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COMMUTATORS AND GENERATORS

CHARLES J. K. BATTY and DEREK W. ROBINSON

Abstract.

Let % be a Banach space ,a a Cy-group of isometries of # with generator H,
and 2 € D(H) a o-invariant core of H. Suppose K:2 — # is a dissipative
operator satisfying

L. IKall < ko(IlHall v llall),  a€2,
2. lo., K]all = k,Itl(IHall v llal), a€2,teR

for some ko, k; = 0. Then it follows that the closure K of K generates a
C,-semigroup of contractions t. Furthermore if K9 & D(H), a property which
follows from Conditions 1 and 2 if & is reflexive, then tD(H) & D(H).
Generalizations of these results are discussed and applications to Hilbert space
theory and commutative, and noncommutative, C*-algebras are given.

1. Intioduction.

Let o be a Cy-group of isometries of a Banach space # with infinitesimal
generator H and introduce the subspaces #, = D(H"), and £, = (),21%.
Then £, is a Banach space with respect to the norm

llall, = sup ||H™all,
Osmsn

and &, is a Frechet space when equipped with the family of norms
{ll" la}nz 1- Our aim is to examine properties of operators K from #, into #
which are continuous in the sense

(L.1) IKall = cllall,

for some ¢=0,p=0, and all ae#,. Typically one is interested in
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smoothness properties, dissipativity, or generation criteria. For motivation
let us first consider the “smoothness” condition K#, € 4,.
Let ae #,. Then Kae %, if, and only if, lim(l1 —a,)Ka/t exists as t — 0.

But it follows from the continuity hypothesis (1.1) that

lim K(1 —o,)a/t = KHa

t—0
exists and hence Kae ®, if, and only if, lim,_ [0, K]a/t exists. Thus the
property K# . S %, is directly characterized by the behaviour of the com-
mutators [o,, K]a for small t. In fact by the uniform boundedness theorem,
it follows that if K# ., S #, then

lo., K]all = kit|llall,, a€ B, teR,

for some k 2 0, g 2 0. If # is reflexive there is also a converse. In this case ¢
is a C§-group and hence Ka € #, if, and only if,

sup ||(1 —o,)Ka/t|| < + ©

t+0
(see, for example, [S, Proposition 3.1.23]). Therefore by the above reasoning,
K&, S %, if, and only ff,

(1.2) I[o., K]all = 0()

as t -0, for each ae #,,. This illustrates the fundamental nature of com-
mutator bounds, but it is less evident that such bounds are also of relevance
to the discussion of generation properties of K.

Glimm and Jaffe [7] appear to have been the first to prove a generator
result from hypotheses similar to (1.1) and (1.2). They proved that if # is a
Hilbert space, H is positive, and K is a symmetric operator satisfying
K#, S 2, and

(1.3) IKall = kollall, , ae®,
(1.4) le,, K]all = killall;ltl, aed,,teR,

then K is essentially self-adjoint, i.e. the closure of K generates a C,-group
of isometries of 4. (In fact this statement is an equivalent rephrasing of the
Glimm-Jaffe result, Theorem 1.2.) Subsequently many authors [6], [12], [13]
proved variants of this theorem, but all these generalizations were for
symmetric operators on Hilbert space and positivity of H was fundamental.
Our main result is a version of the Glimm-Jaffe theorem, in which these
assumptions are relaxed. Our theorem is for a dissipative operator K on a
Banach space 4, and there is no spectral restraint on the generator H. We
assume (1.4) and a slightly weaker form of (1.3) and then conclude that the
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closure of K generates a C,-semigroup of contractions t. The property
K#, & %, then implies the invariance 1%, & #, and is automatically
satisfied if 4 is reflexive, e.g. if £ is a Hilbert space.

In the Hilbert space context, Faris and Lavine [6] proved an invariance
property of 1. They established that tD(h) & D(h), where D(h) denotes the
quadratic form domain of H, that is D(h) = D((1+ H)"?), but even in this
special context the property tD(H) & D(H) appears to be new.

2. Generator theorems.

In this section we prove the result mentioned in the introduction. We use
the above notation but it is also convenient to consider the subspace #,,,
of # introduced in [15], namely

B2 = {a;sggll(l—m)all/ltl < + o},
t
equipped with the norm
llally2 = llall v sup|l(1—a,)all/|t].
t+0

‘Note that #, & #,,, and if a € #,, then one automatically has ||all;;, = |all,.
In fact if # is reflexive, then #, = #,,, and ||-||; = || |l;,2, but in general
the spaces are distinct. )

RemARk. Although ¢%,,, & #,),, the restriction of ¢ to %,, is not
necessarily strongly continuous with respect to the norm || ||, ;. If # = C,(R?)
and ¢ is the group whose action is given in radial co-ordinates by

(0.0, 0) = f(r,0+1t/r),

then |y is not strongly continuous. Nevertheless olg is strongly con-
tinuous with respect to the |- ||, norm.

