduce
R(n, j) = Y leici, R(n)=R(nk)
M(n, j) = max {} 4§ xc; | n = Y4 x;b;}.
Marstrander now defines the (ordered) basis 4, to be regular if
(1.2) R(n,k+1)= M(n,k+1), VneN.
This property clearly depends on the choice of the (coprime) basis elements
ao and a,.
The definition (1.2) may seem artificial, but it turns out to be highly
useful. A good illustration of its usefulness is Marstrander’s striking Lemma 2.
Incidentally, this Lemma also has a function which is not pointed out by

Marstrander. The condition (1.2) is apparently “infinite”, since it shall hold for
all natural numbers n. However, regularity is equivalent to the condition

k k
(13) l = Ze,—b,-=> tl = Zeia,', I = 1, 2,...,(10_‘1,
1 1

where the minimal system {¢,} can always be determined by a “finite work”.

2. On the conditions for regularity.

Marstrander’s main use of regular bases lies in the determination of the
Frobenius number g(A4,). Our interest has been a study of regular bases as
such, regardless of applications. We shall treat some aspects which were not
considered by Marstrander, but first quote one more result from his paper:
Let {x) denote the smallest integer = x, and put

bit,
b;

(2.1) bi+l = q,-b,~—s,~, q,' =< >, hence 0 é S,' <b,'.

Let further j < k+1, and assume that
R(n, j) = M(n, j), VYneN
(always satisfied for j = 2). Then Marstrander’s Lemma 4 says that
R(n, j+1)= M(n, j+1), VneN
if and only if
22) Cj+1 Z 4;¢;—RGs;).

If this condition is satisfied for all j = 2,3,...,k, we get (1.2) and hence
regularity. We shall then call A, completely regular (our term).
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For later use, let us write out explicitly the conditions (2.2) for j = 2 and
j=3:

b
) azae=2 e
2

(note that R(s,) = Osince s, < b, and ¢; = 0),

(2.4) €4 Z q3¢3—R(s3) = < b3> l: ]

(Since b3 > S3 = el +ezb2, Wlth €y = [83/b2]).
We make three observations regarding the conditions (2.2):

(i) Analysing Marstrander’s proof of his Lemma 4, it is easily seen that
the condition (2.2) is necessary for regularity of 4, when j =k, and for all
Jj < k such that

(since then all representations of bj,, +s; by {1,b,,...,b;,,} are the same as

by the full basis B,).

(i) Since s; < b;, we can replace R(s;) of (2.2) by R(s;, j—1), or just as
well by R(s;, j):

(2.5) cj+l g qjCj_R(Sj, _]).

It is easily seen that this condition is equivalent to (2.2), even if s; < b; is
deleted in (2.1):

(2.6) bii1 = qibi—s;, 520

(the remainder s; —[s;/b;]b; then corresponds to the s; of (2.1)). — This obser-
vation, though perhaps trivial, will be very useful in section 4 below.

(iii) For k = 2, the one condition (2.3) is necessary and sufficient for
regularity of A,. Already for k = 3, there are regular bases A; which satisfy
(2.4) but not (2.3), and which are consequently not completely regular. A simple
example is given by
2.7) A; = {4,5,2,3}, By={1,2,3,4}, C;=1{0,23,5}.

The regularity of A, is easily established from (1.3). By Marstrander’s Lemma 4,

there must exist an neN such that R(n,3) < M(n,3). We can use
n =4 =by+b, = 2b,, where R(n,3) =c3 =3, M(n,3) = 2¢c, = 4.
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3. The case k = 2.

In the simplest case k = 2, we have
Az = {ag,ay,a,}, a; = ab,—apc,
Bz = {1, bz,ao}, C2 = {O,Cz,al}.

As already noted, A, is then regular if and only if the condition (2.3) is
satisfied :

G.1) a, 2 <%‘i> cs.

