MATH. SCAND. 63 (1988) 87-108

MULTIPLICITIES OF SOLUTIONS TO
SOME ENUMERATIVE CONTACT PROBLEMS

TRYGVE JOHNSEN

Abstract.

Let G be a scheme parametrizing a family of hypersurfaces of degree d in P¥, N 2 2.
We define and study a subscheme of G parametrizing those hypersurfaces that touch fixed
nonsingular curves Cy,..., C, simultaneously. We give equations cutting out this subscheme in
some cases, and we show how such equations can in principle be found in any case.

When k = dim G, we expect the subscheme to have isolated points. We show how the equations
determine the multiplicities of these isolated solutions to the contact problem. Thereby we find
the local contributions to the total number of isolated solutions, as determined e.g. by Fulton’s
refined intersection products.

Instead of working with conormal varieties, we use the bundles of principal parts of first
order associated to the divisors in question. Hence a hypersurface with a singularity at a point
of the curve C is said to touch C using our set-up.

We give some results, some of which are essentially well-known already. At last we use our
results to study particular examples of plane curves, and of planes touching space curves.

1. Introduction.

In enumerative geometry a typical problem is to find how many varieties
in a given p-parameter family that are simultaneously touching p fixed
varieties. A classical example is to determine the number of reduced plane
conics that are tangent to 5 fixed conics. One finds that when the 5 fixed
conics are in general position, the number is 3264.

For a problem like this, denote by s the number of solutions when the fixed
varieties are in general position with respect to the given family of varieties.

When the p fixed varieties are not in general position, the following may
occur:

1) The set of solutions is infinite.
2) The set of solutions is finite, but there are less than s solutions set-
theoretically.
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An example of 1) is the problem with the conics in the case where 4 of the 5
fixed ones possess a common tangent line. Then the union of this line and
any tangent line to the fifth conic is a solution.

If there is a conic touching all the 5 fixed conics, and two of the contact
points coincide, we have an example of 2) (provided the set of solutions is
finite). When the set of solutions is finite, but there are less than s solutions,
one would like to count the solutions with multiplicity in such a way that the
total weighted number is s. The problem is: Is this possible, and how should
one count? This is the topic of our paper.

In principle the question is answered by W. Fulton and others, see e.g.
[1, p. 187-193]. One studies the parameter space associated to a p-dimensional
family of varieties, and represents the sub-family of varieties tangent to one
of the fixed varieties as a divisor or hypersurface in the parameter space.
Then one uses the so-called refined intersection product of the p hyper-
surfaces in the parameter space.

In particular one associates intersection numbers to isolated solutions, that
is: isolated points in the intersection of the p hypersurfaces. Hence the
precise meaning of the phrase “how to count the solutions” will be to
find the intersection numbers in the sense of Fulton. Again we refer to
[1, p. 187-193] for details. See also [2] and [3] and [5].

In this paper we will work over an algebraically closed field of characteristic
zero.

We will restrict ourselves to a situation where all the fixed varieties are
curves in PV for some N, and our family of varieties will be a family of
hypersurfaces in PV. Hence our parameter space can be regarded as a sub-
variety of PYi7! where d is the degree of the hypersurfaces.

We introduce a general technique for how to determine the multiplicities
(or intersection numbers) of the solutions in practice. This is done in a con-
structive computational way. We do not take up the question of how the
global (total) number of solutions is determined.

Fix a point in the parameter variety representing a solution of our problem.
The p conditions will normally represent p divisors in this parameter variety,
giving rise to p power series in the parameters, locally at the point.

Below we give a result only concerning the leading forms of these power
series (Proposition 1.1.). This result is essentially well-known. See [3] and [5].

We reproduce the conditions for when the multiplicity of the solution can
be found simply as the product of the degrees of the p leading forms, that is:
the divisors meet transversally.

Let PM denote the linear system of hypersurfaces of degree d in PY. For a
nonsingular curve C and a hypersurface D in P" consider the following
measure of tangency between C and D. Put
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t(D,C) = Z (IP,C nD)-1),,
PeC

where I(P,C n D) is the usual intersection number of C and D at P.
Possibly (D, C) = co. The function D — ¢t(D, C) is upper semicontinuous on
P™. For a given curve C and a positive integer t, let H(C;t) = PM be those
D for which (D, C) 2 t. The H(C;t) are cones with H(C; c0) in their vertex
sets. For simplicity we denote H(C;1) by H(C). Assume we are not in the
case where d = 1 and C contains a line component. Then H(C) is a hyper-
surface in PM; give it the reduced structure. For a point P € P, let H(P) < PM
be the set of hypersurfaces containing P.

Denote by Tg(s) the tangent space of a scheme S at a point s. Denote
by O, the local ring of S at s, and by R the completion of a local ring R.
For a hypersurface D denote by g(D) or g the corresponding point in PM.
We now have:

ProposITION 1.1. Let G = PM be a nonsingular locally closed subvariety of
dimension p, and let C,...,C, be nonsingular curves in PN. Put

X =G nH(C,) n... A H(C,),

and let g(D) be an isolated point of X. Set

P
Mp = [] (degD-deg C;—card(C; n D)).
i=1
Then
length(@x_y(m) = M,

with equality if and only if: For all (Py,...,P,) such that I(P;,C; nD) =2
for all j, we have

To(g(D) A H(P,) ... A H(P,) = {g(D)}.
In particular, length Oy ,p) = 1 if and only if M), = 1, and
Te(9(D)) nH(P,) n... nH(P,) = {g(D)}

for the unique points P, ..., P, such that I(P;,C; nD) =2, for j=1,...,p.