THEOREM 2.1. Let 2 S # denote a c-invariant core of H. If K: 9 — # is
a dissipative operator satisfying the following two conditions:

1. for each ¢ > 0 there isa x, > 0 such that
IKall = ellall; +xllall;, a€2,
2. there is a k; > 0 such that
[o,, K]all < kyllall;|tl, a€2D,teR,

then the closure K of K generates a Coy-contraction semigroup t on #. More-
over tR,, S #B,,, and
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lzally, = ek't”a“x/z, t20,ae%,.

Finally if K2, S #,, where 9, S #, is a o-invariant core of H, then
8, € %, and t|g is a Co-semigroup satisfying

Iwall, = eé4tllally, t20,ae8,.
Proor. First note that if a e #, then
t
oa =a+tHa+ fds(t—s)a,Hza
0

and hence
\Hall £ (¢/2)|H?all+ (2/t)llal|-
This demonstrates that Condition 1 is equivalent to
1'. for each ¢ > O there is a kx, > O such that
IKall = &llH?all +xllall.
Second, for « > 0 introduce the regularization K, by D(K,) = 2 and

K, =

1

— fdsa,Ka-,.
o

]

It follows automatically that K, satisfies Condition 1'.

Next note that —H? generates a Coy-contraction semigroup g, the
Gaussian semigroup associated with ¢ by the definition

[+ o)

oa = (4nt)~ 112 f dse=s"*ga, t>0.

—

Since K is dissipative, K, is dissipative. Therefore, by Condition 1' and
perturbation theory (see, for example, [5, Theorem 3.1.32]), the operators

H,,=K,—BH?, o,f>0,

generate Co-contraction semigroups t™f. If r,z(e) = (I+¢H,z)" ", then
Irp(e)ll = 1. Our immediate aim is to obtain estimates on ||r, 4(¢)ll, for
n=12

As a preliminary, note that K, and K,, can be extended to %, by continuity
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using Condition 1. It immediately follows that the extensions, which we also
denote by K, and K,, must satisfy Conditions 1 and 2.

LEMMA 2.2. If ek, < 1 then
||"a.p(8)a||1 < llall, (1 —3k1)—l, ac$,.
Proor. One has ||r, g(e)all < |jall. But from the identity
(o,—1) (o,—1)
t t

rap(e)a = ry4(€)

a+er, g(e) [Ky, 0,/t]r, p(€)a,

one obtains the estimate

(0.

@1 E’L_)

+eky|Iry, p(€)ally

1[!( )a“

by use of Condition 2 for K,. Therefore taking the limit ¢t - 0 with ae %#,,
one deduces that

lIrap(€)ally = llally +kylirg, g(e)alls,
which immediately yields the desired result.
LEMMA 2.3. If 2¢ky < 1 and a€ #,, then
lira,p(e)allz = {llall, +2ekya *llally (1 —eky) ™} (1 —2eky) 1.
Proor. First note the identity

(0. — 1)2 (0. —

a TapE)a = rople) —5— Lew [“" K.]]

aer()

1.ﬁ(£)a_

[0',, K,] (o,—
Il |t|

+2ek, \}—— raplelal|

+¢ [0’,, [at'lz’ Ku]]

—2er, g(6)——— a,p(s )a,

which yields the estimate

(0. 1)2 (0:

2.2) rog(e)al| <

ra’p(G)a .

But if b e #, one also has the identity

a 0
1 1 1
7 Lo, [0, K,]]b = o, {F J dso o, K]o_,— pres sta,[a,, K]a_,} b.

a—t -t
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Hence applying Condition 2, one finds

[a,,[a',, a]] “ 2k1 b1,

Therefore combining these estimates gives

’(0' )2

+2ek,a ™I, g(e)ally -

(0.~ 1)2
t?

(0, D,

p(€)a + 2¢k,

a ﬂ(g)a

But r, 4(¢)a € 2, for all a € 8. Thus taking the limit ¢t — 0 with a € #,, one finds
IH?r,, g(e)all = ||H?all+2ek, ||Hr, g(e)all, +2ek a™ " Ir,, gedally,
and combining this with Lemma 2.2 gives

Ilra,,a(s)allz < lall, +‘28k,||r,,,(8)a||2 +2¢ek a” l”‘1”1(1 —eky)” L

Next we use the estimates to prove strong convergence of r, 4(¢) as f — 0,
then a — 0. Since the resolvents are contractions it suffices to prove con-
vergence on the dense set #,. But

(ra, 5,(€) = Ta,p,(€))all = elBy — BllIH?r, 4, (e)all
S ey —lellr..,,(e)allz

for a e #,. Moreover |Ir, g(€)all; is uniformly bounded in f#, whenever 2¢ek, < 1,
by Lemma 2.3. Therefore r, 4(¢) converges strongly as f — 0, for all a > 0,
whenever 2¢k; < 1. Now fixing f one has the estimate