In this case, we shall see that regularity corresponds to a well-known property
in Frobenius theory.
The Frobenius number g(4,) was determined by Rodseth [7]. He puts

a, = a,50 (mod ay), 0 = s, < ag; hence sy = b,,

and then performs the Euclidean division algorithm with negative remainders
on the ratio a,:s, The algorithm stops after a certain number v of division
steps, determined by a condition of the form R,,, = 0 < R,. In particular,

ao
Ro=c¢3, R, = E‘> €2 — 4y,
2

and a comparison with (3.1) shows that A, is regular just when v =0 in
Rdédseth’s algorithm.

In this case, Rodseth’s general formula for g(4,) shows that
(3.2) g(Ay) = —ao + ay(by — 1) + ay(q, — 1) — min {a;s,,a,},

where ay = b; = q,b, — s, of (2.1).

The same result, under a condition equivalent to (3.1), was already given
by Hofmeister [2], as a special case of a rather complicated theorem. A direct
and simple proof of (3.2) was presented by the author [8] (before Rddseth [7]
appeared).

4. Regular partial bases.
If x <k, and A, is regular, we may ask under what conditions a
“partial basis”
A, = {ao,ay,....a,}

is also regular. Even if all conditions (2.2) should be satisfied, the question
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is far from trivial, since now
B, ={1,b,,...,b,a5}, C,=1{0,c5,...cx,a;}

are not partial bases of B, and C,.
We can, however, prove the following

THEOREM 1. Let k = 3, and 2 < k < k. If A, satisfies the conditions
R(n,k) = M(n,x), VneN
Civ1 2 qjc;—R(Gs;), j=rk+1,..,k

(hence A, regular), then the partial basis A, is regular. In particular, all A,
are regular if A, is completely regular.

It will clearly suffice to prove Theorem 1 first for k = k — 1, and then use this
result repeatedly. We thus assume that
@.1) R(n,k—1)= M(n,k—1), VneN

{Ck 2 gy 1Ck-1 —R(sp—1,k—1)

4.2
(82) Ck+1 Z qick—R(s, k—1).

Since s,_, < b, and s, < b,, we may insert a second argument k—1 in the
R-functions. From

by = qu-1bi-1 =Si-1, brr1 = Qb —5p
we get
bivs = @G- 1bk—1 — (@Si-1 +51)
for use in the “reduced” basis
B, = By_; = {1,by,...by_1,bys1 = ao}.

Departing from (4.1), and using the condition (2.2) in the form (2.5-2.6), we
see that 4, = A,_, is regular if and only if

Ci+1 = Q- 1Ck—1 — R(qiSk-1 +5i, k—1).
The two inequalities (4.2) give
Civ1 2 Qidi-1Ck-1 — {QiR (-1, k= 1)+ R(s,, k= 1)},
so we are through if we can show that
R(quSk—1+5, k—1) 2 qR(s5 -1, k— 1)+ R(s, k—1).

And this is an immediate consequence of (4.1) and Marstrander’s Lemma 3.
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The many 2 in the proof indicate that all the conditions of Theorem 1 are
not always necessary. As an example in the simplest case k = 3, k = 2,
consider the basis A3 of (2.7). Even if this fails to satisfy (2.3), the partial
basis

A, ={4,52}, with B, ={1,2,4}, C, =1{0,2,5},

satisfies (3.1) and is thus regular.

It may be useful with one remark on the repeated use of the above proof,
hence the next step if k < k—1: In the “reduced” basis B, ., we must now
form

ao =by = qx-1by—1 —si—1, 0=s5,_; <b_y,
and utilize the condition
a; = Cx 2 i—1Ck-1 — R(sk- 1)

This is not the same as the original condition (2.2) for j = k— 1 in Theorem 1.
However, it follows from observation (i) of section 2 that this new condition
must also be satisfied, since we have already shown that 4, _, is regular.

