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UNIFORM HOMEOMORPHISMS BETWEEN UNIT
BALLS IN L,-SPACES

GUN-MARIE LOVBLOM

Introduction.

It was proved by Mazur [4] that for p,q 2 1 the spaces L, and L, 1,
are homeomorphic. From this work it also follows that the unit balls B(L,)
and B(L,), B(l,) are uniformly homeomorphic. However, in Lindenstrauss [3]
and Enflo [1] the nonexistence of a uniform homeomorphism between L,
and L, was established. Enflo also proved that L, and [, are not
uniformly homeomorphic [2]. From the argument it also follows that the unit
balls are not Lipschitz equivalent.

In this paper we study uniform homeomorphisms between B(L,) and B(l,).

onto

For a uniform homeomorphism T : B(X)— B(Y) we define the modulus
of continuity ; by

or(e) = sup{||T(x;)— T(x2)ll: llIxy — 5|l < €}

In Section 1 we prove thatif X = L, and Y = [, then d;_,(d7(c)) 2 Ke|loge|
for a sequence of ¢ — 0.

In Section 2 we prove that for X = L,,1,, Y=L, l,and l Sp<q=2
we have

dr_1(67(e)) 2 KeP'? for all ¢,

We also prove that if T:B(L,) - B(E,) or T:B(l,) = B(l,) then this result

is sharp. In fact by using the Mazur map we obtain a T:B(L,) — B(L,)

(or B(l,) + B(l,)) such that for 1 < p < q we have d;_,(dr(¢)) S KeP?for all .
By using the Mazur map we also construct a uniform homeomorphism

T:B(L,) - B(L,) - B(l;) - B(l,)

and give estimates of 65 _(d7(¢)).
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We first prove the following lemma which will be used several times in this
paper. We put L,(0,1) = L,.

LemMA 1.1. Let T: B(X )22~ B(Y) be a uniform homeomorphism. Then there
exists a K > 0 such that

Oor(e) 2 Ke forall e £ 1.

Proor. For every ¢ O0<e=1, let dr(¢) = K(¢)¢ and assume that
inf{K(¢)} = 0. Then we can find a subsequence {K(e,)} such that ¢, =0,
K(e,) = 0, when n — 0.

Obviously K(1) = 67(1) £ Nor(1/N) for every integer N. Now, for every n
let N, be the integer such that 1/(N,+1) < ¢, = 1/N,. Then we have

K(1)/(Ny+1) = 67(1/(Ny+1)) = 01(en) = K(en)en = K(&,)/N,.

Thus K(g,) 2 K(1)N,/(N,+ 1) which for large n contradicts the assumption
K(g,) — 0.
Hence let K = inf{K(¢)} > 0 and Lemma 1.1 is proved.

TueoreM 1.1. Let T:B(L,)>*°— B(l,) be a uniform homeomorphism. Then
there exists a K > 0 and a sequence {¢,} with ¢, — 0 such that

6T—1(6T(8n)) g KE..HOgEnl for a” En-
For the proof of Theorem 1.1 we need the following lemmas.

LEMMA 1.2. If 61(¢)(ellogel) ™" — O when & — 0, then for every ¢, 0 < ¢ = 1,
the sequence

{e/2":n=0,1,2,3,...}
contains an infinite subsequence {¢,} such that

01(en/2) = O1(e4)/2+ O1(en/|10g E4l).
LemMma 1.3. Let a,x,y € B(l,) and assume that

HNa—x||—llx—yll/2l S e and |lla—yll—Ix—yll/2] S e

Then there is a metric midpoint m between x and y such that ||m—al| = 3e.

The main idea of the proof of Theorem 1.1 is as follows: If T satisfies the
assumption in Lemma 1.2, then T maps metric midpoints on “almost” metric
midpoints. The set of metric midpoints is a compact set in I, but not in L,.
By Lemma 1.3, this gives that we can find well separated points in L, such
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that the distance between their images is much smaller. We give the details
below.

Proor oF LEMMA 1.2. Given ¢ > 0 set
or(e/2") = K(e/2")(e/2")|log(e/2")].

Then for infinitely many n we have K(¢/2") = K(g/2"*!). Otherwise we for
some N would have

0 < K(e/2) < K(g/2V*1) < K(g/2¥*2) < -+,

which gives a contradiction, since by assumption K(g/2") -0 whe n — oo.
Hence let {¢,} be an infinite subsequence of {¢/2":n =0,1,2,...} such that
K(g,) 2 K(&,/2). Then we have

Or(en/2) = K(ea/2)(en/2)l10g(n/2)|
=< K(g,)eq(|loge,] +10g 2)/2
= (r(en) + K(en)e,log 2)/2.
Let m(n) be such that
2™ < |loge,| < 2™+l
Then we get
Or(en/lloge,l) Z O7(e,/2™" ") 2 Or(e,)/2m 0!
= K(en)enlloge,l/2"™* 1 2 K(ey)en/2.
Thus we have
07(€a/2) S 67(e,)/2+ S1(en/Il0g &) ) l0g 2
and Lemma 1.2 is poved.
ProoF oF LEMMA 1.3. Without loss of generality we can assume y = 0. Let
A={wel :lx—wll+lwll = lIx|l}.
One can easily check that we A4 if and only if
sign(w,) = sign(x,) and |w,] < |x,| for all n.
Without loss of generality we assume x, 2 0 for all n. Now, let

{a,, if0<a, <x,

b=<0 ifa,<0
x, ifx,<a,.