(ra,,6(6) = 7oy p(€))all = ell(Ky, — Ko, Ia, g(E)all
S ell(Kq, — K)ra, p€)all +ell (Ko, — K, g(€)all.
But for be #,

1 r

(23) (K, — K|l = = dslo,[K,a_,]bll
0
1 kyo|lb]|
< - = 2Pl
27 dsk,s|b||, B

oe
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Therefore if ek, < 1

)= o el S ok, BE2 ey,

(o + oz)

= eky [la ”1(1"3’(1)‘

by Lemma 2.2. This establishes that the strong limit

r(e) = lim lim r, g(¢)
a—0 g0

exists for 2ek, < 1.
Next remark that if a e #, then

(ra,p(e) = 1)all = e(lIK.all+ BIlH?al]).
Hence if f < 1 there is by Condition 1 a k > 1 such that
l(rq,p(e)— Dal| < ekllall,

uniformly in « and f. Thus

limr,gz() =1

e-0

uniformly in « and B.
It now follows from this uniformity, by the Trotter-Kato theorem, (see [9,
Chapter IX, Theorem 2.17]), that

re) = (I +eK)™?
where K is the generator of a contraction semigroup 1. Moreover

lim lim 1*%a = 1,4, ae®,
a—=0 g—0

uniformly for ¢ in finite intervals. Next we identify K with the closure of K.
Now if ae D(R), set b = (I +&K)a, and then a = r(¢)b. Next choose b, € £,
such that ||b,—b|| = 0 as n —» oo and set

Qg8 = rm.p(e)bn'
It follows that a, ;4 ,€ #, and

lim lim lim |ja,4,—all =

n—+wo a—0 -0
But one also has

(I + aK)aa,ﬁ.n - bn = 8(K - Ka)rn.ﬂ(e)bn + eﬁHzrn.p(e)bn-
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Hence using the estimate (2.3), one finds
U +eK)ay g0 —ball = ekyallry g(€)bally +&BlIra, p(€)ball-
Thus by Lemmas 2.2 and 2.3
lim lim lim S(:lp I +eK)ay g, —bll = 0.

n-+owc a—0 B
This proves that a € D(K) and
(I +eK)a=b = (I+eK)a.

Therefore K is an extension of K. But since K is a generator, it has no
proper dissipative extension, and hence K = K, ie. the closure K of K
generates the C,-contraction semigroup .

To prove 14, & #,,,, we first recall that if ae #,, then ae %,,, and
llall; = llall;,>. But since r, g(¢)a € &, for all ae @, one has

||’a,p(8)a||1/2 = ||"a,p(8)a”1~
Hence if ae #,,; and &k; < 1 one has

(at_l)

t ru,ﬂ(c)a

= "ra,ﬁ(s)a”l/Z = |'a”1/2(1"f’3"1rl

by the estimate (2.1). Consequently

(0':

( )a” < llally/2(1 —eky) ™"

This establishes that r(¢)®#,,, € #,,, and
”"(8)‘1"1/2 = “aul/z(l—Skt)_l-
Therefore by iteration

(0, 1)

———r(/nYa|| = llally2(1—(s/n)ky) ™", 52 0.

Thus in the limit n — oo,

(0,—1)
—LE_—T'a < llally 2"

which lmplles Tgl/l = gl/Z and
lIzally/z = llally2e**

Now consider the final statement of the theorem. Since %, is a core for K,
it follows from Condition 1 that 2, is a core for K, and dissipativity is
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equivalent to the requirement that

(1 +e(K+ky)all 2 (1+eky)llall, ae2,.
Hence
(24) (1 +&(K +ky)all 2 (1+eky )lall —kyllall;, aeD,.

Next for ae 2, one has

(‘L:Q(Hsuhk,))aﬂ 2 “(1+s(l?+k,))(a't—l)a

e

2 (14¢ky)

a|| —ekyllall,.”

(0. -1)
t

But since K2, & #, one has Kae #,, and hence in the limit ¢t — 0,
IH(1 +&(K +ky))all Z (1+¢k,)||Hal|— ek, lall; .
Therefore combining this with (2.4), one concludes that
(1 +e(K +ky)ally Z (1+eky)llally —ekyllall, = llall,

for all ae2,, that is K+k, is ||-||,-dissipative. Next we prove that
(1+e&(K+k,))2, is dense in &,.
Suppose this is not the case. Then there is an w € #F such that

o((1+&K+ky)a) =0

for all ae 2,. Since 2, is o-invariant, it then follows from standard semigroup
approximation theory, using Condition 1, that

2.5) w((1+&(K +k,))Ra) = 0

for all ae 9,, where R = (1+H)™!. But R is a bounded map from # into &,
with norm less than or equal to 2, and hence R*w defines a bounded linear
functional on #. Now to prove w = 0 it suffices to prove that R*w =0
because the range of R is equal to #,. But from (2.5), one has

o(R(1+¢eK)a) = —ek;w(Ra)+ew([R, K]a)
< &k, ||IR*o||||all +ew(R[K, H]Ra)
S 3ek,|IR*wlll|all
< 3ek|IR*0llll(1 +eK)all, a€ 9,

where the last step uses dissipativity of K. But since (1+&K)(2,) is dense
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in 4, this gives
IR*w|| = 3ek,|IR*wl|

and choosing ¢ such that 3¢k; < 1, one deduces that R*w = 0, that is w = 0.