In section 2 we will define the H(C;t) scheme-theoretically (at least outside
H(C; o0)) for any positive integer . This will not necessarily give a reduced
structure on these varieties. We give the following result which will be made
precise in Definition 2.1:
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ProposITION 1.2. Let t be an integer, let C be a nonsingular curve, and let
g(D) be a point of H(C ;t) with t(D,C) = t. Then the tangent space of H(C;t)
at g(D) parametrizes the set of hypersurfaces E such that for all points P on C
we have

I(P,C NE)Z I(P,C nD)—1.

In our main result (Theorem 2.2) we give a complete description of the
power series expansions of H(C) at a point g(D) in the case where there is
no point P with I(P,C n D)= 3. We do however allow several simple
tangencies. Since we need some detailed definitions, we wait until section 2
with the exact formulation of this theorem. In Proposition 1.3, we give the
following application of Theorem 2.2:

ProPOSITION 1.3. As in Proposition 1.1, let G = PM be a nonsingular locally
closed subvariety of dimension p, and let C,, ..., C, be nonsingular curves in PN,
Put

X =G nH(C) ... nH(C,),

and let g(D) be an isolated point of X. Assume that My = 1, or equivalently,
that there exist unique points P,,..., P, with I(P;,C; nD) =2, fori=1,...,p,
and no other tangencies. Let r = dimgTy(g(D)). Then

length(0y ,p) = 2"

Furthermore, assume that G is a linear subspace. Let f, be a homogeneous
polynomial defining D in PN. Then the inequality above is strict if and only if
there exist homogeneous ponynomials f and h of degree d, f not a scalar multiple
of fo, f and h corresponding to elements of G, such that the hypersurface S with
equation hfy +f2 = 0 satisfies 1(P;, C; n D) = 3, for all i.

In section 2 we introduce some necessary technical devices. In section 3
we prove our results. In Remark 3.4, we clarify the connection between our
results and the intersection problem already mentioned. Section 4 is devoted
to some applications of Theorem 2.2 for some explicit curves and families of
hypersurfaces.

2. Definitions and the main theorem.

We work over a algebraically closed field of characteristic zero. Let C
be a fixed nonsungular curve in P¥, and let G = PM, where M = (V;9)—1,
be an equidimensional, locally closed, nonsingular scheme parametrizing an
algebraic family of hypersurfaces of degree d in PY. We exclude the possibility :
d = 1, and C contains a line component.
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We denote by CG the affine cone over G. The cone CG parametrizes the
corresponding family of homogeneous polynomials of degree d in N+1
variables.

Let P"(C) be the bundle of rth order principal parts of the divisor class of C,
corresponding to hypersurfaces of degree d. P'(C) is an affine rank r + 1 bundle
on C, for r =0,1,2,... Each member of CG gives rise to a section of P"(C).
Locally around a point P, this section can be described as follows: Choose a
parameter ¢ of C at P. The fiber of P’(C) over P is a vector space where the
coordinates correspond to coefficients of trunkated Taylor series modulo
(t"*'). Each member of CG gives rise to a Taylor series at P. The section
of P'(C) in question cuts the vector space over P in a point corresponding
to the first r+ 1 coefficients of this Taylor series.

We now define the incidence correspondence

Fc CGxP(C)

set-theoreticaly: (cg, p™)e CG x P'(C) is contained in F, iff p* is contained in
the section induced by cg.
We study the following diagram:

CGx P'(C)
U
F
q N p
% %’\
CG C < P(C)

where p and g are the natural projections from F to P'(C) and CG respectively,
and C is embedded in P"(C) as the zero section, and %" is defined as p~!(C).

For local equations cutting out F and 4" in CG x p"(C), see the paragraph
“A local description in CG x P"(C)” in section 3.

We can view p~!(C) as the affine cone over a variety that parametrizes
those pairs of hypersurfaces and points, such that the hypersurface makes an
r-fold contact with C at the point.

Denote by F™(q,0O4r) the mth Fitting ideal of the Ocg-module g, Ogr.

For a variety X over K, and an Ox-module &, we recall that

V(F'(#)) = {xe X|dimg(F ® K(x)) > r},

and that X \V(F"(£)) is the largest open subscheme of X where # can be
generated locally by r elements.
Let Vi c CG be defined by the ideal F*~'(q,04r). We see that V; is an
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affine cone. From now on we will regard PV$ as the subscheme of G
parametrizing hypersurfaces in our family that make at least s r-fold contacts
with C, counted with multiplicity. For a hypersurface D and a curve C,
denote by I(P, C n D) the usual intersection number of C and D at a point P
in PV, From the definition of the bundle P'(C) it follows that D e PV}, that
is D makes an r-fold contact with C, iff I(P,C n D) = r+1 for some point P.
In particular D makes a 1-fold or simple contact with C at P, iff D touches
C at P, or is singular at P. In the last case the conormal varieties of D
and C do not necessarily meet.

