UNIFORM HOMEOMORPHISMS BETWEEN UNIT BALLS IN L_p -SPACES

GUN-MARIE LÖVBLOM

Introduction.

It was proved by Mazur [4] that for $p,q \ge 1$ the spaces L_p and L_q, l_q are homeomorphic. From this work it also follows that the unit balls $B(L_p)$ and $B(L_q)$, $B(l_q)$ are uniformly homeomorphic. However, in Lindenstrauss [3] and Enflo [1] the nonexistence of a uniform homeomorphism between L_p and L_q was established. Enflo also proved that L_1 and l_1 are not uniformly homeomorphic [2]. From the argument it also follows that the unit balls are not Lipschitz equivalent.

In this paper we study uniform homeomorphisms between $B(L_p)$ and $B(l_q)$. For a uniform homeomorphism $T: B(X) \xrightarrow{\text{onto}} B(Y)$ we define the modulus of continuity δ_T by

$$\delta_T(\varepsilon) = \sup\{||T(x_1) - T(x_2)|| : ||x_1 - x_2|| \le \varepsilon\}.$$

In Section 1 we prove that if $X = L_1$ and $Y = l_1$, then $\delta_{T-1}(\delta_T(\varepsilon)) \ge K\varepsilon |\log \varepsilon|$ for a sequence of $\varepsilon \to 0$.

In Section 2 we prove that for $X = L_p, l_p, Y = L_q, l_q$ and $1 \le p < q \le 2$ we have

$$\delta_{T-1}(\delta_T(\varepsilon)) \ge K \varepsilon^{p/q}$$
 for all ε .

We also prove that if $T: B(L_p) \to B(L_q)$ or $T: B(l_p) \to B(l_q)$ then this result is sharp. In fact by using the Mazur map we obtain a $T: B(L_p) \to B(L_q)$ (or $B(l_p) + B(l_q)$) such that for $1 \le p < q$ we have $\delta_{T-1}(\delta_T(\varepsilon)) \le K\varepsilon^{p/q}$ for all ε . By using the Mazur map we also construct a uniform homeomorphism

$$T:B(L_p)\to B(L_2)\to B(l_2)\to B(l_q)$$

and give estimates of $\delta_{T-1}(\delta_T(\varepsilon))$.

Received April 24, 1987.

1.

We first prove the following lemma which will be used several times in this paper. We put $L_p(0, 1) = L_p$.

LEMMA 1.1. Let $T: B(X) \xrightarrow{\text{onto}} B(Y)$ be a uniform homeomorphism. Then there exists a K > 0 such that

$$\delta_T(\varepsilon) \ge K\varepsilon$$
 for all $\varepsilon \le 1$.

PROOF. For every ε , $0 < \varepsilon \le 1$, let $\delta_T(\varepsilon) = K(\varepsilon)\varepsilon$ and assume that $\inf\{K(\varepsilon)\} = 0$. Then we can find a subsequence $\{K(\varepsilon_n)\}$ such that $\varepsilon_n \to 0$, $K(\varepsilon_n) \to 0$, when $n \to \infty$.

Obviously $K(1) = \delta_T(1) \le N\delta_T(1/N)$ for every integer N. Now, for every n let N_n be the integer such that $1/(N_n + 1) < \varepsilon_n \le 1/N_n$. Then we have

$$K(1)/(N_n+1) \le \delta_T(1/(N_n+1)) \le \delta_T(\varepsilon_n) = K(\varepsilon_n)\varepsilon_n \le K(\varepsilon_n)/N_n$$

Thus $K(\varepsilon_n) \ge K(1)N_n/(N_n+1)$ which for large *n* contradicts the assumption $K(\varepsilon_n) \to 0$.

Hence let $K = \inf\{K(\varepsilon)\} > 0$ and Lemma 1.1 is proved.