Finally it follows from dissipativity and the range condition, by the Hille-
Yosida theorem, that K +k, generates a C,-semigroup of contractions on
(21,11 1l1). Thus K generates a Cy-semigroup on %, satisfying

Iall, = e*llall;.

CoROLLARY 2.4. Adopt the assumptions of Theorem 2.1 but further assume
that # is reflexive. Then K#3 S #,, and hence the C,-semigroup of con-
tractions t generated by K satisfies 18, S #, and 1|4 is a Co-semigroup
such that

llzally < ellally,, t20,ae%,.

Proor. Since # is reflexive, ¢ is a C§-group, and hence ae &, if, and
only if

1—
sup ———( %) a
1#0 t

< 4+ 0,

ie. if and only if ae ®,,, (see, for example, [5, Proposition 3.1.23]). But if
ae A, then

(1 "‘71)

Ka|| = sup

t#0

S kyllall, +xllalls

sup
t#0

+ sup

Lo, K]a
t 140

I?(lt—a,) a“

where the first term in the last expression derives from use of Condition 2,
and the second term from use of Condition 1, in Theorem 2.1. Thus
K#, € #, and the statement concerning 1 follows from the last statement of
Theorem 2.1.

The next example shows that a condition of the type K2 & &, is essential
for the conclusion t#; € #,.

ExaMpLE 2.5. Let # = C,(R), the space of complex continuous functions
on R vanishing at infinity, equipped with the supremum norm, and let

(@f)x) = fx—1).
Then #, = {fe®;f eB} and Hf = f'. Let 2 = #,, and define K by
(Kf)x) = (1—e”™)f'(x).
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Then Kf € £, if and only if f'(0) = 0. Now
KA =L = 1A,

and

Wlow KA = 1N 1A Ny

i.e. the conditions of Theorem 2.1 are satisfied. Next one computes that K
generates the Cy-group of isometries given by

(f)x) = f(log(l—e"'+e*7"), x =0
= f(—log(l—e'+e'™ %), x <O.
Thus if f € #, then

(. )x)— (@ f)0))/x = e™'f"(0), x>0+
—é'f'0), x-0-.

Consequently ,f ¢ %, unless f'(0) = 0.

To conclude this section, we note that Theorem 2.1 has a generalization to
inductive limits of Banach spaces which has some use in applications.

COROLLARY 2.6. Let the Banach space # be the closure of an increasing
sequence

20 ggm S...cagmnec...

of o-invariant Banach subspaces and let 2 S # denote a c-invariant core of H
such that 2™ = 9 2™ is a core of H, = H|gm.

If K:2 — ® is a dissipative operator with the property that K9™ & 2™
and K satisfies Conditions 1 and 2 of Theorem 2.1 on each 2™ (with x, and
k, varying with n), then the closure K of K generates a C,-semigroup of
contractions t.

Proor. Let K™ denote the restriction of K to 2™. It follows from Theorem
2.1 that K™ generates a Cy-semigroup of contractions ™ of #™. But if
n < m, then 2 S #™ and ™™ S 1™, because K™ & K™. Thus defining t on
(Unz12™ by setting © = 1™ on #™, one can then extend < to a C,-semigroup
of contractions of # by continuity. Let K denote the generator of 7, and note
that R|gm = K™ by construction. Now if ae D(K) and b = (1+K)a, then
there exists a sequence b,e 2™ such that ||b,—b|| —» 0, and since K™ is a
generator on #™ there exists a sequence a, € D(K™) such that

b, = (1+K™a, = (1+K)a,.
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Then it follows that a, = (14+K) 'b, - a. But since 2™ is a core of K™,
one concludes that 2 = { J,,,2™ is a core of K, that is K = K.

ReMARKs 1. If K: 2 — £ is a dissipative operator, where 2 is a g-invariant
core for H, satisfying the conditions

L lIKall = kllall,, ae2,
for some k2 0,p 20,
2. [6,K] =0,

then it is easily seen that K generates a C,-semigroup of contractions. For,
K restricts to a dissipative, everywhere defined, hence bounded, operator,
generating a uniformly continuous semigroup of contractions, on each spectral
subspace #?(R2) for compact subsets Q of R. These semigroups are mutually
consistent, and extend by continuity to a C,-semigroup of contractions
generated by K.

2. There is an alternative proof of Theorem 2.1 in the case, when Con-
dition 1 is replaced by the slightly stronger condition:

lIKall £ xollall,, a€2.
Let f € I!(R) be such that f has compact support A4, and put
Kn = "Idsf(ns)ﬂ',KO'_,.

