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PHRAGMEN-LINDELOF THEOREMS FOR
SUBHARMONIC FUNCTIONS ON THE UNIT DISK

ROBERT D. BERMAN and WILLIAM S. COHN!

Dedicated to Professor Maurice Heins on the occasion of his retirement.

1. Introduction.

Let 4 denote the open unit disk {|z| < 1} and C its circumference {|z| = 1}.
Let u be a subharmonic function defined in 4, u* the subharmonic function
max{u, 0},

u,(¢) = lim infu(rf), (eC,
and !

M(r;u) = max{u(r{):{ e C}.
If Qis a subset of 4 and (€ C, then

(Q={:zeQ}

is the rotate of Q by {. Assuming 1 is a limit point of Q, define

ug() = limﬁscup u(z), zelQ.
For the special case when Q is the radius [0,1) of 4, we write u* instead
of ug.

The classical maximum principle for subharmonic functions defined in 4
may be stated as follows.

If u3(¢) S 0 for all {eC, then u(z) < 0 for all z€ A.

The idea of Phragmén and Lindelof [12] was to allow a small exceptional
set and add a growth condition so that the same conclusion can be drawn.
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For example :
If E is a finite subset of C such that u{({) £ 0, {e C—E, and
u@z)=0(l-z""') as z—{ for each {€E,
then u(z) £ 0 for all ze 4.

(Basic exposition of this subject can be found in [17; pp. 176-186] and
[9; Chapter 4, section 8, and Chapter 5, section 9].)
The central questions that we consider here are the following.

(1). What refinements can be made in the classical maximum principle when
a growth condition is placed on M(r;u)?

(2). What kinds of Phragmén-Lindelof exceptional sets are allowable with
such a growth condition?

Consider first the extreme case where u is assumed to be bounded above.
Littlewood [11] showed that in this case, u has finite radial limits
(-0 <u, =u* < +00) a.e. with respect to linear Lebesgue measure on C
with the essential supremum of u* equal to the supremum of u. This leads
to a radial Phragmén-Lindel6f theorem :

If E is a subset of C having linear measure |E| = 0 and u is bounded above
with u*({) < 0 for each { € C—E, then u(z) = O for all z € 4.

Thus under the assumption that there exists a constant ¢ < + oo such that
M(r;u) £ ¢, we need only consider the radial limit superior u*({) for {eC,
and we can allow a fairly large exceptional set, any set of linear measure 0.

In [7], Dahlberg considered the question of what growth conditions on
M(r;u) still give rise to radial Phragmén-Lindelof theorems. The following is
a version of [7; Theorem 2]:

If E is a countable subset of C,
M(r;u) =o[(1-r)"2] asr—1,
ut@l)=o0[(1-r)""'] asr—1 for each {€E,
and
u*(()£0 for (eC—E,
then u(z) = 0 for all z € A.

(In this section we shall not state results in their greatest generality. More
complete versions of some of them appear in section 2.) Dahlberg also showed
that o[ (1 —r)~ 2] is the critical “global” growth rate for such radial maximum
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principles by giving an example of an unbounded harmonic function h with
M(r;lhl) = O[(1-r)"%] as r—1
and

h*()=h,()=0 foreach (eC.

Standard examples of positive harmonic functions show that the “local”
growth rate o[(1 —r)~'] placed along radii ending in the exceptional set E
cannot be weakened to O[(1—r)"'], and that the result is false if E is any
uncountable Borel set.

A second result of Dahlberg dealt with functions of particular slow growth
[7; Theorem 4]. Two sharp generalizations were given by the authors in [5].
For the statement of the one given below and in the sequel, let w denote an
arbitrary continuous increasing concave-downward function on [0, 2r]
vanishing at 0 and satisfying @'(0) = o0 and let H, denote the Hausdorff
measure on C with generating function w. Recall that for each Borel subset
E of C, we have

H,(E) = lim [inf{ y w(lAl)}],

-0 Ae0

where the infimum is taken over all countable covers O of E by open arcs 4
having linear measure |A| < t. (See [13] for general information concerning
Hausdorff measures.) The next result is a version of [S; Theorem 2] (cf.
[7; Theorem 4] where w(t) =1t* 0 < a < 1, and E is a countable union of
closed sets).

If E is a Borel subset of C with H,(E) = 0,
M(r;u*)=O[w(l1-r)/(1-1)] asr—1,
and u*({) £ 0 for (e C—E, then u(z) < 0 for all z € 4.

The condition H,(E) = 0 was shown to be sharp. Note that here, the global
growth rate is slower than both the global and local growth rate in the
previous result.

To summarize the radial case, the maximal global growth rate for a radial
maximum principle is o[(1—r)"%]. As long as a local growth rate of
o[(1-r)~'] is placed along radii ending in the exceptional set, we can
allow countable Phragmén-Lindel6f exceptional sets. (Here and in the sequel,
the local ‘0’ or ‘O’ growth rate is not required to occur uniformly over the
points of the exceptional set E.) For slower global growth rates that are
o[(1—r)~'], a precise accounting of allowable Phragmén-Lindelof exceptional
sets is given in terms of Hausdorff measure.
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In view of these results, it is natural to ask whether the global growth
rate o[(1—r)"%] coupled with a local growth condition slower than
o[(1—r)~'] allows larger exceptional sets. We show that

if for each radius ending in the exceptional set E, the radial growth condition is
O[w(1—=r)/(1 —r)], then we can allow E to be a countable union of w-sets.

These sets are studied in [6] and are defined as follaws. If K is a closed
subset of C with |K| = 0 and (I,) is an enumeration of the component arcs
of C—K, then K is said to be an w-set provided Zw(llkl) < oo0.

Suppose now that we pass to faster global growth rates so that a radial
maximum principle is not possible. Can we still improve the classical
maximum principle? We show that this is always possible regardless of the
growth condition.

Consider first the global growth condition

M(r;u) =o[(1-r)"™"] asr-—1,

where a € (0, n/2). Let 2, denote a sector in 4 with vertex 1 that is symmetric
about the x-axis and has angular opening n —2a. We prove the following sharp
sectorial maximum principle :

If u satisfies the global growth condition just given and ug ({) = O for each
{eC, then u(z) £ 0 for all z € A.