THEOREM 1.1. Let $T: B(L_1) \xrightarrow{\text{onto}} B(l_1)$ be a uniform homeomorphism. Then there exists a K > 0 and a sequence $\{\varepsilon_n\}$ with $\varepsilon_n \to 0$ such that

$$\delta_{T-1}(\delta_T(\varepsilon_n)) \ge K\varepsilon_n |\log \varepsilon_n|$$
 for all ε_n .

For the proof of Theorem 1.1 we need the following lemmas.

Lemma 1.2. If $\delta_T(\varepsilon)(\varepsilon|\log \varepsilon|)^{-1} \to 0$ when $\varepsilon \to 0$, then for every ε , $0 < \varepsilon \le 1$, the sequence

$$\{\varepsilon/2^n: n=0,1,2,3,\ldots\}$$

contains an infinite subsequence $\{\varepsilon_n\}$ such that

$$\delta_T(\varepsilon_n/2) \leq \delta_T(\varepsilon_n)/2 + \delta_T(\varepsilon_n/|\log \varepsilon_n|).$$

LEMMA 1.3. Let $a, x, y \in B(l_1)$ and assume that

$$|||a-x||-||x-y||/2| \le \varepsilon \quad and \quad |||a-y||-||x-y||/2| \le \varepsilon.$$

Then there is a metric midpoint m between x and y such that $||m-a|| \le 3\varepsilon$.

The main idea of the proof of Theorem 1.1 is as follows: If T satisfies the assumption in Lemma 1.2, then T maps metric midpoints on "almost" metric midpoints. The set of metric midpoints is a compact set in l_1 but not in L_1 . By Lemma 1.3, this gives that we can find well separated points in L_1 such

that the distance between their images is much smaller. We give the details below.

Proof of Lemma 1.2. Given $\varepsilon > 0$ set

$$\delta_T(\varepsilon/2^n) = K(\varepsilon/2^n)(\varepsilon/2^n)|\log(\varepsilon/2^n)|.$$

Then for infinitely many n we have $K(\varepsilon/2^n) \ge K(\varepsilon/2^{n+1})$. Otherwise we for some N would have

$$0 < K(\varepsilon/2^N) < K(\varepsilon/2^{N+1}) < K(\varepsilon/2^{N+2}) < \cdots$$

which gives a contradiction, since by assumption $K(\varepsilon/2^n) \to 0$ whe $n \to \infty$. Hence let $\{\varepsilon_n\}$ be an infinite subsequence of $\{\varepsilon/2^n : n = 0, 1, 2, ...\}$ such that $K(\varepsilon_n) \ge K(\varepsilon_n/2)$. Then we have

$$\begin{split} \delta_T(\varepsilon_n/2) &= K(\varepsilon_n/2)(\varepsilon_n/2)|\log(\varepsilon_n/2)| \\ &\leq K(\varepsilon_n)\varepsilon_n(|\log\varepsilon_n| + \log 2)/2 \\ &= (\delta_T(\varepsilon_n) + K(\varepsilon_n)\varepsilon_n\log 2)/2. \end{split}$$

Let m(n) be such that

$$2^{m(n)} < |\log \varepsilon_n| \le 2^{m(n)+1}$$
.

Then we get

$$\delta_{T}(\varepsilon_{n}/|\log \varepsilon_{n}|) \ge \delta_{T}(\varepsilon_{n}/2^{m(n)+1}) \ge \delta_{T}(\varepsilon_{n})/2^{m(n)+1}$$

$$= K(\varepsilon_{n})\varepsilon_{n}|\log \varepsilon_{n}|/2^{m(n)+1} \ge K(\varepsilon_{n})\varepsilon_{n}/2.$$

Thus we have

$$\delta_T(\varepsilon_n/2) \leq \delta_T(\varepsilon_n)/2 + \delta_T(\varepsilon_n/|\log \varepsilon_n|) \log 2$$

and Lemma 1.2 is poved.

PROOF OF LEMMA 1.3. Without loss of generality we can assume y = 0. Let

$$A = \{ w \in l_1 : ||x - w|| + ||w|| = ||x|| \}.$$

One can easily check that $w \in A$ if and only if

$$sign(w_n) = sign(x_n)$$
 and $|w_n| \le |x_n|$ for all n .