For any homogeneous ideal A in O; denote by Vy and PV the corre-
sponding subschemes of CG and G, respectively.

To make Proposition 1.2 precise we make the following definition :

DerINITION 2.1. Assume G = PM\H(C; o) and let t be a positive integer.
Then H(C;t) is defined as the closure of PV} in P™. In particular
H(C)= PV}.

ReMARK. The fact that H(C) is reduced will be shown in Remark 3.3.

A local description in CG x PV,

Assume dim G = p, and let cg be a point of CG in the fibre over a non-
singular point g of G. Let {b,,...,b,} be a set of regular parameters of CG
at cg. Since CG is the affine cone over G, we can take one parameter, say b,
that corresponds to the direction of the cone generatrix through cg. The other
parameters, by,..., b, can be identified with local parameters of G at g.

Let Pe PN. We have

@CG X P",(cg,P) ja-d K[[bo, ey bp, Xl’ ooy XN]]

where X;, i = 1,..., N are coordinates of some affine space containing P.
Let CI £ CG x P" be the incidence variety consisting of those (cg, P) such
that P is contained in the hypersurface determined by cg. We have

Oct.cg.py = K[[bos---bps X1y s Xn]1/M(bo, .. by X1, X)

where M(by,...,b,, Xy,..., Xy) is “the general polynomial parametrized by a
point in an infinitesimal neighbourhood of cg”. We set

@.1) M(bos-. by X1so Xy) = (14 bo) Moot + R(bys s by X1y s Xy)

where M, is the polynomial corresponding to cg, and

Rby,...by, X1, .. Xa) € K[ X1, ..o Xy1[[b1-. . b,]].

When G is a linear subspace of PY”~! we can take R(by,....bp, Xq,..., Xy)
to be linear in by,...,b,.
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Choose X; = Y ;,0B:; t),i =1,...,N, as local parametrizations of C at P.
We define

m(bo,.,.,bp,t) = M<b0,...,bp, Z ﬁl'jtj,..., Z BN'jtj).

jz0 jz0
We also write this as

(22) ./‘/‘(bo,...,bp,t) = z (Aj(bo,.,t’p)'+'al)'tJ
iz0

where the a;e K, and the Aj(b,,...,b,) are power series without “constant
terms”. When G is a linear subspace of P¥, the 4(by,...,b,) will be homo-
geneous linear in by,...,b, whenever R(by,...,b,, X,,...,Xy) is linear in
bo.....b,.

When the hypersurface in question touches C at P, we have ag = a; = 0.

The main result.
We now are in a position where we can formulate our main result. Let

M(b,X)=0 be the equation of the “general hypersurface around g(D)”,
and let

V(b,t) = ¥ (A;(b)+0y)- 1/
jz0

be the local parametrization of the “general hypersurface around g(D)” as
above.

TueoREM 2.2. Let C be a nonsingular curve in PV, and let D be a hypersurface
with I(P,C n D) £ 2 for all P, and let G = PM be a nonsingular, locally closed
subvariety of dimension p containing g(D). Let b,,...,b, be a regular system of
parameters of Og_yp), S0 that the completion is K[[b,,....,b,]]. Set

e 4
Now H(C) n G has codimension at most 1 in G, and the local equation F of
H(C) n G has the following power series expansion at g(D):

F =[] Fplby,....b,)
where the product is over those P such that I(P,C nD)=2. Each
Fp(by,...,b,) is of the following form:
Fp(by.,....b,) = Ag—SA,+ Y (—SY(A;+a)).

jz2

Here

S=— Y (—A,Y"" By Qi(By..... B)),
=0
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and
(~ 4,
Bo= 3 . Bi=-3(43+0%)B},
jz0 2
3(As+az) 4(As+ay) (I+2) (A +24)
1 3(As+0a3) v (DA o)
B, = (—1)-Byt!- 0-. . :
S ~“.\ .i‘.\ 4(A4+d4)
0 oot 0 Tl 3(As4as)
for 1 =z 2.

Qj(Bo, ..., Bj) is homogeneous of degree j in By,...,B;, and the coefficient
corresponding to the monomial By ... B} is defined the following way :

Let 9 be the set of sequences rg,ry,...r; satisfying the conditions

ro=0=r =...5rj_; =r;= j,and r, 2 k (all k). Then for a given exponent

vector i = (ig,....i;) with Y i, = j, say that a sequence r belongs to i if
card{k|r, —r,_, = s} = i; for all s. Then the coefficient of B' is the number of
r in 9 belonging to i.

The first few Q; are:
Qo =1, Q =B, Q,=BoB,+Bi, Q3= BiB;+3B,B,B,+B,

The first few terms of Fp(b,,...,b,) are:

ER % A242 3 A4, AlA,
Ag— =1 4 — A24,— 22 A3 — = - -
° 4a2+4a§ R 8 T 203 16 o a2
9 a3 , a
I T TS
64 o3 i+ 160 !