With regard to Phragmén-Lindelof exceptional sets E, we can again allow
countable unions of w-sets provided the local growth condition

Olw(C—2)/Il—2|] as z—{ is satisfied in {Q, for each (€ E.

More generally, for a given global growth condition on M(r;u), we can
always find a tangential set Q that is “thinner” than 4 at 1 such that u3({) < 0
for all { e C implies u(z) < O for every z € A. Fairly accurate estimates of the
relationship between the growth rate and the tangentiality of Q are made
possible by a theorem of Warschawski [18; Theorem XI (A)]. In addition we
show that countable unions of w-sets can be taken as exceptional sets E if o
is continuously differentiable and the local growth condition O[w'(|{ —z|)] is
imposed in {Q for each (€ E. ‘

Returning finally to the classical case where the global growth condition is
completely dropped and Q = A, we arrive back at the Phragmén-Lindelof
theorem originally given but we find that the exceptional set E can be taken
to be any set of linear measure 0.

The paper is organized as follows. In section 2 the main results are stated
in full generality. In section 3 we modify proofs given by Dahlberg to prove
Proposition 1. This result is a refinement of the classical maximum principle
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in the presence of a global growth condition (with exceptional set E = @).
In section 4 we define auxiliary functions depending on w having certain
growth properties towards points of an allowed exceptional set E. In section 5
we use these auxiliary functions in conjunction with Proposition 1 to prove
our main results. Explicit computations are also given in which growth
conditions are estimated using Warschawski’s theorem. Section 6 is devoted
to applications concerning level sets and the zero sets of the radial-limit
functions of analytic functions of prescribed growth. In section 7 we generalize
a Phragmén-Lindelof theorem of Dahlberg for the unit ball in R", and we
conclude with a discussion of the question of whether the size of the
exceptional sets in our main results is best possible.

2. Main results.

Along with the notation established in section 1, we will need the following.
Let P denote the Poisson kernel

_ 1=z

P(Z,t)—m, zed,teR,

where R is the set of real numbers, and corresponding to each Borel measure
uon C, let

n

1
Pldu](z) = o jP(z,t)dy(t), ze .

-n

If the integration is taken over an arc 4 of C, we shall interpret this to be
P[dv] where v is the Borel measure on C for which v|, = ul, and
Vlc-4 = 0. When du is of the form f(e")dt where f e L' (that is, f is a real-
valued function defined a.e. on C and integrable with respect to linear
Lebesgue measure). The notation [Pf](z) will sometimes be used instead of
P[du](2).

The following is a more general statement of Dahlberg’s radial Phragmén-
Lindelof theorem [7; Theorem 2] stated in a simplified form in section 1.

THEOREM A. Let E be a countable subset of C. If
1) M(r;u)=o[(1-r)"*]asr—1,
() there exists g € L' such that u, < g ae.,
3) u*(¢) < oo for each {e C—E, and
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“4) ut()=o[(1—r)"*] asr - 1 for every {€E,
then u*eL', u, = u* ae., and u < Pu,_.

For the statement of our main result concerning the sectorial and radial
cases, we use the notation

) g,={zeA:|z—1/2|§1/2,a+§§Arg(z—1)g—a+3n/z}, ae (0,7/2].

In particular, Q,/, denotes the radius [0, 1).

THEOREM 1. Let E be a countable union of w-sets, a € (0,n/2], and Q = Q,.
If u satisfies (2),

3) ug() < oo for each (e C—E,
6) M@r;u*)=o0[(1-r)""] asr-1,

and for each { € E there exists a positive constant ¢ = c({) such that

) u(z) < cﬁ"—(c-'-c_—_z-lz—'-) zel®,

then u*e L', u, = u* ae., and u < Pu,,

Notice that Theorem A can be regarded as the limiting case of Theorem 1
where « = n/2 and 0w = 1.

Combining (2) and (3') by requiring u$({) < 0 for each {e C—E leads to
the radial and sectorial Phragmén-Lindelof theorems stated in section 1. The
global growth condition is sharp in the sense that ‘0’ cannot be changed to
‘0’. We shall demonstrate this using examples in section 5.

The next theorem is a generalized form of our result for faster global
growth conditions. In it, the global growth rate is given in terms of the
growth of a certain conformal map. In order to state this result, we shall
need to establish some additional notation. Let

r:[0,1]->{ze4:0 = Argz < n/2} u{0,1}

be a Jordan arc such that |I'(t)| = ¢ for each t [0, 1]. Let Q* = Q*(I') be the
Jordan region contained in 4 that is bounded by I', {{ € C:0 < Arg{ < n/2},
and {iy:0 < y < 1}. Thus Q* consists of those points in 4 that are are in°
the first quadrant but outside of I'. Let

Q=Q()={zed:—n2 S Argz S n/2 and z,7¢Q*},

where Z denotes the complex conjugate of z. We call I (along with Q and Q*)
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tangential if
lim [Re(t)—1]/Im(t) = 0.
t—1

For an arbitrary allowed I', define ¢ to be a homeomorphism that maps
the closure Q* of Q* onto {Rew 2 0} U {0} (in the extended w-plane) taking
Q* conformally onto {Rew > 0} with ¢(0) = 0 and ¢(1) = co. (The existence
of ¢ follows, with the aid of an appropriate Mdbius transformation, from a
theorem of Carathéodory concerning Riemann mappings onto simply-
connected Jordan regions. In fact, ¢ would be uniquely determined by
specifying ¢(i) to be a value on the positive imaginary axis. See standard
texts such as [9] and [14] for details.) For each e[ —n/2,n/2], let

R, = {Argw = A} U {0, 0}

and let I'; be the Jordan arc with image ¢ ~'(R;) and parametrization given
as follows : I',(s) is the unique point z,€ ¢ ~!(R;) such that |¢(z,)| = s for each
se[0,00]. Observe that I'_,, is a reparametrization of I' and the image of
Iy is

{teC:0=Arg{ =n/2} U{iy:0Sy=1}.