Without loss of generality we assume $x_n \ge 0$ for all n. Now, let

$$b = \begin{cases} a_n & \text{if } 0 \le a_n \le x_n \\ 0 & \text{if } a_n < 0 \\ x_n & \text{if } x_n < a_n. \end{cases}$$

Then $b \in A$ and ||a-x|| + ||a|| = ||x|| + 2||a-b||.

By assumption this gives;

(1)
$$||a-b|| \le \varepsilon$$
 and $||x||/2 - 2\varepsilon \le ||b|| \le ||x||/2 + 2\varepsilon$.

We let

$$m = b||x||/2||b||$$
 if $||b|| \ge ||x||/2$

and

$$m = b + (x - b)(||x|| - 2||b||)/2||x - b||$$
 if $||b|| < ||x||/2$.

One can easily see that $m \in A$ and since ||m|| = ||x||/2 we have that m is a metric midpoint between 0 and x. Furthermore, from (1) we get

$$||m-a|| \le \varepsilon + ||m-b|| \le 3\varepsilon$$
,

and the proof is complete.

PROOF OF THEOREM 1.1. We first assume there for some $K_1 > 0$ exists a sequence $\{\varepsilon_n\}$ with $\varepsilon_n \to 0$ such that

$$\delta_T(\varepsilon_n) \ge K_1 \varepsilon_n |\log \varepsilon_n|$$
 for all n .

By Lemma 1.1 there is a $K_2 > 0$ such that $\delta_{T-1}(\varepsilon) \ge K_2 \varepsilon$ for all $\varepsilon \le 1$. Thus, for all n we have

$$\delta_{T-1}(\delta_T(\varepsilon_n)) \ge K_2 \delta_T(\varepsilon_n) \ge K_1 K_2 \varepsilon_n |\log \varepsilon_n|$$

and Theorem 1.1 is proved for this case.

Now, if we can not find such a sequence for any $K_1 > 0$, then δ_T satisfies the assumption in Lemma 1.2.

Let $K_1 > 0$ and $K(\varepsilon)$ be such that

$$K_1 \varepsilon \leq \delta_T(\varepsilon) = K(\varepsilon) \varepsilon |\log \varepsilon|$$
 for all $\varepsilon \leq 1$.

Given any fixed $\varepsilon > 0$, let $\{\varepsilon_n\}$ be a sequence as in Lemma 1.2. Since

$$K(\varepsilon_n/|\log \varepsilon_n|) \to 0$$
 when $n \to \infty$

we can assume that

$$K(\varepsilon_n/|\log \varepsilon_n|) < K_1/8$$
 and $|\log \varepsilon_n| > 1$ for all n .

Now, given ε_n in the sequence and r, $0 < r < \delta_T(\varepsilon_n/|\log \varepsilon_n|)/\delta_T(\varepsilon_n)$, we can find $f,g \in B(L_1)$ with $||f-g|| \le \varepsilon_n$ such that

$$||T(f)-T(g)||>(1-r)\delta_T(\varepsilon_n).$$

Then we have $||f-g| \ge \varepsilon_n/2$. To see this we assume $||f-g|| < \varepsilon_n/2$. Then by

Lemma 1.2 we get

$$(1-r)\delta_T(\varepsilon_n) < ||T(f) - T(g)|| \le \delta_T(\varepsilon_n/2) \le \delta_T(\varepsilon_n/2 + \delta_T(\varepsilon_n/\log \varepsilon_n)).$$

From this we get

$$\begin{split} K_1 \varepsilon_n / 2 & \leq \delta_T(\varepsilon_n) / 2 \leq r \delta_T(\varepsilon_n) + \delta_T(\varepsilon_n / |\log \varepsilon_n|) < 2 \delta_T(\varepsilon_n / |\log \varepsilon_n|) \\ & = 2 K(\varepsilon_n / |\log \varepsilon_n|) \varepsilon_n (|\log \varepsilon_n| + \log|\log \varepsilon_n|) / |\log \varepsilon_n| \\ & \leq 4 \varepsilon_n K(\varepsilon_n / |\log \varepsilon_n|) \quad \text{if} \quad |\log \varepsilon_n| > 1. \end{split}$$

This contradicts the assumption $K(\varepsilon_n/|\log \varepsilon_n|) < K_1/8$.