Since K, %#°(2) & #°(2+nA), an easy estimation shows that every vector in
#°(Q) is_analytic for K,, for any compact Q. Therefore, by some standard
theory, K, generates a Co-contraction semigroup. Some estimates similar to
those in the proof above show that the resolvents (I +¢K,)” ! converge in the
required fashions as n — oo, and as ¢ — 0, and it follows that K extends to a
generator.

3. Higher-order estimates.

Theorem 2.1 can be extended in a variety of ways. One possible extension
involves bounds on higher order commutators such as [g,, [0,, K]]. Such
bounds can be expressed in various equivalent fashions, and it is of some
significance that they automatically imply smoothing properties such as
K#, S 2.

ProposITION 3.1. Let  be a Cy-group of isometries of the Banach space #
with generator H and set B, = ()21 D(H"). If K: #,, — R is a linear operator
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satisfying
IKall =-kollall,

for some ko > 0,n 21, and all € B, then the following conditions are equi-
valent for each p 2 1, k; 2 0:

L. |llow [0, K]]all < ky2llall,, teR, ae®,,

2 Lo, [o,, K1]all = k,lstlllall,, s,teR, ae®,,

3. K#B,SB, and |[o,[H K]]all < kltlllall,, teR, ae®,.
Proor. 2 = 1. This is evident.

3 = 2. By differentiation of u - [o,,0,Ka,_,] and subsequent integration
one obtains the relation

t

.
[0 [0, K]]a = | du[o,,0,[K,H]o,_,]a
0
t

= ~duo,,[a,, [K, H]]o,-.a.

(-1 8

But by Condition 3
llo.[o,, [K, H]Jo,-all = kilslllo,—.all, = kylsllall,
and Condition 2 follows immediately.

1= 3. Fix ae 8, and for t # 0 define

b, =t (6, Ko_,a—Ka),

b, =t"Y0,Ko_ra—oKa_.a).
It then follows from Condition 1, with a replaced by o _,,q, that

b, —bill < ki lelllall,.
But b, = (b,,+b;;,)/2 and so
1By = by | = lby, —biy,ll/2 = kyltlllall /4.

Writing t,, = 27 ™t and replacing ¢ by ¢, one finds

lIb,, = by, I = 27" 2k, |tlllall,.
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It follows that b, converges to a limit d, as m — oo and

(3.1) llb,—d,ll = k,ltlllall /2.
Now
-1 -
(3.2) “(—“—'T—) Ka—b,+0,KHal|| = Na,K {Q—ta—"—)a+Ha} —0
t—0

because ||o, Kc|| < kolicll, for all ce 8, and

tim |27 4+ Hal| =o.
-0 t n
In particular for ¢ fixed
. -1
tim ||~ ka—d +KHal| = 0

since ||b,_—d,|| = 0 and o is strongly continuous. But for s # 0, —t, one has
the identity

-1 - -
Cori=D g, s, @Dy, @1,
Smtilm s+t ™ s, s+t t,

Letting m — oo one finds
s t
d..—KHa=——(d.— — (d -
s+t a=_ (d,—KHa)+ Py (d,.—KHa)

or, equivalently,
(s+t)dyy, = sd,+1td,.

Thus the function t — td, is additive. But it follows from (3.1) and the
boundedness hypothesis on K that

litdll < kyt?|lall /2 + 2k lall,.
Consequently t — d, must be constant. Setting d, = d, it then follows from (3.1)
and (3.2) and strong continuity of g, that

(0,—1)

lim —t——Ka—d+KHa

t=+0

=0.

Thus Kae #, and
HKa = KHa—d.
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In view of the identity
2'
[on [o,,,K]] = Zl 0¢-1y, [0 (01, K]]O@0m 1,

r=

it follows from Condition 1 that

I[ow [0, K1]all = 27kythllall, = kyttallall,.

[t

= kyltlllall,.

This establishes Condition 3 and completes the proof of the proposition.

Hence

I[o,, [H, K]]all = lim

m-—*

The foregoing result, and its proof, are very similar to the equivalent
characterizations of the subspace &5, given in [15]. We define this subspace by

g3/2 = {aegl ;Haegl/z}
and set
||a||3,2 = ||a“1/z v ||Ha||,,2.
Proposition 4.2 of [15] gives other equivalent definitions and we will use the

fact that if a € #;,, then

(r- 0'1)2
le)

sup all.

t+0

1—-
E——"—')Iia” = sup
t t#0

THEOREM 3.2. Adopt the assumptions of Theorem 2.1 but further assume that
K satisfies the condition

3. there is a k, > O such that
Ilo., [0, KT]all < kllall,t?, ae2,teR.

Let t denote the C,-contraction semigroup on ®# generated by K.
It follows that ©#, & #, and t|g is a Co-semigroup satisfying

33) llzally = ellall;, t20, ae®,.
Moreover 1#5,, & $;,, and
llzalls2 < e*2*2Vall;,, 20, ae By,

Finally if K2 S #, for some c-invariant core @ of H, then t®, S ®, and
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t|g, is a Co-semigroup satisfying
Izall, < e 1% all,, t20, ae,.