For every A e (—n/2, n/2], define Q*(4) to be the Jordan region in Q* bounded
by I'_,; and I';, and let

®) war) = inf{lp(2)l:lz| = r,ze @*(A)}, re[0,1).

THEOREM 2. Suppose that w has a continuous first derivative on (0,2n] and
that E is a countable union of w-sets. Assume that an arbitrary allowed I
along with Q, Q*, and ¢ are given. If u satisfies (2), (3'),

©) M(r;u) = o[u:(r)] asr—1

for some Ae(—mn/2,n/2], and for each [ €E there exists a positive constant
¢ = c({) such that

(10) u(z) S co'(f—zl), zelQ,
then u*e L', u, = u* ae., and u = Pu,.

Once again this can be put in a simpler form by requiring u§(({) < 0 for
each { e C—E instead of (2) and (3').

With the aid of a theorem of Warschawski (see Theorem C of section 5),
we can obtain estimates of the global growth rate (8) under very modest
hypotheses on I. To describe these hypotheses, we introduce a polar
coordinate system. Let ¢ and ¢ denote the radial and angular coordinates in
the z-plane relative to a polar axis parallel to the positive imaginary axis and
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pointing in the same direction with pole at 1. We assume that in some
neighborhood of 1, the arc I' admits a polar representation
¢=0"@), 0<pg<a,
where a € (0, 1). Also let
¢p=90"(e)=sin"'(¢/2), 0<e<a,

(a polar representation of the arc of C contained in {Imz > 0} with one
endpoint 1 and the other a distance of a from the point 1). Set

O(e)=P*(0)-P (¢), 0<e¢<a,

and suppose that ©(g) is a monotone nondecreasing continuously different-
iable function on (0, a) satisfying

lim e[d6(g)/de] = 0.

Define
A(@) = 00(¢), 0<g<a.

Note that A(p) is a strictly-increasing continuously-differentiable function. The
next result is proved using Theorem 2 and Warschawski’s theorem.

THeOREM 3. Let g€ (0, ). Theorem 2 remains valid when (9) is replaced by

A(a)
_l ’
(At—)(ﬂdt asr— 1.

(11) M(r;u)=o{exp[(1t-—s)

(1—-rX1+e)

In the opposite direction, there exists an unbounded nonnegative subharmonic
Junction u defined in A such that
A(a)
ANy
(12) M(r;u)=o{exp[(n+£) (——;Mdt asr—1,

(1-r1-¢)
with im, _, ;u(z) = 0 for every { € C—{1} and u(z) = O for each ze Q.

If ©(¢) = ¢® where Be(0,00), then I' has the same order of tangency
relative to C at 1 as the the curve given in cartesian coordinates by
y =xP*1 x 20, relative to the x-axis at the origin. A direct computation
shows that in this case (11) and (12) can be replaced by

M(r;u)=0{ [n;e = r)”(’“’]]} asr— 1.
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Given any decreasing positive function v on (0, 1] such that lim,_, ov(t) = o0,
we can use (11) to find @(g) with associated growth rate to oo faster than
v(1—r) as r — 1. This leads to the following Phragmén-Lindelof theorem for
functions of a specified growth.

THEOREM 4. Suppose that v is as stated above, w is continuously differentiable,
and E is a countable union of w-sets. Then there exists a Jordan arc I along
with the associated set Q having the following property. If u satisfies (2), (3'),

(13) M(r;u) =o[v(l-r)] asr—1,

and for each { € E there exists a positive constant ¢ = c({) such that (10) holds,
then u*e L', u* = u, ae., and u < Pu,,.

CoRroLLARY 4. Suppose that E, v, and Q are as stated in Theorem 4. If
u3(¢) = 0 for each { e C—E, the global growth condition (13) is satisfied, and
for each { € E, there exists ¢ = c({) such that (10) holds, then u(z) = 0 for all
zed.

Finally, we give a generalized version of the classical Phragmén-Lindelof
theorem where no global growth condition is imposed.

THEOREM 5. Let E be a subset of C having linear measure 0. If u satisfies (2),
(3') with Q = A, and

u@z)=o({—z"") asz—{ (eE,

then u*e L', u* = u, ae., and u < Pu,.

3. Modification of Dahlberg’s results.

The two results proved in this section are related to Dahlberg’s [7; Lemma 1]
and [7; Theorem 2]. We shall use the notation established in sections 1 and 2.
Proposition 1 of this section is just Theorem 2 for the case when E = ¢.

We start by recalling a standard Phragmén-Lindeldf theorem (see for
example [17; section 5.62, pp. 178-179] for the version for analytic functions)
and then give an immediate corollary that is applicable to the present context.

In the following theorem, let H = {Rew > 0} and let 0H denote its
boundary, the imaginary axis.

THEOREM B. Let v be a subharmonic function defined in the right half-plane
H. If

lim supv(z) £ 0, ‘CeaH,

z—{
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and
sup{v*(w):weH,|w| =r} =o(r) asr— oo,
then v(w) = 0 for all we H.

COROLLARY B. Let ¢:Q* — H be the conformal mapping given in section 2.
If N is a neighborhood of 1 such that

(14) lim supu(z) =0, (ed(Q* nN)—{1},
z¢

and

(15) u* (@) = oflp()] asz— 1,

then u(z) < 0 for all ze Q* N N.
The corollary follows upon applying Theorem B to the subharmonic function

p(w) = e ) (w), wep(N n Q%)
0, we (N —Q*).

The following lemma is an analogue of [7; Lemma 1] with a somewhat
different proof. It gives conditions involving M(r;u) which lead to the con-
clusion that (15) holds.

LEMMA 1. Let A be an open arc in C n {Imz > 0} with one endpoint 1.
Suppose that (9) is satisfied for some A€ (—mn/2,n/2). If
(16) lim supu(z) £0, (€A,

z—{
then (15) holds.

Proor. Let A be as in the statement of the lemma. Then I';, divides Q*
into two Jordan regions: Q*(4) which is bounded by I'_,, and I';, and
Q) = Q*—Q*(). It suffices to verify that (15) holds in each of these
regions separately. The result for Q*(4) is an immediate consequence of the
definition of u,(r) and the hypothesis on M(r;u), so we proceed directly
to Q'(4).