Now, we can find a sequence $\{M_k\}$ of metric midpoints between f and g such that

$$||M_k - M_i|| = ||f - q||/2$$
 for $k \neq i$.

Since we here also need $||M_k|| \le 1$ we give for the sake of completeness an example of such a sequence.

We first assume $f > g \ge 0$. For every k = 1, 2, 3, ..., let $a_{k,1} = 0$ and for $n = 2, 3, ..., 2^k + 1$, let $a_{k,n} \in [0, 1]$ such that

$$a_{k,n} < a_{k,n+1}$$
 and
$$\int_{a_{k,n}}^{a_{k,n+1}} |f(x) - g(x)| = ||f - g||/2^{k}.$$

We define

$$M_k = \begin{cases} f(x) & x \in (a_{k,n}, a_{k,n+1}) \text{ and } n \text{ odd} \\ g(x) & x \in (a_{k,n}, a_{k,n+1}) \text{ and } n \text{ even.} \end{cases}$$

One can easily check that

$$||M_k - f|| = ||M_k - g|| = ||f - g||/2$$

and

$$||M_i - M_k|| = ||f - g||/2$$
 if $k \neq i$.

Furthermore we have

$$||M_k|| = \sum_{n \text{ odd}} \int_{a_{k,n}}^{a_{k,n+1}} f(x) + \sum_{n \text{ even}} \int_{a_{k,n}}^{a_{k,n+1}} g(x)$$

$$= \int_{0}^{1} g(x) + \sum_{n \text{ odd}} \int_{a_{k,n}}^{a_{k,n+1}} f(x) - g(x) = \int_{0}^{1} g(x) + ||f - g||/2$$

$$= (||f|| + ||g||)/2 \le 1.$$

The general case follows by using the same definitions as above for the restrictions of f, g to the sets $\{x: g(x) > f(x) \ge 0\}, \{x: f(x) > 0 > g(x)\}, \dots$

We now prove that $T(M_k)$ is an "almost" metric midpoint between T(f) and T(g). Since $||f - M_k|| \le \varepsilon_n/2$, we by Lemma 1.2 get

$$||T(f) - T(M_k)|| \leq \delta_T(\varepsilon_n/2) \leq \delta_T(\varepsilon_n)/2 + \delta_T(\varepsilon_n/|\log \varepsilon_n|)$$

$$\leq ||T(f) - T(g)||/2 + r\delta_T(\varepsilon_n) + \delta_T(\varepsilon_n/|\log \varepsilon_n|)$$

$$\leq ||T(f) - T(g)||/2 + 2\delta_T(\varepsilon_n/|\log \varepsilon_n|).$$

Similarly we have

$$||T(g)-T(M_k)|| \leq ||T(f)-T(g)||/2+2\delta_T(\varepsilon_n/|\log \varepsilon_n|).$$

This gives

$$|||T(f)-T(M_k)||-||T(f)-T(g)||/2| \leq 2\delta_T(\varepsilon_n/|\log \varepsilon_n|)$$

and

$$|||T(g)-T(M_k)||-||T(f)-T(g)||/2| \leq 2\delta_T(\varepsilon_n/|\log \varepsilon_n|).$$

Since the metric midpoints between T(f) and T(g) is a compact set and $\{M_k\}$ is not, we by Lemma 1.3 can find k,i with $k \neq i$ and a metric midpoint m between T(f) and T(g) such that

$$||T(M_k) - T(M_i)|| \le ||T(M_k) - m|| + ||T(M_i) - m|| \le 12\delta_T(\varepsilon_n/|\log \varepsilon_n|).$$