Proor. It follows as in Theorem 2.1 that K extends to £, and Conditions
1, 2 and 3 also extend to all a € #,. Therefore, by Proposition 3.1, K&, € %,
and the first statement of the theorem follows from the last statement of
Theorem 2.1.

Now to prove 1%#;,; & #3,, we proceed as in the proof of 1%, & %,,,
in Theorem 2.1.

First by Lemma 2.2 one.has

lIrep(eally = llalls2(1—eky) ™" = llalls (1 —2¢ek, —eky) ™!

for 2¢k, +¢ek, < 1 and all a e #;,,. Second by Condition 3 and the estimate
(2.2), one obtains

“(1_01)2

t2

rape)al| = llallaz + 2ekyIr,, p(€)all; + ek2llre g(e)all,

for a e #;,,. Hence if 2¢k, + ¢k, < 1 one deduces that

lIrap(e)ally < llalls/2(1—2¢ek, —eky) ™.
Hence

(1 - 01)2
t2

|

Consequently in the limit § — 0, then a — 0, one finds

”(1 _Gr)z
t2

ra,ﬁ(a)a

’ s “0”3/2(1 —2¢ek; —eky)” 1

real| = ”0”3/2(1 —2ek, —Skz)_l-

This establishes that r(e)%;,, & %5, and
lir€)alls;z = llalls;z(1—2¢k, —eky)7 .
Therefore by iteration

ll(l —tf')z r(s/n)y'a

= lall32(1 = (s/n)(2ky +k32))7", s 20,

and in the limit n - oo

”ﬂ—mf
T

tZ

(|| S llall3 ek rDs,

It then follows from (3.3) and the remark preceding the theorem that
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T,@yz = gyz and
lltallsz = llalls2e®41%%%, s 2 0.

The proof of the final statement of the theorem is similar to the proof of
the corresponding statement for t|g in Theorem 2.1 and we omit the details.

This type of reasoning can be extended ; higher order commutator estimates
lead to increased smoothness properties of 7. Another type of generalization
of Theorem 2.1 arises by weakening Condition 1. This is relatively straight-
forward if yH" generates a C,-contraction semigroup for some yeC with
[yl = 1 and some large n, as is the case when £ is a Hilbert space.

THEOREM 3.3. Let 0 be a Cy-group of isometries of the Banach space #
with generator H, 9 < #, a o-invariant core of H, and K an operator from
9 into .

Assume K is dissipative,

1. IKall £ kllall, , ae2
2. ll{or, K]all = kyllall,ltl, teR, ac2,

and yH" is the generator of a Cy-contraction semigroup for some n > p and some
y€C with |y| = 1.

It follows that the closure K of K is the generator of a Cy-contraction semi-
group T.

Proor. The proof follows the general line of reasoning used to prove

Theorem 2.1. We will just sketch the necessary modifications.
First one defines H, 5 by

H,p3=K"+ByH", af>0

where K is the n-fold regularization of K,

Ko = al j dr, .. J‘dt,,o,ﬁ..‘ﬂul(a_,l_..._,_.
V] V]

Then the H, ;4 generate Cy-contraction semigroups.

Next one examines convergence of the resolvents r, 4(¢) for small positive
¢ as B—0 then a—0. For this it is necessary to bound |r,s(e)all,
uniformly in « and g for all a e 8, and all small positive ¢, and then to bound
|ire,s(e)all, uniformly in B. If b = r, 4(¢)a, then b e B, and

H" = —(efy) '(b+eK™b—a)e ®,_,,
so be #,,_. The first bound is obtained as in Lemma 2.2, but the second
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bound needs a slight extension of the previous technique. One proceeds by
induction. First one has

lIrep(e)ally = llally (1 —eky)~*
for ek, < 1. Next suppose
lIre.s(€dalls = llallcs(a, €)
for ¢k,s < 1, with ¢ (e, £) independent of B, and for 1 < s < m. Now
IH™r, g(e)all = |IHall +ell[H™, K]r, p(e)all.

But one has the combinatorial relation

a1 = § (7)ta A=

r=1
where [H, A]® denotes the multiple commutator, i.e.

[H,A]" =[H,A] and [H,A]*® =[H,[H,A]* V).
But

I[H, K®™JH™ 'b|| < sup
t#

(5 Je
0 t

< kyl1bllm
by use of Condition 2. Moreover

[H,K®] = @.K¢™Vo_,—K¢ ™o

and so
I[H, K2 H™2b|| < a™ Y||[H, K" V]o - H™ 2bl|+ o~ *|I[H, K& V]H™?b||.
Therefore using the preceding estimation technique
I[H, K&TPH™2b|| £ (2~ )kyl1bllm- -
Similarly
N[H, K&OH™"bl| S 2o~ 'Y ™ 'kyllbllm—r+1-
Combining these estimates one obtains

IH"r, p(e)all = llalln+ekymllr,, p(eallm+& 3 (':) QoY kylra p(€)allm—r +1-

r=2
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Therefore by the induction hypothesis, one has
1H™r, g(e)all = ekymlir,, g(e)allm + dm(@, &)llallm
for a suitable d,,(, €) and ¢k,(m—1) < 1. This immediately yields the bound
Ire,p€)allm < (@dm(®, &) v -1 (@, ))llallm(l —ekym)~!

with the additional constraint ek;m < 1. This procedure works for all m < n
to give a bound independent of f.