For each 6 € [0, n/2) such that e € 4, let

T;e(s) = e“’FA(s), s E[O, 00],

and

0o(z) = @(ze®), zee”Q*.
Then I'; o =TI, ¢o = @, and @, maps (1) onto {A < Argw < n/2} with
(17) Re[pgoT'; 0] = cosilpeT;|
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and

(18) lpo i)l 2 (Il als)), sel0, 00).

Let ¢ > 0. Since M(r;u) = o[u;(r)] as r — 1, there exists ro € (0, 1) such that
(19) u(2) £ euy(lzl), ro <lz) < 1.

Furthermore, there exists s, € (0, c0) such that for each se(s,, ©0) we have
\L,6) > r,, 0, = Arg I';(s,) > Arg I';(s), and exp(if,) € A. Choose 0, € (6,, /2)
such that exp(if, )€ A. By (16) there is a positive constant M, such that

(20) u@z) =M, zed,0,=Argz=<6,.

For each 0€(0,6,), let sze(s,, 0) be the largest number for which
Argl; o(sq) = 0,. Define (1) to be the subregion of Q'(1) bounded by
{FLB(S):SO é S é OO},

{ze Q(A):Argz = 0,,|z] 2 T, 4(se)l},

and the subarc of A with endpoints exp(if) and exp(if,).
Suppose now that Z € Q'(4) with |Z—1| < |exp(if,)— 1|/2. Then for 6 € (0, 6,)
sufficiently small, Z € Qg(4). For each such 6, consider the subharmonic function

ve(z) = u(z)— co% Re[0o(z)] - M,, zeQ(A).

By (16)-(20) it follows that vy < 0 on 0Qy(A) and we can apply the maximum
principle to conclude that ve(z) < 0, z € 24(4). In particular,

&
Z)s —|pZ .
uZ) S ——lo(Z)+M,

Taking the limit as 6 — 0, we get

&
Z) S — o)+ M,
u(Z) < ——1o(Z)

Since M, is a fixed constant (depending on ¢) and ¢@(z) » o0 as z— 1 in
Q'(4), we conclude that (15) holds for ©'(4). This completes the proof.

We note that versions of Corollary B and Lemma 1 hold with obvious
modifications when Q* is replaced by Q* = {z:7eQ*}, (Q* or (0* for
any {eC. In applying any one of these versions we shall simply refer to
Corollary B or Lemma 1.

The following proposition and its proof are closely related to [7; Theorem 2]
and Dahlberg’s proof. We shall therefore only sketch the proof here.
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ProposiTiON 1. If u satisfies (2), (3') with E =@, and (9) (for some
A€(—mn/2,n/2)), then u*e L', u* = u, ae. and u < Pu,.

The next lemma will be used in the proof.
LEMMA 2. Let A be an open arc in C and
S(A)={r{:0<r<1,(eA}.

If V is a subharmonic function defined in A that is bounded above in S(A)
such that V, < 0 ae. in A, then
limsup V(z) =0, (eA.

z—{
See [7; p. 307 first paragraph] for a proof of Lemma 2.

Proor ofF ProposiTioN 1. Let f = (u*),. By (2) we have fel'. Let
v = u* — Pf and define

0 = {{eC:lim sup v(z) < 0}.
z—{

We show first that O = C. Suppose, to get a contradiction, that
R=C-0 + ¢. Let

Fj={leC:v()S jforzelQ}, j=12,....

Then each F; is closed. In general, this follows from the continuity properties
of subharmonic functions (see [7; p. 307 second paragraph]); an elementary
proof can be given if (0, 1) is contained in the interior of Q. From (3') we see
that u is bounded in {2 for each { € C and hence UF ;=C.

By the Baire category theorem, there is an open arc 4 and a positive
integer j such that  # 4 N R € F;. Lemma 2 implies that A N R has empty
interior (with respect to C) so that A N R is a closed nowhere—dense set.
Let (4,) be an enumeration of the component arcs of O N A and let 7,
and £, be the endpoints of A4,. Let & be the set of all these endpoints.
Since R n A & F, there exists a positive integer k 2 j such that & & F,. Thus

(21) v(z) Sk, zelQ, (eb.

Let p, be the midpoint of the arc 4,. Choose g, € 4 along the radius [0, p, ]
so the radial segment [g,, p,] divides the region S(4,)— (7,2 U ) into two
symmetric subregions. (The sector S(A4,) is defined in Lemma 2.) By (21)
and the fact that v(z) < M on [gq,, p,] for some positive constant M, we can
apply Lemma 1 and Corollary B, and then the maximum principle to
conclude that

v(z) < max(k, M), zeS(A,)— "2 v EN).
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From Lemma 2 and the maximum principle, we now deduce that
(22) v(z) =k, zeS(A,).

Since n was arbitrary, we conclude that v(z) < k for all ze () S(4,). Since we
also have R n 4 € F,, it follows that v(z) £ k for all ze R(4). Lemma 2
implies that A & O which leads to the contradiction that R N 4 = ¢@. This
completes the proof that O = C. .

Since O = C, we have u* < Pf. Therefore, there exists a real Borel measure
u on C such that P[du] is the least harmonic majorant of u in 4. From a
theorem of Littlewood it follows that u, = u* a.e. in C and du = u,dt+dp;.
We also conclude that u < Pu,. The proof of Proposition 1 is thereby
completed.

4. Exceptional sets and auxiliary functions.

To deal with the cases where E # ¢ in Theorems 1, 2, and 4, we shall
employ certain auxiliary functions that are related to ones used previously
in [S]. As in [S], we start by assuming without loss of -generality that w
has a continuous monotone nonincreasing derivative on (0, 27 ]. This reduction
(which is needed only for Theorem 1) is possible since there always exists
such a function @ for which @/4 < w = @ (see [6; Theorem 2.1]). The
following is the main result of this section. It concerns the existence of a
positive harmonic function h(z) that approaches oo at specified rates as z
approaches points of the exceptional set E with unrestricted approach or
sectorially.