ReMARK. I am indepted to Stein Arild Stremme for the present expression
of the coefficients of the B, which is less clumsy than our original expression.

3. Proofs of the results.

We keep the notation from section 2 and consider a nonsingular curve C
in PN,

A local description on CG x P"(C).
We now regard C as the zero-section of P'(C). We use the terms P and t
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for the point on C and the local parameter for C at the point, also when
C € P'(C).

Consider the point P = (¢q,P) in " S F £ CGx P’ (C). A set of local
parameters for CG x P'(C) at P is

{bo,... byt 00,..0,},

where by, ..., b,, t are as before, and vy, ..., v, are the coordinates corresponding
to the r+1 terms of trunkated Taylor series of order r.
We have

Op p ~ K[[bos-. by t, oy .. 11/,
where
0
J, = (Cos-eus Uy to— A (bo, ..., by 1), Uy — 5}'4/(1)0"”’ 2
\ 62 ' 6’
2.02 —_— —Et—i-,/‘/‘(bo,. . "bp’ t),.. .,r.vr'gi;' - t/‘/(b07-. -,bpa t).

The r + 1 first generators arise from the fact that ¢” is the inverse image of the
zero-section. The r+ 1 last generators are due to the incidence describing F.
We easily conclude:

(3.1) O p = K[[bor. by TN .., O 4[0L),

where 4" = A (bg,.... b, 1)

Recall that D is the hypersurface corresponding to ge G. .4°(0,...,0,t) is
of order at least r+ 1, iff I(P,CAD)=r+ 1. Hence O p+#0, iff
I(P,CAD)=r+ 1. Assume that I(P,CnD)2r+ 1,for i =1,...,k, where k
is finite. Denote by R; the ring (%r.,i where P; corresponds to P;, for

i=1,..,k
Rf)'
1

We have
k . .
(3.2) F“‘(G—) R,.> = Y F'(R))x ... x F'(Ry),
i=1

it te=s—1

@D ~

7 ~ {0 s—1
(DVF" 1(g,04")scg — COCG.cy/F (

i

A useful identity is:

(see [4, p. 16]).
Denote by n; the multiplicity of the ring R; with respect to the maximal
ideal of (¢,
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When Zf;,ni = s, formula (3.2) reduces to
(3.3) Fs! (_él R,-) = ._il F" '(Ry).
We always have

34) F° ( EkD R,~> = : F°(R)).
i=1 i=1

We now proceed to find the F°(R;). Fix the contact point P.

We will work with the case r = 1, and we will find a K[[b,,...,b,]]-free
resolution of @ p. We will use this resolution to find explicit descriptions
of the K[[by, ..., b,]]-ideals F*~ (0 p), for s = 1,2,....

In order to do so we will substitute 4" and d.4°/0t with power series T
and S, which are in fact polynomials in ¢ with coefficients in K[[b,,...,b,]].
This will give a finite matrix description of the “crucial” map of the resolution.

From now on we drop the index r(=1) in J,, ¢, and we denote by R
the ring K[[bo, ..., b,]]. Hence Oy p = R[[t]]/J. Assume I(P,C N D) =n+1.
Then 4°(0,...,0,t) is of order n+1 in t, and .47/0t(0,0,...,0,t) is of order n
in t. We use Weierstrass’ Preparation Theorem to find a polynomial S in ¢,
of the form

S=t"+S,_ " '+...+8S,,

where S,_;,..., So are power series in by, ..., b,, and S generates the same ideal
as 0.4°/0t(by, ..., b, t) in R[[t]].

Furthermore we use Weierstrass’ Preparation Theorem to find a polynomial
T in ¢ of the form

T = n-l'tn—l+...+To,

where T,_,,..., Tp are power series in (by,...,b,), and T generates the same
ideal as A"(by, ..., b,,t) in R[[t]] modulo S. We remark that the constructive
proof of Weierstrass’ Preparation Theorem in [8, p. 140-141, 145] gives an
explicit algorithm for constructing S and T, using formula (2.2) in section 2.
We also remark that the power series S,_,...,So, T,~1,..., To contain no
constant terms.
It is now clear that

Ogp ~ R[[1])/(S. T)

and we have the following R-free resolution

(3.5) R[[e]Y/s % R([t]}/S = R[[1])/(S. T) > O,
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¢ is multiplication by T, and t is the natural map. We find the matrix
representation of ¢ with respect to the basis {1,¢,...,t" '},

ReMARK. So far in section 3 we have assumed that r = 1. We will continue
assuming that in the rest of the paper. Still we would like to remark that for
arbitrary r, we can substitute 0".4"/0t" by a monic polynomial S in t. Furtner-
more we can substitute 0'.47/0t' by polynomials ;T in ¢, for i =0,...,r—1.
Then we use the resolution

(RL[£1)/SY 2> R[[]1/S = RI[]V/(S, 0T, ... .- T) > O.

Here ¢, maps an r-tuple (Py,...,P,_y) to ¢TPy+...+,_,TP,_; modulo S.
All computations that we do for r = 1 can be copied for general r.
The following is easy to verify:

OBSERVATION 3.1.

1) The entries in the first column of the matrix are Tg,..., T,_;.