Then b e A and |la—x||+|lal| = lIx|| +2lla—bl]|.
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By assumption this gives;
y lla—bll =& and ||x||/2—2¢ < ||bl] < |Ix]I/2 + 2e.
We let
m = bllx||/2lIbll if |Ibll = [Ix|I/2
and
m = b+ (x —b)(IIx||—2IIbll)/2llx —bll if [Ibll < |lx]|/2.

One can easily see that me A4 and since ||m|| = ||x||/2 we have that m is a
metric midpoint between 0 and x. Furthermore, from (1) we get

[Im—al| £ e+ |lm—b|| < 3e,
and the proof is complete.

Proor orF THEOREM 1.1. We first assume there for some K; > 0 exists a
sequence {¢,} with ¢, — 0 such that

or(e,) 2 Ky¢g,)loge,| for all n.

By Lemma 1.1 there is a K, > 0 such that d;_,(¢) 2 K,e¢ for all ¢ £ 1. Thus,
for all n we have

Or-1(07(es)) 2 K207(e,) 2 K Kjé,loge,|

and Theorem 1.1 is proved for this case.

Now, if we can not find such a sequence for any K, > 0, then §; satisfies
the assumption in Lemma 1.2.

Let K, > 0 and K(¢) be such that

K¢ S 0:(¢) = K(e)e|loge| for all e = 1.
Given any fixed ¢ > 0, let {¢,} be a sequence as in Lemma 1.2. Since
K(e,/lloge,|) >0 when n — o
we can assume that
K(e,/lloge,l) < K;/8 and |loge,| > 1 for all n.

Now, given ¢, in the sequence and r, 0 < r < dr(e,/|loge,|)/d7(e,), we can find
f,g€B(L,) with ||f —g|| = ¢, such that

IT()—T@I > (1—r)dr(e,).

Then we have ||f —g| = ¢,/2. To see this we assume ||f —g|| < ¢,/2. Then by
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Lemma 1.2 we get

(1=r)or(e,) < IT(f)=T@N = br(en/2) = S7(e,)/2+ br(en/|l0g &)).
From this we get
Ky &,/2 = 67(e,)/2 < r1(e,) + 67(en/|l0g &) < 207(e/|log 4])
= 2K (e,/|10g &,])en(|l0g £4] + log|log &,])/|log &,
< 4¢,K(e,/|loge,|) if |loge,| > 1.
This contradicts the assumption K(g,/|loge,|) < K,/8.

Now, we can find a sequence {M,} of metric midpoints between f and g
such that

IM—Mill = |lf —gll/2 for k + i.

Since we here also need ||M,|| £ 1 we give for the sake of completeness an
example of such a sequence.

We first assume f > g 2 0. For every k = 1,2,3,..., let a,, = 0 and for
n=23,..,2+1, let q; ,€[0, 1] such that

Ay < Ayn+y and f If (x)—gx) = IIf —gll/2~.

x,n

We define
_ {f (x) X € (axm axn+1)and n odd

g(x) x€(ayn ain.+1)and neven.

One can easily check that

IMy—fll = lIM—gll = IIf —gll/2
and

M=M= |lf —gll/2 if k #i.

Furthermore we have

IMill = 3 f fe)+ Y f g(x)
nodd neven
1 Bin+1 1
= Ig(x)+ %4 -[ fx)—glx) = _[y(x)+llf—yll/2
0 [ )

= (A lI+llglh/2 = 1.
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The general case follows by using the same definitions as above for the
restrictions of f, g to the sets {x:g(x) > f(x) 2 0}, {x:f(x) >0 > g(x)},....

We now prove that T(M,) is an “almost” metric midpoint between T(f)
and T(g). Since ||f —M,|| < ¢,/2, we by Lemma 1.2 get

IT(f)=TMI = dr(en/2) = d7(en)/2+ 7(en/l0g e4l)
S IT()—T@)N/2+rdr(e,) + Or(ea/llog &nl)
S IT()—T@N/2+201(e/|loge,|).
Similarly we have
IT(g)—T(MI = IT(f)— T(@)lI/2+ 201(ea/|log &,l).
This gives
NT)—TMIN-NT()—T@I/2| = 267(e,/lloge,l)
and
T (@)= TMI =T (f)—T@I/2| = 261(e,/l0ge,])-

Since the metric midpoints between T'(f) and T(g) is a compact set and
{M,} is not, we by Lemma 1.3 can find k,i with k # i and a metric midpoint
m between T(f) and T(g) such that

IT(M)—TM)Il = IT(My)—ml|+||T(M;)—ml|| < 1257(e,/|l0g e,|)-

Hence we get
07-1(1207(ea/ll0ge,])) Z |IMy—Mifl = |If —gll/2 2 e./4.
Let ¢,/|loge,| = &,. Since |loge,| > 1, we get
ewllog x| = &x(llog e, +1ogllog e,l)/log &,| < 2e,.