PropoSITION 2. Let E be a countable union of w-sets. Then there exists a
positive harmonic function h = PF with F € L' such that

w(|{—2z)

23) T =o[h(z)] asz—-{( zelQ,, (€E,

for every a € (0,n/2], and
(24) w'({—2|) = o[h(z)] asz—{ zed, {eE.

Proor. Initially, let us suppose that E is an infinite w-set, that is, E is a closed
subset of C with |E| =0 and Zw(lI,J) < o0, where (I;)P, is an enumeration
of the component arcs of C—E. Let &, be the set of endpoints of I, for each
k and let (x,) be sequence of positive numbers such that lim, ., ,x, = 0o and
Y xww(I,]) < 0. For each k we select a function g,:(0,2n] —» R that is
continnous and monotone nonincreasing such that g, is integrable,
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gx(2m) = x;, and lim, _, ¢g,(t) = oo. Thus
t

(25) xoft) S jw’(s)gk(s)ds < oo, te[0,2n].
0

Furthermore, we choose g, decreasing quickly enough so that
I

(26) j o' (t)gi(t)dt = 2x,o(1).
V]

Define F:C - R U {+ o} by

F(O) = o'[dist((, &)]gdist((, 84)], (e C—E,
©) = + o0, (eE.

Then F is a positive (or infinite) function that is continuous in the
extended sense. From (26) and the fact that E is an w-set, it follows- that
FeL. It is also verified without difficulty that if { € E, then for open arcs A
with one endpoint { we have
. F(e™)dt
27 lim j—i———- =
-0 (Al

Let h = PF. Then h is a positive harmonic function on 4 with a continuous
extension to 4 (also denoted h) such that h|c = F. We consider now the growth
of h(z) as z approaches points of E from within 4.

We verify (23) first. Let { € E and z € {Q,. Observe that

1—|z| 1

P(z,t) 2 ——— —
@) le* —z| le' —zl.

teR.

Now let A be the open arc with midpoint { and |4| = 2(1 —|z|). Geometric
considerations show that the quotient (1—|z|)/|e”—z| is bounded below by
a positive constant independent of e” € A or the choice of z € (€, (though it
will depend on a € (0, 7/2]). It follows that there exists a positive constant
¢ = c(a) such that

h(z) 2 1 IP(z,t)F(e"')dt 2c M.
2n 1—|z|
A

Putting this inequality together with (27), we arrive at (23).
Next we prove that (24) holds. From the definition of F we see that if
{ €E, then
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(28) o' (({—nl) = o[F()] asn—{ neC.

Let ze 4 with |z—{| < 1/2 and let B be an open arc with endpoints {; and
{, such that

i =8 <=8 =Iz=C and |{;—{| =1—|z|.

Then both (1—|z|)/le” —z|, e" € B, and [le” —z|~ 'dt are bounded below by a
positive constant (independent of allowed z). Thus there exists a positive
constant ¢ (independent of allowed z) such that

h(z) 2 % JP(Z, t)F(e")dt = cmin{F(e"): e" € B}.

B

From the definition of B and (28), we can now conclude that (24) holds.

The requirement made at the outset that E is infinite is clearly not essential
to the proofs given above, so we may assume that the result is proved for E
an arbitrary (nonempty) w-set. To complete the proof, assume that
E = |Ji-E, where each E, is an w-set. Then for each k, there exists h,
and F, relative to E, as in the statement of Proposition 2. Let (y,) be a
sequence of positive numbers such that F = Y y,F, e L'. Then h = } y;h, = PF
has the required properties and Proposition 2 is established.

5. Proofs of main results.

Proor oF THEOREM 2. If E = @, then Proposition 1 applies directly. Suppose
that E + @ and let h = PF be as in Proposition 2 relative to E. Then
h* =h, = F ae, h*e L', and h = Ph,. Applying Proposition 1 to u—h (= u),
we have (u—h)*e L', (u—h)* = u—h), ae,andu—h < P(u —h),. Combining
these with the observations just made concerning h, we obtain the required
conclusions for u.

Proor oF THEOREM 1. Assume first that (6) is replaced by (9). In this case
essentially the same argument as we gave for the proof of Theorem 2 gives
the required conclusion. To return from (9) to (6), it suffices to carry out the
elementary estimates (using the fact that |p(ge'®) behaves essentially like

¢~ ") to show that for any Ae (—mn/2,n/2] there exist positive constants c,
and ¢, such that

calr) = (L=r)"" S cou(r), re(1/2,1).

This leads to the desired result.
To see that the ‘0’ global growth condition cannot be weakened to a ‘O’
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condition in Theorem 1, consider the function

Re o(z *
@9 ule) = {0, e zzg—’m.
Then u is a nonnegative subharmonic function with
M(r;u)=0[(1-r)"™] asr—1
such that

limu(z) =0, (eC—{1},
2L

and
uiz) =0, zeQ,.

In order to prove Theorem 3, we shall first need to state the appropriate
parts of the theorem of Warschawski cited section 1. The version given below
contains very minor modifications of the original statement so it can be applied
directly in the present context.

THEOREM C. Under the hypotheses stated preceding Theorem 3, the following
results hold.

(I)  There exists a neighborhood of 1 such that I', is representable in
the form

¢ =y(e)—O(e)i/n+0[O()] ase—0,

where y(@) = 3[®*(0)+ P (0)] and the ‘0’ condition is uniform over
all Ae[—n/2,n/2].

Il lim = loagl(p(z)l = 1 uniformly for all z € Q* with |z| = ¢.
e—0 ds
Als)

Proor oF THEOREM 3. We start with some computations which derive a
relationship between ¢ = |z—1|and r = |z| when ze I, for any y e [ —n/2, 7/2].
Theorem C(I) asserts that for each such 7, the Jordan arc I', is representable
in the form

¢, = 6,()+sin"'(¢/2) as ¢ —0,
. where

6,(0) = c(y)6(e)+0[6(0)]
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and c(y) = 1/2—7/n. Elementary geometric considerations show that
1—r? = g(2sin¢g —9).
Therefore,

sin ¢, = (¢/2)cos[8,(e)] ++/1 - 0*/45in[6,(0)]
so that

1-r% = {e(cos[B,(e)] - 1)++/4— ¢*sin[B,(0)]}
= o{—(e/2[6,(0)]* +/4-¢*[6,(0)]}

= c(y/4—*A(e)[1+0(1)] asg -0,
where A(g) = 9@(g). It follows that

(30) 1—r =c@y)A(@)1+0(1)] aso—0.