(ii)  The entries in the other columns of the matrix are contained in the
R-ideal (T, ..., T, _,).

(ii) Modulo the R-ideal (b, ..., b,)* the matrix is

T, 0 .. 0
T To :

T, 0
I, T, T Tp

Observation 3.1 gives rise to the following:
LemMma 3.2.

a) F""'(Ogp) = (Tor.... T,_1):
In particular, when n = 1,
FO(@:{’P) = (Ty) = ().

b) F%@4p) is generated by an element, which is congruent to T modulo
(bo,...by "t

Lemma 3.2 reduces the proofs of our results to explicit computations of
To,..., T,_, for each point P such that I(P,C; nD) 22, for each fixed
curve C;.

ProoF ofF ProrosiTion 1.1. We will study the intersection scheme
X=GnH(Cy) n... nH(C)).

Fix a curve C. We claim that G n H(C) is the same scheme as the one cut
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out on G by the sheaf of homogeneous ideals F°(q,0). Denote by J the sheaf
of ideals cut out by all the corresponding Fitting ideals for the fixed curves
Cy,...,Cp. In other words we claim that X = PV,. Recall that H(C;) are by
definition given a reduced structure. Since the formation of Fitting ideals
commutes with base change, the claim is true if we can show that the
F°(q,04) cut out reduced schemes when G = PM N\ H(C ; c0). This will be shown
in Remark 3.3. Hence we will compute FY(q,04) locally at cg for each fixed
curve C. We study one such curve. Let P,,...,P, be the points where D
touches C. Let n; = I(P;,C nD)—1 2 1, for all i. Let R; be the ring O p as
in section 2. We must compute FO(G-),_ | R;). By formula (3.4) this is equal to

k
[T FO(R).
i=1
For each P; denote by
TO = T ("' +TY

the polynomial defined by Weierstrass’ Preparation Theorem as above.
By Lemma 3.2, part b), a generator of F°(R,-) is congruent to (T{)"

modulo (by,..., )"'“. Hence a generator of ﬂ F°(R)) is congruent to

i=1
H (T(n)

i=1

modulo (b, ..., bp)"‘+"'+"‘+'.

For each point P’ we rewrite formula (2.2) as

.4/‘,-(b0,..., bp,t) = Z (Aj‘,'(bo,...,bp)""aj‘,')' t"
jz0
where the A; ; are functions in by, ..., b,. For a power series f (b, ..., b,) denote
by /™ (bg.....b ,) the linear part of f (b, ....b,). We use the algorithm in the
proof of Weierstrass Preparation Theorem in [8, p. 140-141] to find

TS = Ay, i(bo.....b,) modulo (b,...,b,)*.

Hence we obtain that a generator of [ [¥-, F(R,) is congruent to

k

(36) l_[ “n(bo, ’bp)]n'

modulo (b, ..., bp)ru +..m+1 ‘

This means that the leading form has degree at least
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M”

k
Z I(P,,C A D) — k = deg D-deg C — card(C n D).

W

i=1

The isolated point g of PV, is cut out by p equations in a p-dimensional
nonsingular ambient space G. Then the multiplicity of PV, at g is at least the
product of the degrees of the p leading forms of these equations, that is

P
(deg D - deg C;—card(C; n D)).
1L J J
j=

Furthermore, the multiplicity is exactly this number if, and only if g is set-
theoretically the only point cut out from the embedded tangent space of G
at g by the p leadings forms. This follows from standard local theory, see for
instance Example 7.1.10. and Example 12.4.9. in [1]. Each leading form
(corresponding to a fixed curve C)

k

1‘[ Ag" (bos .. b,)",

cuts out those hypersurfaces, parametrized by some point of Tg(g), which pass
through one of the points Py,..., P, , where D touches C.
This implies the conclusion of Proposition 1.1.

ProoF oF ProposiTioN 1.2. Let {P,,..., P,} be the set of points where D
touches C. Let the rings R; be as before. We will compute

-1 ((f_B Ri)$

k

t= 3 (m—1)

i=1

where

and n; = I(P;,,C n D), i=1,...k.

By Formula (3.3) this is the same as Zf-;,F"'(Ri), and by Lemma 3.2,
part a), it is the same as

k k
(T, T T, L T ),

Temporarily we fix Pe {P,,..., P,}, and study the corresponding power series
Ty, ... T,_,, where n = I(P,C n D).

We use Weierstrass’ Preparation Theorem and find that the linear part of
Ty is AN (bo, ... b,), using the notation of Formula (2.2).
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In the same way we see that the linear part of T; is

n+1—j
n+1

A" by, ..., b,)

modulo the linear parts of (Ty, ..., T;_,), for j = 1,...,n—1. Hence the linear
parts of (Tq,..., T;_) generate the ideal

(A9 (bos- - by)s .y AN 1 (Bos ..., b)),

This ideal cuts out those hypersurfaces E, parametrized by some point of
Ts(g), such that I(P,C nE) 2 n.

This is true because these hypersurfaces E correspond precisely to those
choices of values by, ..., b, that force the power series

Y (A5 (boy ..o by) + 1)t
jz0
to be of order at least n in t. Treating all points P,,..., P, simultaneously, we
obtain the conclusion of Proposition 1.2.