Thus we have

Or-1(0r(ey)) Z 67— 1(1201(en/|l0g &]))/12 2 €,/48 2 &y |log ey |/96
and the proof of Theorem 1.1 is complete.
2.

For 1 = p,q we let M, , denote the Mazur map of L, onto L, that is
M, o(f)(x) = sign(f DI )P,

and we let m, , denote the Mazur map of [, onto I,. We put L, = L,(0,1).

THEOREM 2.1. Let 1 S p < q <2 and let T:B(L,,)ﬂ!?—» B(L,) be a uniform
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homeomorphism. Then there exists a K > 0 such that
Or-1(07(e)) 2 KeP? for all ¢ S 1.

THEOREM 2.2. Let 1 S p<gqand let T = M, ,: B(L,) - B(L,). Then there
exists a K > 0 such that

O0r-1(07(€)) £ KeP'1 for all e < 1.

ReMARK. In Theorem 2.1 we have the same estimate for T:B(L,) - B(l,),
B(l,) - B(l,), B(l,) = B(L,), and in Theorem 2.2 we have the same estimate
for T =m,,:B(l,) = B(,).

Let F be an isometry between L, and [,. Then T =m; oFoM,, is a
uniform homeomorphism of B(L,) onto B(l,) satisfying the following theorem.

THEOREM 2.3.

@ If1=p=2<gq,then dr_,(67(c)) = KeP1,
) If1=p<q=2, then é;_,(0r(c)) S KeP¥*
() If2=p<gq,then d;_,(67()) = Ke*'Pa.

In the proof to Theorem 2.1 we shall use a construction similar to one used
by Enflo in [1]. We first recall a result from this paper.

A set of 2" points in L, is called an n-dimensional cube if each of the
points is indexed by an n-vector whose components are 0 or 1. In an n-
dimensional cube a pair of points is called an edge if the indexes of the points
differ in only one component and a pair of points is called an n-diagonal if
the indexes of the points differ in all components.

THEOREM. Let C be an n-dimensional cube in L,, 1 < p < 2, and let

Smax = max{||f —gll: (f,g) edge in C}
dpin = min {||f —gl|: (f, g) n-diagonal in C}.
Then we have n*/Ps;,, 2 dp;..

Proor oF THEOREM 2.1. We construct an n-dimensional cube C, as follows.
Divide [0, 1] into n intervals of length 1/n and let the cube be the set of
functions which takes the value 1 or 0 on each interval. We let a function
be indexed by the n-vector whose mth component is equal to the value of the
function on the mth interval. In this cube every edge has length 1/n'/? and every
n-diagonal has length 1.

Let

s, = max{||T(f)—-T@): (f,9) edge in C,}
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and
d, = min{||T(f)—T(g)ll: (f,9) n-diagonal in C,}.
Then, for the image of C, under T we have by Theorem above
ntlas, > d, .

Obviously we have s, < dr(1/n'/?), and since T~! is uniformly continuous
we have inf,{d,} =d > 0.
Thus

Sr(1/n'?y = d/n''7 forn=23,4,....

Now, for every ¢ > 0, we set d7(¢) = K(¢)eP. Then for 1/(n+1) < e? = 1/n
we have

d/(n+ 1)1 < 5:(1/(n+1)"'7) < 57(e) = K(e)e?'* < K(e)/n'/4.
From this we get
inf{K(e):¢ >0} = K, > 0.
Let K; > 0 such that d;_,(¢) 2 K¢ for all ¢ = 1. Then we have
Or-1007(e)) 2 K,07(e) = K K,eP1 forall e £ 1
and the proof of Theorem 2.1 is complete.

ProoF oF THEOREM 2.2. From Mazur [4] we obtain the following inequalities.
If 1 < p = q then

(1) M, (f)—M, @)l = 2IIf —glI” for all f, g€ B(L,)
@) 1My, () =M, @)l = (a/p)2777 || f —gll forall f,geB(L,)

Thus we have d7(¢) < 2¢”9 and since T~! = M, ,, we have

or-1(e) = (q/p)29""'e
and this proves Theorem 2.2.

ProoF oF THEOREM 2.3. The estimates (1) and (2) in the proof of Theorem 2.2
also hold for the map m,, ,.
In case (a) we have p < 2, 2 < q and hence by (1) we have

"mz,qu°Mp,2(f)—m2,q°F°Mp.2(g)" § Kl"f_g”plq for all f)gEB(Lp)a

Thus d;(¢) < K7 and 67_,(¢) £ K,¢ and case (a) is proved. Case (b) and
(c) are proved similarly.
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