Also, by Theorem C(II) and the change of variables t = A(s), we have
Aa)

(31) lo(z)l = exp {n f (A%)I(I)dt[l +o(1)]} as o — 0.
A(e)

Observe that the ‘o’ conditions in (30) and (31) are both independent of 7.

To prove the first assertion of the theorem we shall estimate p,(r). Let
Ae[—mn/2,n/2) and consider zeQ*(4) (the region defined preceding the
definition (8) of u,(r)) with |z| = r. Note that for z within Q*(4), the condition
¢ — 0 is equivalent to r — 1. Hence for ye[—n/2,4] and zeI', with |z| =,
it follows from (30) that

RS ls ] S
(32) e(z) =41 [c(y) (14+0(1))] asr—1,

where the ‘0’ does not depend on the allowed y. Equation (31) also holds
with ‘0 - 0’ replaced by ‘r - I’ and a similar remark concerning the ‘o’
condition.

Given ¢ > 0, select Ae[—n/2,n/2) close enough to —n/2 and € € (0, ¢€)
sufficiently small so that (1+¢')/c(4) < 1+e¢. Then for ze Q*(4),|z| = r, and r
sufficiently close to 1, we have

Aa)

lp(z)l = exp {(u-—s) j E;:—)th}.

(1-r1+e)
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The required conclusion is now obtained using this inequality, the definition
of pu,(r), and Theorem 2.

For the proof of the second assertion of the theorem, consider the positive
harmonic function h = Re ¢ defined in Q*. By (30), the fact that c¢(1) = 1,
and (29), we can find 6 > 0 such that g(z) < é implies

1—r = A(e)/(1—¢)

and
Ala)
h(z) = exp {(n+a) j (A—_:)/E—)dt}.
Ae)
This leads to the inequality
Ala)
(33) h(z) < exp {(n+s) J Q@dt}

(1-r)1-¢)

for all ze Q* with g(z) < 6. Because h is continuously 0 at each point of
0Q* — {1}, we have h(z) < ¢ whenever g(z) 2 ¢ and r is sufficiently close to 1.
Hence (33) holds for all ze Q* with |z| = r when r is sufficiently close to 1.
Taking u to be the subharmonic function defined by (29), we see that u has
the required properties. In this connection, note that the growth rate appearing
on the right-hand side of (33) satisfies a ‘0’ condition relative to the same
growth condition with any slightly larger . This completes the proof of
Theorem 3.

We omit the proof of Theorem 4 since this result is a straightforward con-
sequence of Theorem 3. Theorem 5 for the case E = ¢ is proved using the
compactness of C and the classical maximum principle to conclude that u
is bounded above, and then the desired conclusion is derived as before. The
case when E # @ can be reduced to showing that v = u— Pu, satisfies
lim sup,..v(z) = O for each { € E. Suppose that {, € E and this property does
not hold for {,. Using Lemma 2 and the local growth hypothesis of {,, one
shows that lim sup,_v(z) = O for every { in an open arc containig {, except
possibly {, (that is, {, is isolated). Applying the classical Phragmén-Lindelof
Theorem (stated in section 1 for a finite exceptional set), we contradict our
assumption concerning {,. This completes the proof.
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6. Applications.

In this section we briefly discuss applications of the results given in sections 1
and 2 to level sets and radial-limit zero sets.

A. Level Sets. We shall give below some extensions of results appearing in
[2]. The proofs are essentially the same except for the use of improved
Phragmén-Lindelof theorems.

Let &£(r;u) denote the level set {ze A:u(z) = r} where u is a continuous
subharmonic function. Consider first a component @ of {u(z) > r} and define

u(z), zeo,
U =
@ {r, zed—@.

Then U is again a subharmonic function which satisfies the same local and
global growth conditions (to + oo) as u. This fact leads to the following
extension of results appearing in [2; section 3].

THEOREM 6. Suppose that re (infu,supu) ae(0,7/2), and Q = Q, (as
defined in (5)). Let ® b a component of {u(z) > r}.

18] If u is bounded above, then (0®) N C is a perfect subset of C that is

locally of positive linear measure at each of its points.

(1)  If M(r;u) = O[w(1—r)/(1—r)] as r - 1, then (0®) N C is a perfect

subset of C that is locally of positive H -measure at each of its points.

() IfM(@r;u)=o[(1-r) "] asr—1and uz) = O[w(l{ —z|)/IL—z|] as

z—{ in {Q for each { € C, then (0®) N C is a perfect subset of C
such that for every open arc A, the set 09 N A is either empty or is
not a countable union of w-sets.

(V) If M(r;u)=o[(1=r) "] as r > 1 and u(z) = o(I{—z|"") as z > ¢

in {Q for each { € C, then (0®) N C is a perfect subset of C.

An analogue of (III) also can be given for more general global growth rates
when the local growth condition is given in terms of o'.

Next, suppose that & is a component of {u(z) < r} (sometimes called a
level tract). By the maximum principle, @ must be simply-connected. If
u = log|f| where f is a nonconstant analytic function, then (0®) N 4 consists
locally of analytic arcs. In general, this part of the boundary of ¢ may
behave quite badly as it approaches the circumference C. For example, it may
spiral outward and cluster to every point of C. However, this behavior is
not possible of f is in the MacLane class #. By definition, % is the class
of nonconstant analytic functions f defined in 4 such that for every
r € (inf| f|, sup|f]), we have lim,_,,S,(t) = O, where

S,(t) = sup[diam!:1 is a component of {t < |z| < 1} () L(;|f)], te(O,1).
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Here, diam [ = sup{|z—w|:z,wel}. In [10], Hornblower proved that
1

Jlog*log*M(r; |fdr < o

0

is a sufficient condition for f € &. This leads to the following generalization
of [2; Theorem 4.1].