ABOUT THE PROOF OF THEOREM 2.2. As usual let {P, ..., P,} be the set of points
where D touches C. By combining formula (3.4), and Lemma 3.2, part a),
we see that

k k k
F°<@ R,.) _ 1T =[] T
i=1 i=1 i=1
Hence it is enough to prove that each T is of the form F,(b,,....b,),
described in Theorem 2.2. (We once again forget the irrelevant variable bg).
This follows from the constructive proof of Weierstrass’ Preparation Theorem
on pp. 140-141, 145 of [8,]. We skip the easy, but tedious calculations here.
The assumption I(P,C n D) < 2 for all P, is only included to make the cal-
culations more tractable. In principle one can use the same sort of calculations
in any case, using formula (3.4), the resolution (3.5), and the constructive
algorithm in [8].

ProoF ofF ProposiTION 1.3. As in the proof of Proposition 1.1 we observe that
X=(GnHC)n...n(GNH(C)))=H, n..."H,

Here H; is cut out in G by an ideal of the form F°(q,0) for each fixed
curve C;. In Remark 3.4, we will show that the multiplicity of X at g is
ilg.H,"...- H,, G), using the notation of [1].

Since dim(Tx(g)) = r, we can pick r of the H;, say H,,..., H, such that if

W=Hlﬁ...r\H,, Y=H,+lﬁ...r\H‘,,
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then

Ty(g) = Ty(g9).

Then i(g,H,-...-H,,G) = i(g, W Y,G) Z 2" by Example 12.4.10 in [1].
This conclusion can also be derived from the following discussion.
Assume that G is a linear subspace of PM. Then all the A;(b,,...,b,)

described in Formula (2.2) can be taken to be linear.

Since M, = 1, we know that D touches C,,...,C, in one point each, say

P,,...,P, and that I(P,C; nD)=2,i=1,...,p. Let

N ilboy by by t)) = Y (A;ilbo, . by) ;) tf
jz0

be the expressions corresponding to Formula (2.2) for each pair (C;, P;),

i=1..,p
Put A;;,= A;jbo,....,b,). (When j=0,1, the 4;; do not involve b,

fori =1,...,p.) Let J be the ideal of X in G.

We use Theorem 2.2 and find that J = (TY, ..., T"?), where

2
1,i

. A
TY = 4, ,— ) modulo (by,...,b,)* fori=1,...,p.

2,i

The p linear equations 4;, =0, i = 1,...,p, in the p variables b,,...,b, give
rise to a p x p-coefficient matrix

M= (myj); - 1,..p°
j=1..,p

By assumption there are exactly r independent relations between the
rows of .#. We may assume that p—r last rows of .# generate the vector
space generated by all p rows, and we can find constants A; ,.y,..., 44
such that

Aor = A pr1dorsr+ ooty pAo

AO‘r = A’r,r+1A0,r+1 +... +’1r.pA0,p

This means that J/(by, ..., b,)* is generated by

2 2 2
A1 i AT 1 2 Al,p
2 T i+ T T Mp
21 02 r+1 %2 p
A? A? A

1,r j) 1,r+1 -y 1,p

“lrr+1 e r,p

o, 0 1 %2, p
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and

Ay, +1 +quadratic term

Ao,, +quadratic term.

Now it is clear that the multiplicity of PV, at g is at least 2".

By making a linear change of parameters we may assume A, ; = b;,
j=r+1,..,p. Then it is clear that the multiplicity of PV, at g is 2" if and
only if the only r-tuple (b,,..., b,) satisfying the equations

A%.j(bla""br’o,--wo) _'{ A%.ri-l(bla“-, b,,O,...,O)
jor+1 -

. ®2,j A2, r+1

_ AjpArplbs-- b, 0,..,0)
‘ ”

P

simultaneously for j = 1,...,r, is the zero-tuple.

On the other hand, let fo, ..., f, be such that f, defines D, f,,..., f, span Ty, (cg),
and f, ..., f, span Teg(cg). We think of f; as the polynomial corresponding to
the parameter b;, for all i.

The condition that a linear combination

lel + ... +cpfp

should define a hypersurface passing through P,,..., P, gives p equations in
C1,...,cp With coefficient matrix .#.

The assumption A4, ;=b;, j=r+1,...,p means that the subspace of
Span(f}, ..., f,) consisting of polynomials defining hypersurface passing through
Py,..,P,is Span(fi,.... f,)

Assume there are polynomials f and h satisfying the conditions of the
proposition, that is: f is not a scalar multiple of f,, and hfy+f2 = 0 is the
equation of a hypersurface S, such that I(P;,C n S) 2 3 for all i.

It is clear that f must be in Span (fo,...,f,), and it is easy to see that f
can be chosen as an element of Span(fy, ..., f,). Furthermore h can be chosen
as an element of Span(fj,...,f,), but not of Span(fi,...,f,).

Let f be a fixed polynomial in Span(f,...,f,). Consider polynomials of the
form

*) d1f1f0+"‘+dpfpf0+dp+lf2’

where the d; are constants. We know that there are at least r independent
polynomials of this form that intersect C; at least 3 times at P;,fori = 1,...,p.
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These are the ones with
diyv=...=d,=d,,, =0.