Hence we get

$$\delta_{T-1}(12\delta_T(\varepsilon_n/|\log \varepsilon_n|)) \ge ||M_k - M_i|| = ||f - g||/2 \ge \varepsilon_n/4.$$

Let $\varepsilon_n/|\log \varepsilon_n| = \varepsilon_{n'}$. Since $|\log \varepsilon_n| > 1$, we get

$$\varepsilon_{n'}|\log \varepsilon_{n'}| = \varepsilon_n(|\log \varepsilon_n| + \log|\log \varepsilon_n|)/|\log \varepsilon_n| \le 2\varepsilon_n.$$

Thus we have

$$\delta_{T-1}(\delta_T(\varepsilon_{n'})) \ge \delta_{T-1}(12\delta_T(\varepsilon_n/|\log \varepsilon_n|))/12 \ge \varepsilon_n/48 \ge \varepsilon_{n'}|\log \varepsilon_{n'}|/96$$
 and the proof of Theorem 1.1 is complete.

2.

For $1 \ge p,q$ we let $M_{p,q}$ denote the Mazur map of L_p onto L_q that is

$$M_{p,q}(f)(x) = \operatorname{sign}(f(x))|f(x)|^{p/q},$$

and we let $m_{p,q}$ denote the Mazur map of l_p onto l_q . We put $L_p = L_p(0,1)$.

THEOREM 2.1. Let $1 \le p < q \le 2$ and let $T: B(L_p) \xrightarrow{\text{onto}} B(L_q)$ be a uniform

homeomorphism. Then there exists a K > 0 such that

$$\delta_{T-1}(\delta_T(\varepsilon)) \ge K \varepsilon^{p/q} \text{ for all } \varepsilon \le 1.$$

Theorem 2.2. Let $1 \le p < q$ and let $T = M_{p,q} \colon B(L_p) \to B(L_q)$. Then there exists a K > 0 such that

$$\delta_{T-1}(\delta_T(\varepsilon)) \leq K \varepsilon^{p/q}$$
 for all $\varepsilon \leq 1$.

REMARK. In Theorem 2.1 we have the same estimate for $T: B(L_p) \to B(l_q)$, $B(l_p) \to B(l_q)$, $B(l_p) \to B(L_q)$, and in Theorem 2.2 we have the same estimate for $T = m_{p,q}: B(l_p) \to B(l_q)$.

Let F be an isometry between L_2 and l_2 . Then $T = m_{2,q} \circ F \circ M_{p,2}$ is a uniform homeomorphism of $B(L_p)$ onto $B(l_q)$ satisfying the following theorem.

THEOREM 2.3.

- (a) If $1 \le p \le 2 < q$, then $\delta_{T-1}(\delta_T(\varepsilon)) \le K \varepsilon^{p/q}$.
- (b) If $1 \leq p < q \leq 2$, then $\delta_{T-1}(\delta_T(\varepsilon)) \leq K \varepsilon^{pq/4}$.
- (c) If $2 \le p < q$, then $\delta_{T-1}(\delta_T(\varepsilon)) \le K \varepsilon^{4/pq}$.

In the proof to Theorem 2.1 we shall use a construction similar to one used by Enflo in [1]. We first recall a result from this paper.

A set of 2^n points in L_p is called an *n*-dimensional cube if each of the points is indexed by an *n*-vector whose components are 0 or 1. In an *n*-dimensional cube a pair of points is called an edge if the indexes of the points differ in only one component and a pair of points is called an *n*-diagonal if the indexes of the points differ in all components.

THEOREM. Let C be an n-dimensional cube in L_p , $1 \le p \le 2$, and let

$$s_{\max} = \max\{||f - g|| : (f, g) \text{ edge in } C\}$$

$$d_{\min} = \min\{||f - g|| : (f, g) \text{ n-diagonal in } C\}.$$

Then we have $n^{1/p}s_{\max} \ge d_{\min}$.