THEOREM 7. Let a€(0,n/2] and Q = Q,. Suppose that s e (inf|f], sup|f])
and ® is a component of {|f(z)| <s}. If u = log*|f| satisfies

M(r;u) =o[(1-r)"™] asr—1
and
u@z)=o(l—z""') asz—{in (R for each {eC,
then @ is a simply-connected Jordan region.

Recall that a nonconstant analytic function f is said to be in the class A~
if the subharmonic function u = log™*|f(z)| satisfies M(r;u) = O[ —log(1—r)]
as r —» 1 and that every analytic function f of bounded characteristic has
M(r;u) = O[(1—r)"'] as r - 1. We therefore obtain the next corollary.

CoroOLLARY 7. Let f be a nonconstant analytic function, s € (inf| f|, sup|f]),
and let & be a component of {|f(z)| <s}. If

I fea™®
or
(II) fis of bounded characteristic and satisfies
log*|f(rO)l = o[(1-r)"'] asr—1,(eC,
then @ is a simply-connected Jordan region.

Thus, for example, if f, 1/f € A~ , then every component @ of 4—2(r;|f])
is a simply-connected Jordan region with (0®) n C a perfect subset of C that
is locally of positive H,-measure at each of its points, where v(t) = t log(2re/t).
Notice that the ‘0’ condition in (II) cannot be relaxed to ‘O’ as the function
f(z) = exp[(1+2)/(1 —z)] shows.

We turn now to an application of Theorem 6 to analytic functions which
share a level set of their moduli. For a general study of analytic functions
sharing level curves and tracts along with an account of the history of this
problem, see the recently published work of Stephenson [16]. Specifically, we
consider Blaschke products that share a level set of their moduli with
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(bounded) nonvanishing analytic functions. We relate a certain boundary
exceptional set of such a Blaschke product B with the growth of |log|g|| when
g is a nonvanishing analytic function such that |B| and |g| share a level set.

We start by briefly recalling some background concerning the functions
involved. More details are given in [2; section 2]. An inner function is, by
definition, a bounded analytic function having radial limits of modulus 1 a.e..
Every inner function I has a canonical factorization I = nBS, where 1 is a
constant of modulus 1. B is a Blaschke product, and S is a singular inner
function. The singular inner function S is a nonvanishing function such that
—log|S| = P[du], where u is a finite positive Borel measure that is singular
with respect to linear Lebesgue measure. Also, any bounded analytic function
g has a canonical factorization g = 10, where I is an inner function and O is a
bounded outer function.

To each nonconstant inner function I, associate the boundary exceptional
set

E(I) = {CeC:lim sup |I(r0)| < 1}.

THeoreM 8. If I is a nonconstant inner function such that E(I) has zero
H ,-measure in a neighborhood of one of its points, then I cannot share a level
set of its modulus with a nonvanishing analytic function f satisfying

o(l—|z
(4) lloglf ) 1 = 0[%&"'1] as fzl 1.
In the opposite direction, for each Borel set E with H,(E) > 0 and for every
re (0, 1), there exists a Blaschke product B with E(B) € E and a nonvanishing
bounded analytic function g satisfying (34) (with f = g) such that £(r;|B|)
=2(;lgl).

ProOF. A result of Hall (see [2; Lemma 3.1]) shows that any component of
{lI(z)] < r} must have (0®) n C € E(I) when I is a nonconstant inner function
and re(0,1). On the other hand, Theorem 6 (II) implies that if f is a non-
vanishing analytic function satisfying (34), then every component @ of
4—%2(r;|g|) has the property that (0®) n C is a perfect set that is locally
of positive H,-measure at each of its points. Putting these two facts together,
we arrive at he first assertion.

Suppose now that E is a Borel set with H,(E) > 0. Then we can find a
finite positive Borel measure u supported in E and singular with respect to
linear Lebesgue measure such that

w(1-|z])

< 27KV
Pldu]iz) = c R ze A.
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for some positive constant c. Let S be the singular inner function for which
—log|S| = P[du] and let

L,(z) = (a—z)/(1—-az), a,zeA.

By a result of Frostman (see [2; Theorem 6.2]), there exists a € 4 with r? > |a|
and a constant 7 of modulus 1 such that B =pnL,oS is a Blaschke
product. Then g = rL,,,° (B/r) has the required properties. This completes
the proof.

Concerning the functions B and g constructed in the preceding paragraph,
the following facts follow from results appearing in [2; section 6]. The
function g must be a nontrivial product of a singular inner function and a
bounded outer function, and B shares exactly one level set of its modulus
with g. We also note that for the case when lim inf,_ co(t)/[te' ()] > 1 (e.g.,
w(t)=1% 0<a<1), the condition Y w(l—|al) < oo on the zeros g,
(enumerated according to multiplicity) of B in a neighborhood of a point
of E(B) implies that E(B) has zero H,-measure in an open arc containing
that point (see [4]).

B. Radial-limit zero sets of analytic functions of prescribed growth. Let v
be a positive decreasing function defined on (0.1] such that lim,_ov(t) = co.
Barth and Schneider [1] showed that there exists an analytic function f # 0
such that M(r;log|f|) < v(1—r), re[0, 1), having radial limits equal to O a.e.
in C. Using the radial Phragmén-Lindelof theorem for functions of slow
growth stated in section 1 we obtain the folowing result relevant to the case
when v(t) = cw(t)/t, where c is a positive constant.

THEOREM 9. Let f # 0 be an analytic function such that
M(r;loglf]) = co(l—=r)/(1-r), re[0,1),

for some constant ¢ > 0, and let E be the radial-limit zero set of f. Then
in any open arc A such that |E n A| > 0, we have H, (A—E) > 0.

Since there exists a first-category subset E of C such that |E| = 27 and
H,(C—E) =0, Theorem 9 shows that not every first-category subset of C is
the radial-limit zero set of an analytic function f # O satisfying the growth
condition given in the theorem. It follows that a converse to the Lusin-Privalov
radial uniqueness theorem is not possible using functions of a prescribed
(slow) growth. (See [3; section 5(3)] for a discussion of this question.)