The condition in the proposition is equivalent to the existence of an f such
that there are at least r+ 1 hypersurfaces of the form (*) that have these
intersection properties.

Let us divide by f, and study expressions of the form

"2
dlji-F...%—dpf;4-dp+1“£f.
Jo

We are interested in the expressions that are of order at least one at P;
regarded as functions on C; for all i. This gives p equations in d,,....d,+,
with a coefficient matrix which we denote by .# . The p first columns of .#
are the same as those of .#. The condition the proposition is equivalent
to the existence of an f such that

ks, =1kl =p—r.

This means that all relations between the rows of .# lift to relations between
the rows of .#,. Put f=c,fi+...+¢f.
We have the following power series expansion of f?/f, locally at P;
(Ao.iCrs o mC)+ Ay ilers.ne) 4.7 Afilcr,..¢)

= +t;- something,
ay i tog b+ oy ‘

since Ag,i(Cy,..C) = 0.
Hence the entries of the last column of .#, are

At ey, ney)
%2,

Comparing with the multiplicity condition already found, this gives our
desired result.

Remark 3.3. Let C and G be as usual, that is: C is a fixed nonsingular
curve in PV, for N 22, and G is a nonsingular, locally closed scheme
parametrizing hypersurfaces of degree d in PV that do not contain C. Set

H = PVFO(qt((/%).

Let g e G correspond to a hypersurface D. From Formula (3.6) we see that
the local equation of H at g has a power series expansion whose leading form
is l—[f= 1[40.:(B)]", or a form of higher degree. This implies that H is regular
of dimension dim G—1 at g if and only if a) and b) hold

a) Y (I(P,C AD)-1)=1.

AN
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b) Some hypersurface in P, corresponding to a point in the embedded
tangent space to G in PM at g, does not pass through the unique
contact point P.

Hence H is reduced if and only if a) and b) hold on a dense set in H.

Assume that G = PY\H(C; o) and that H #+ ¢. Then condition b) is
irrelevant. As usual we exclude the possibility that d = 1, and C contains a line.

We will show that in this case H is a reduced divisor in G, and also
H = H(C), that is: H is a reduced hypersurface in PM. First we assume that C
is irreducible. H is clearly a cone over H(C;0), so we may assume that
H(C; 0) = . We then study the image of C under the d-uple embedding.
This embeds C as a nonsingular nondegenerate curve in some P, for s = 2.

If s = 2, then C has only a finite number of bitangents and flex tangents
in P°. This shows our assertion in this case. Assume s 2 3. It follows from
Theorem 11 in [7] that almost all tangent hyperplanes of C at a general
point P of C do not intersect C more than 2 times at P. Moreover, by
Bertini’s Theorem in characteristic zero, almost all hyperplanes that touch C
at P, do not touch C elsewhere.

This implies that H is a reduced divisor in PM. By biduality H is even
irreducible.

We now drop the assumption that C is irreducible. Then the various com-
ponents of H(C) must intersect in codimension at least 2 in PM (biduality),
and a general point of H(C) is therefore on only one component.

This shows that when G = PM\H(C; o), then H gives a reduced scheme
structure on the hypersurface H(C) in PM.

RemARk 3.4. Assume that dimG = p, and that we have p fixed curves
Cy,...C, Let H, for i=1,..,p be defined as H above, and asume that
H,,...,H, are reduced divisors in G.

We are interested in the sum

s=Yi(g,H, ...-H,,G)

in the sense of [1, see e.g. Example 7.1.10, p. 123]. The sum s is taken over
all isolated points g of Hy ... " H,.)

We will study each local contribution i(g, H, - ... H,, G) at isolated points.
Locally at g each H; is represented by a power series f; in the completion
@G‘y. Since @o, , is nonsingular and therefore Cohen-Macauley, it follows from
Example 7.1.10 in [1] that i(g,H,..H,, G) is equal to the length of
Og.4/(f15--+1,). In Propositions 1.1 and 1.3 we computed such lengths.

We conclude that these results can used to determine the local contri-
butions i(g, H;*..." H,, G) to the global number s, wherever this number is
defined in terms of the intersection products in [1].
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4. Some applications of theorem 2.2.

We will use the formula of Theorem 2.2 in two example of families of plane
curves. Moreover we will apply Proposition 1.3 (which is itself a consequence
of Theorem 2.2) in the study of those planes in P that are touching 3 fixed
curves.

EXAMPLE 4.1. We let the points (ag,a,,a,) in G = P? parametrize the
members of the family of plane curves with equations

aoX? +agY?* +a,YZ + a,Z*> = 0.

The real picture is the family of circles with centers on the line X = 0.

Assume we have two fixed curves C; and C,, both passing through the
point P=(—1,0,1). Let D be the “variable curve” parameterized by
(@, ay,a;) = (1,0, —1) = g, that is D is the curve with equation X*+ Y? = Z2,
We also assume that

I(P,C, nD)=1(P,C, nD) =2,

and that D touches neither C,; nor C, in any point but P.