5. The connection with pleasant h-bases.

We assume knowledge of the “postage stamp problem”, see for instance [9].
A comprehensive treatment of this problem is contained in the author’s
research monograph [10] (freely available on request).

A “stamp” basis (an h-basis)

dkz{ao,al,...,ak}, 1=a0<a1<"'<ak,

is pleasant if and only if the regular representation n = ) §e;; has a minimal
coefficient sum among all possible representations n = Z'(‘,xia,., for all natural
numbers n. Then the h-range n,(,) equals the regular h-range g,(«/,), which is
easily determined (see for instance [5]).

For an arbitrary (not necessarily pleasant) .«Z,, we form the “complementary
basis”

(5.1) ‘ak= {Otk—ak_l,ot,,—-ak_z,...,otk—al,otk—-l,ak},
and consider this as a Frobenius basis. By Meures’ theorem, we then have
(5.2) nl) = hoy —g(L) — 1, hZh,.

The bound h, is usually difficult to determine. When &/, is pleasant, however,
both h, and n,(2/,) are known, and the Frobenius number g(Z,) then follows
directly from (5.2).
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It is natural to ask when &7, of (5.1) can be organized as a regular basis.
We now have two coprime elements, o, — 1 and a,, which can be used as a,
and a, (in any order). The most interesting choice turns out to be ay, = o,
a, = o — 1. It is easily seen that this leads to the ordered form (1.1):

(5.3) {Ak = {“k,ak“l,ak—“hak—az,---,ak—“u—l}

Bk::"dk; Ci=bi'_1,i=l,2,...,k+l.
The regularity condition (1.2) says that for all representations n = Y 4*'xb,,
the regular one should give the maximal

k+1 k+1 k+1

Y xici= ) xibi—1)=n— Y x.
1

1 1
In other words, the coefficient sum must be minimal for the regular re-
presentation of any n by B, = «/,. We have thus proved
THEOREM 2. A, of (5.3) regular <> o/, pleasant.

This has the very interesting consequence that we may consider regularity
of Frobenius bases as a generalization of pleasantness for h-bases. Properties
in the former case then carry over into similar properties in the latter.

As an example, let us study the analogue of Marstrander’s condition (2.2)
in the case (5.3). Now b, = a;_,, ¢; = b;— 1, and a straightforward calculation
gives the following result: Put

o; iz
°‘j=< s >°‘j-1 - Z €;;,
Aj—y 0
where the sum is regular by /;_,. The condition (2.2) then takes the form
. i-2
< % >> Y e
Aj—1 0

Assuming o ;_, pleasant, this is the necessary and sufficient condition for </ ;
to be pleasant.

This is a well-known result of Djawadi [1] in the theory of h-bases.

As another example, Theorem 1 above corresponds to an earlier result by
theauthor [11]:Ifk 2 3,1 £ k £ k—2,and o/;ispleasantfori = k,k+1,...,k,
then the “sub-basis”

AW = {10, ..,0,0)

is also pleasant.
Conversely, however, we can not always draw conclusions from pleasant
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h-bases to regular Frobenius bases. As an example, Djawadi [1] showed that
if /4 is pleasant, then sois &, = {1, a;, a,}, and Zollner [ 12] could replace .«/ ;
by &, in this statement. Hence, the condition (2.3) is necessary for regularity
of A4, in (5.3). On the other hand, we gave in (2.7) an example of a regular
Frobenius basis which does not satisfy (2.3).

We mentioned above the alternative choice ay = a; — 1, a;, = o, in .7, of
(5.1). The resulting ordered basis A4, is easily constructed, in analogy with
(5.3). However, nothing as interesting as Theorem 2 comes out of this choice.
We only mention that if the resulting A4, is completely regular, it is
“highly” dependent, and reduces to one of the two cases

{oe—o— 1,04 —1} or {o—o_y, o)

(since o, —a, _, divides all the other basis elements of «7,). In either case, the
determination of g(A4,) is of course trivial.
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