The proof of convergence of the resolvents r, 4(¢) as f — 0, then a — 0,
now proceeds as in proof of Theorem 2.1, as does the rest of the proof, and
so we will omit further details.

4. Applications and related results.

In this final section we discuss some of the foregoing topics in special
contexts.

A. Hilbert space.

Let & be a Hilbert space, H a self-adjoint operator on #, and o, = exp{iHt}
the unitary group generated by —iH. Next let K be a symmetric operator on
2 with domain D(K) 2 D(HP) for some p 2 1. Assume

IK(1+iH)™?|| < + o0
sup |I[e,, KJ(1 +iH)™'||/ltl < + oo0.
t+0

Then it follows that K is essentially self-adjoint and
¢'*D(H) € D(H).

This statement is a direct consequence of Theorem 3.3 once one notes that
—iH" generates a C,-group of isometries for all n 2 1, and, since K is
symmetric, £ K are both dissipative.

If H20 and p =1 the essential self-adjointness of K corresponds to
Glimma and Jaffe’s original theorem, Theorem 1.2 of [7]. f H 20 and p > 1,
it is a result of Jaffe, [12, Theorem 2.2].

If H20and p = 1, Faris and Lavine [6] showed that the quadratic form
domain of H, ie. the domain q(H) = D((1+ H)"?) is invariant under the
group exp{iKt}.

Various applications of these results may be found in [6], [7], [12], [13],
[8], [14].
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B. Abelian C*-algebras.

Let # = Co(X), where X is a locally compact Hausdorff space, and let S
be a one-parameter group of homeomorphisms of X. Define

Xo ={weX;S0=ow, teR}

and set (g,.f)(w) = f(S,w). Then ¢ is a Cy-group of isometries of %, and in
fact *-automorphisms, and the generator H of ¢ is a *-derivation.
Next for w € X define the period p(w) by

p(w) = inf{t > 0; S,0 = w},

and the frequency v(w) by v(w)= 1/p(w). Let A be a real continuous
function on X \ X, and define

(Kf) (@) = Aw)Hf ) ), weX\X,,
=0 , weX,
Then K defines a linear mapping of #, into £ if, and only if,
() £ c(1+v(@)?), weX\X,,

for some ¢ 2 0, p 2 0, [4], [2]. Under these conditions K is a *-derivation and
1 K are dissipative. Now Condition 1 of Theorem 2.1 is satisfied if, and only if,

(@) Hf ) @) = ellfll2+ xSl

or equivalently

[A(w)] £ (1 v dv(w))+xk,
(see [2, Section 5]), for all ¢ > 0. This in turn means that
@.1) A(w)] = g(v(w)), weX\X,

for some increasing function g such that g(v) = o(v) as v - co.
Condition 2 of Theorem 2.1 gives

|(A(S,w) — A@))Hf )Sw)| = kyltlllf1ly
for all f € #,, and this is equivalent to the Lipschitz condition
[A(Siw)— A(@)| = kyltl.

Thus in this case Theorem 2.1 gives weaker results than are already known
(see [3], [15]). For example it is known that K generates a Co-group of
*.automorphisms of & if 4 satisfies (4.1), for any increasing function g and

IA(S,w) - A(w)] = g1 (v(@))it]

for any increasing function g,. But this result may be recovered from
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Corollary 2.6 by taking
B ={feB;f(Sw)=f(w) for all t if v(w) = n},
(see [15]).

Next we prove that in this context Condition 1 of Theorem 2.1 may be
replaced by 2 € 4%, and

IKall < kllall,, ae2.

for some k 2 0, n 2 1, provided that T K are dissipative. Thus one obtains
a generalization in the direction of Theorem 3.3 but without the unsatisfactory
assumption that yH" is a generator.

Suppose K : #,, — #, and that T K are dissipative. Further suppose f € £,
we X, and f =0 in a neighbourhood U of w. There exists an he #,, such
that h(w) = ||h|| 2 ||f]| and supph € U. For any yeC with |y| = 1,

(h+3f) @) = |lh+fIl = |Ihl|
so dissipativity gives
Re((Kh)(w)+7y(Kf)w)) = 0.

It follows that (Kf)(w) = 0. Thus supp Kf S suppf, and K is local in the
sense of [4]. But it follows from locality [4], [2] that there exist an integer n
and complex functions 4,,, 0 £ m < n, such that

(Kf )w) = Z::oi...(w)(H"'f)(w), weX, feR,.