PROOF OF THEOREM 2.1. We construct an n-dimensional cube C_n as follows. Divide [0,1] into n intervals of length 1/n and let the cube be the set of functions which takes the value 1 or 0 on each interval. We let a function be indexed by the n-vector whose mth component is equal to the value of the function on the mth interval. In this cube every edge has length $1/n^{1/p}$ and every n-diagonal has length 1.

Let

$$s_n = \max\{||T(f) - T(g)|| : (f, g) \text{ edge in } C_n\}$$

and

$$d_n = \min\{||T(f) - T(g)|| : (f, g) \text{ n-diagonal in } C_n\}.$$

Then, for the image of C_n under T we have by Theorem above

$$n^{1/q}S_n \geq d_n$$

Obviously we have $s_n \le \delta_T(1/n^{1/p})$, and since T^{-1} is uniformly continuous we have $\inf_n \{d_n\} = d > 0$.

Thus

$$\delta_T(1/n^{1/p}) \ge d/n^{1/q}$$
 for $n = 2, 3, 4, \dots$

Now, for every $\varepsilon > 0$, we set $\delta_T(\varepsilon) = K(\varepsilon)\varepsilon^{p/q}$. Then for $1/(n+1) < \varepsilon^p \le 1/n$ we have

$$d/(n+1)^{1/q} \le \delta_T(1/(n+1)^{1/p}) \le \delta_T(\varepsilon) = K(\varepsilon)\varepsilon^{p/q} \le K(\varepsilon)/n^{1/q}.$$

From this we get

$$\inf\{K(\varepsilon):\varepsilon>0\}=K_1>0.$$

Let $K_2 > 0$ such that $\delta_{T-1}(\varepsilon) \ge K_2 \varepsilon$ for all $\varepsilon \le 1$. Then we have

$$\delta_{T-1}(\delta_T(\varepsilon)) \ge K_2 \delta_T(\varepsilon) \ge K_1 K_2 \varepsilon^{p/q}$$
 for all $\varepsilon \le 1$

and the proof of Theorem 2.1 is complete.

PROOF OF THEOREM 2.2. From Mazur [4] we obtain the following inequalities. If $1 \le p \le q$ then

(1)
$$||M_{p,q}(f) - M_{p,q}(g)|| \le 2||f - g||^{p/q}$$
 for all $f, g \in B(L_p)$

(2)
$$||M_{q,p}(f) - M_{q,p}(g)|| \le (q/p)2^{q/p-1}||f - g||$$
 for all $f, g \in B(L_q)$

Thus, we have $\delta_T(\varepsilon) \leq 2\varepsilon^{p/q}$ and since $T^{-1} = M_{q,p}$, we have

$$\delta_{T-1}(\varepsilon) \leq (q/p)2^{q/p-1}\varepsilon$$

and this proves Theorem 2.2.

PROOF OF THEOREM 2.3. The estimates (1) and (2) in the proof of Theorem 2.2 also hold for the map $m_{p,q}$.

In case (a) we have $p \le 2$, 2 < q and hence by (1) we have

$$||m_{2,q} \circ F \circ M_{p,2}(f) - m_{2,q} \circ F \circ M_{p,2}(g)|| \le K_1 ||f - g||^{p/q} \text{ for all } f, g \in B(L_p),$$

Thus $\delta_T(\varepsilon) \le K_1 \varepsilon^{p/q}$ and $\delta_{T-1}(\varepsilon) \le K_2 \varepsilon$ and case (a) is proved. Case (b) and (c) are proved similarly.

REFERENCES

- 1. P. Enflo, On the nonexistence of uniform homeomorphisms between L_p -spaces, Ark. Mat. 8 (1969), 103-105.
- P. Enflo, Longhorn notes, Functional analysis seminar (1984-1985), pp. 30-32. University of Texas, Austin, 1985.
- 3. J. Lindenstraus,, On nonlinear projections in Banach spaces, Michigan J. Math. 11 (1964), 268-287
- S. Mazur, Une remarque sur l'homéomorphie des champs fonctionnels, Studia Math. 1 (1929), 83-85.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF STOCKHOLM BOX 6701 11385 STOCKHOLM SWEDEN