7. Conclusion.

In this section we give a generalization of a Phragmén-Lindel6f theorem
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for functions of slow growth to the unit ball B" of R" and discuss the question
of whether the exceptional sets given in the theorems of section 2 are best
possible.

In [8], Dahlberg proved a Phragmén-Lindeldf theorem for Lipschitz
domains in R", n 2 3. In particular, his theorem for the unit ball B" is the
following [8; Theorem, p. 306].

THEOREM D. Let E be a closed subset of the sphere 0B" = S"~! having
vanishing a-dimensional Hausdorff measure, where 0 < a <n—1. If U is a
subharmonic function defined in B" such that M(r;U) = O[(1—r)**' "] as
r—1and

(35) limsupU(z) £0, (eS" '—E,

z—¢

then U(z) £ 0 for all z e B".

Here, M(r; U) is defined analogously to the two-dimensional case. Using
auxiliary functions in essentially the same way as [S], Theorem D can be
sharpened ; the set E need only be required to be a Borel set (not necessarily
closed), and the allowable global growth rates can be expanded in conjunction
with a wider class of Hausdorff measures. In the statement of this result, let

(36) w(t) = -[ f)s" s, te[0,2],
0

where f is a monotone nonincreasing continuous function on (0,2] with
f(2) > 0 such that f(s)s"~ 2 is integrable. For each open ball

D=D@r)={zeS" ':|lz—nll<r}, neS"" L, r>0,

associate the auxiliary function

hp(z) = J P(z,{)f[dist((, 0D)]da((), zeB",
]
where P is the Poisson kernel
1—|lz|?
IE—zlI"”
I || and “dist’ are the Euclidean norm and distance in R", and ¢ is the usual
surface measure in S"~'. Employing cones in B" with base D instead of the

triangular sets in 4 used in [5], we can make all of the analogous estimates
of the auxiliary functions. Because a radial maximum principle is not available

Piz,{) = zeB", [eS"},
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in higher dimensions, we need the stronger condition (35) in place of the
corresponding assumption along radii. We obtain the following result using
the same method but without appeal to a radial maximum principle.

Tueorem 10. Let E be a Borel subset of S"~! such that H,(E) = 0 (with
w defined in (36)). If U is subharmonic in B" such that (35) holds and

M(r;U)=0|:{l%lr:){| asr—1,

then U(z) £ 0 for all € B".

Theorem 10 is shown to be sharp is essentially the same way as [5;
Theorem 2].

Finally we turn to the question of whether the size of the Phragmén-
Lindelof exceptional sets E in Theorems 1, 2 and 4 is best possible. For con-
creteness, let us consider the radial version of Theorem 1 in the following
form. Suppose that

M(r;u)=o[(1-r)"%] asr—1, u*({)<0,{eC—E,
and
u*(r{) = O[w(1—r)/(1-r)] asr—1 for each {€E.

We would like to characterize the Borel sets E for which we can conclude
u(z) £ 0 for all ze 4. By the sharpness of [5; Theorem 2], a necessary con-
dition is that H,(E) = 0. We have proven that a sufficient condition is that E
be a countable union of w-sets. (Notice that this gives a second proof that an
w-set has H,-measure 0; see also [6; Corollary 4.2]). On the other hand, it
can be shown using [§; Theorem 4.1] that there are sets of H,-measure 0
which are not countable unions of w-sets. Thus the problem of giving the
desired characterization remains unresolved.

REFERENCES

1. K F. Barth and W. J. Schneider, On the impossibility of extending the Riesz uniqueness theorem
to functions of slow growth, Ann. Acad. Sci. Fenn. Ser. Al 432 (1968), 1-9.

2. R. D. Berman, The level sets of the moduli of functions of bounded characteristic, Trans. Amer.
Math. Soc. 281 (1984), 725-744.

3. R. D. Berman, Some results concerning the boundary zero sets of general analytic functions,
Trans. Amer. Math. Soc. 293 (1986), 827-836.

4. R. D. Berman and W. S. Cohn, Tangential limits of Blaschke products and functions of
bounded mean oscillation, Illinois J. Math. (2) 31 (1987), 218-239.

S. R. D. Berman and W. S. Cohn, A radial Phragmeén-Lindelof theorem for functions of slow
growth, Complex Variables Theory Appl. 6 (1986), 299-307.



PHRAGMEN-LINDELOF THEOREMS FOR SUBHARMONIC FUNCTIONS ... 293

6. R. D. Berman, L. Brown, and W. S. Cohn, Moduli of continuity and generalized BCH sets,
Rocky Mountain J. Math. 17 (1987), 315-338.

7. B. E. J. Dahlberg, On the radial boundary values of subharmonic functions, Math. Scand. 40
(1977), 301-317.

8. B. E. J. Dahlberg, On exceptional sets at the boundary for subharmonic functions, Ark. Math.
15 (1977), 305-312.

9. M. Heins, Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt,
Rinehart, and Winston, New York, 1962.

10. R. Hornblower, A growth condition for the MacLane class o/, Proc. London Math. Soc. (3)
23 (1971), 371-384.

11. J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. 28 (1928),
383-394.

12. E. Phragmén and E. Lindelof, Sur une extension d’un principle classique de I’analyse, Acta
Math. 31 (1908), 381-406. .

13. C. A. Rogers, Hausdorff Measures, Cambridge University Press, Cambridge 1970.

14. W. Rudin, Real and Complex Analysis, 2"d Ed., McGraw-Hill Book Co., New York, 1974.

15. A. Samuelsson, On the radial zeros of Blaschke products, Ark. Math. 7 (1968), 477-494.

16. K. Stephenson, Analytic functions sharing level curves and tracts, Ann. of Math. (2) 123
(1986), 107-144.

17. E. C. Titchmarsh, The Theory of Functions, 204 Ed., Oxford University Press, Fair Lawn,
New Jersey, 1939.

18. S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51
(1942), 280-335.

DEPARTMENT OF MATHEMATICS
WAYNE STATE UNIVERSITY
DETROIT, MICHIGAN 48202

USA.

EDITORS NOTE ADDED IN PROOF.
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