Set J = (F°(q,04,), F°(q,04,)). We will show that the multiplicity of PV,
at g is equal to I(P,C; n C,). The polynomial M(by,b,, X, Y, Z) defined in
section 2 may be taken to be

(1+bo)(X*+ Y2 —Z%)+b, YZ+b,Z2.
From now on we set by = 0.
We parametrize C, and C, at P as follows:

Ci:X=-1+ Y yY, Y=Y,Z=1
jz2

jz2

Referring to formula (2.2), we obtain:

'/‘/‘l'(bth,t) = AO.i+A1_i+ Z o(j,‘.Yj, i = 1,2
jz2

where AO,I = A0,2 = bz,and Al,l = Al,2 = b,,and aj_l = Z{(:Olyk‘)}j—k’ where
Yo=—1, 9, =0, o, = Y4_oMllj- Where no = —1, n, =0. We now use
Theorem 2.2, and we obtain that

Opy,, = K[[bs, b21UTH, T),
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where

b? . o3,ib7

T(i) = bz -

+ Y Ri(ay;...o0; )by, i=1,2,
40!2,.' Sag‘i j§4 1( 2,i j,l) 1

where the Rj(a, ;, ..., a;;) are rational functions in «; ;,...,a;;, such that

1\
Rj(az‘,',..., aj’,’) = <—"‘—) N aj‘i+

205 ;

+ terms only involving («, ;,...,%;—; ;).

Hence the power series TV and T® are congruent modulo (b7), but not
modulo (b7*'), where m = min;{a; , # «;,}, and the multiplicity of PV, at
g is m.

We also see that m is equal to m’, where

m’ = min;{y; # n;}.

But m’ is clearly equal to I(P,C; n C;). Hence the multiplicity of PV, at g
is equal to I(P,C, n C,) under the assumptions given.

ExaMmpLE 4.2. We work with the same family of curves as in Example 4.1.
Let C, and C, be two fixed curves that pass through Q = (0,0, 1), and that
are nonsingular at Q. Let D be the “variable curve” with equation

X24+Y2=0, ie. aunion of two lines.

We assume I(Q,C; n D)= 2,i=1,2, and that D touches neither C, nor C,
at any point but Q. Let geG be the point (1,0,0), in other words g
corresponds to D. Set J = ZL,F (4404

Let C; be the “mirror image” of C, with respect to the line X = 0. We
will show that the multiplicity of PV, at g is equal to I(Q, (C,; U C}) N C;).
We work in 3 steps:

Step 1. Let t; be a parameter for C; at Q, i = 1,2. We proceed as in
Example 4.1 and find two power series 7> and T**. Then it is easy to see
that if C, touches neither C, nor C; at Q, then the multiplicity of PV, at
g is 2.

Step 2. Assume C, touches C, or Cj at Q, and that the common tangent
is not the line with equation X =0. Then we use X as a common
parameter for C,; and C, at Q, we proceed as in Example 4.1, and we find
that the multiplicity of PV, at g is

max[1(Q,C; n C,),1(Q,Cy nC;)]+1.
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Step 3. Assume the common tangent of C, and C) and C, is the line
X = 0. Then we use Y as a common parameter for C; and C, at Q. We
find that the multiplicity of PV, at g is

1(Q,(Cy, v CY) N Cy)
Summing up, we find that in any case the multiplicity of PV, at g is
1(Q,(Cy ) N C,).

ExaMpLE 4.3. We will give an application of Proposition 1.3. Let C,,C,, C;
be 3 curves in P3, and let G = P3, that is: G parametrizes the planes in P2,
We study X = H(C;) n H(C,) n H(C3) at g = g(D), where D is a plane
which touches C; at P;, for i = 1,2,3, and all tangencies are simple. Then the
length of @X‘g is at least 2 iff P,, P,, P; are on a line L, by Proposition 1.1.
The tangent space of X at g in G corresponds to the pencil of planes
containing L.

Set P* = Proj K[X, Y, Z, W]. Let the equation of L be X = Y = 0, and let
the equation of D be Y = 0. Then Proposition 1.3 gives:

Length (ﬁx'g = 3 if an only if a quadratic surface, with an equation of the
following form, intersects C; at least 3 times at P;, for all i:

*) Y(aZ +bW)+cX? =0, where ac or bc is nonzero.

In [4], one studies trisecant lines to space curves. Consider the (reducible)
curve C = C; U C, U C;. Denote by ¢ the Grassmannian {/(L); L a line in
P?}. In [4], one defines a scheme (curve) T ¢ that parametrizes the
trisecant lines to C. Let L be a trisecant line. Then T is singular at I(L),
iff there exists a plane D that intersects C; at least 2 times at P;, for all i
(we assume that L is not a 4-secant). If this happens, then T has an ordinary
node with 2 distinct curve tangents at I(L), provided that no “additional
unexpected phenomenon occurs”. In [6], we showed that the “additional
phenomenon” is exactly the existence of a quadric cone with an equation of
the form (*), such that the cone intersects C; at least 3 times at P;, for all i.
Hence we have in the situation described above:

dim,(@x'g = 3 < T has a cusp or tacnode at (L),

or T is nonreduced at I(L).

Moreover: T is nonreduced at l(L):dimK@x.g = 0.
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