Furthermore A, is bounded and continuous on X, and 4, is zero on X,
and polynomially bounded in the frequency and continuous on X \X,, for
1ESm=n

Consider a point we X\ X,. For k > 2, a > 0, feR, there is a function
f e, such that ||f|| =1 and

fSw) =1-at®—pt*
for small |¢|, [4], [2]. Dissipativity then gives
0 = Re(Kf)(®) = Re(4do(w)—2a;(w)— Bk !4, (w)).

Since this holds for all « >0 and BeR it follows that ReA,(w)=0 for
0=m=n, m+ 1. Next let p be the largest integer for which Im 4,(w) # 0,
and suppose p > 0. For any B €R there is a complex function g € #,, such that

9(Sw) = ¥
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for small |t|, and ||g|| = 1. Dissipativity gives
0 = Re(Kg)(w) = Re(Ao(w)+ip!fA,(w)).
It follows that Im 4,(w) = 0 so
Kf =Af +,Hf, feRB,

where A, is purely imaginary and 4, is real. Thus K is a bounded pertur-
bation of 4,H. Hence if 4, H generates a Cy-group of isometries, then K also
generates such a group. In particular this is the case if Condition 2 of
Theorem 2.1 is satisfied.

We note that the foregoing argument combined with Theorem 1.2c of [4]
gives the following statement. If K: %, — @ is real, ie. Kf = Kf for all
f B, then the following conditions are equivalent ;

1. K are dissipative,

2. K is a *-derivation,

3. there is a unique function A which vanishes on X, and is polynomially
bounded in the frequency and continuous on X \ X, such that

K = AH Igm.
Next we remark that there are examples of dissipative operators

K :#, — # which do not have the form K = Y 4, H™, eg. X = {1,2},0 =1,
K(x, B) = (e + B, a+ B). But if it is assumed that K is dissipative and

K= nngo )‘MHM

then the above argument shows that

)'k=0’ k>2, Azéo, Reiogo,

(42) 0 S Re(ko(@)+iBA; (@) FAy(@)), BeR.
Hence
@3) (Im A, ())? + 42,(@)Re Jo(@) < 0.

Conversely, suppose that (4.2) and (4.3) are satisfied. If f(w) = 1 = ||f|| with
feB,, then t - (ff)(S,w) has a minimum at ¢t = 0, so

2Re(Hf )(@) = 0
2Re(H*f)(w)+2|(Hf )w)* 2 0.
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Hence
Re(Kf)(w) = Re Ap(w)—Im 4 (w)Im(Hf ) (@) + 4, (w)Re(H?f )(w)
2 Re Ao(w)—Im 4, (w)l( —Re(H*f )(w))*? —
— Ay (@)(—Re(H*f )(w))
20

by (4.2) and (4.3), so that K is dissipative. Consequently if K ; # ., — 4 is real
and local then from the foregoing and Theorem 1.2B of [4] the following
conditions are equivalent:

1. K is dissipative,
2. K is a *dissipation, i.e.

Kff = (KN)f +/(Kf), feRs.
C. Non-Abelian C*-algebras.

Let # be a C*-algebra and ¢ a Cy-group of *-automorphisms, so that H
is a *-derivation. Suppose further that K is *-derivation. If K satisfies the
stronger form of Condition 1 of Theorem 2.1,

(4.4) IKall < kllall;, a€2,

then K is automatically dissipative (see [1]), Furthermore, if K extends to a
*.derivation of &, into %, then a result of Longo establishes that (4.4) is
automatically satisfied for some k (see [11]). Thus we can deduce the following
result.

THEOREM. Let (#,R, a) be a C*-dynamical system and denote the generator
of 6 by 6¢. If 6: D(6o) = & is a *-derivation such that

[o,, 6](@)II = kyltlllall;, t€R, a€D(d)

for some ky = 0, then & is closable and its closure & generates a Co-group
of *-automorphisms of #.

This is a direct consequence of Theorem 2.1.

An example was given in [10] where # is a simple C*-algebra, and
B + D(8) 2 9(8), so that 6 —Ad, is not 8o-bounded for any 1. However, in
this example, [o,,6] = 0. Indeed, there does not appear to be any known
example, where # is simple and the conditions of the Theorem above are
satisfied, but & is not a bounded perturbation of a derivation which commutes
with ¢.

Conversely suppose K satisfies the conditions of Theorem 2.1 and =K
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are dissipative. Then K generates a C,-group of isometries. If # has an
identity 1 and K1 = 0 then t is a group of *-automorphisms (see, for example
[S, Section 3.2]) and therefore K is a *-derivation.

ApbDED NoTE. Since this paper was written, the second author has shown
that Theorem 3.3 is valid without the assumption that yH" generates a
Co-contraction semigroup. The proof of the general result relies on singular
perturbation theory of holomorphic semigroups. In addition to the estimates
of Theorem 3.3 it requires new estimates on growth properties of perturbed
holomorphic semigroups. The proof will be published in a separate article.
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