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A BOCHNER-HERZ PROPERTY IN BOUNDED
SYNTHESIS

DAVID COLELLA

Abstract.

A Bochner-Herz property for closed sets in R that is related to both Bochner’s Property, as
described by Meyer, and to the Herz criterion, is introduced. We study its connection with
bounded synthesis and give several results. Our methods lead us to some results concerning
the union problem for sets of spectral synthesis. We also note that if E, and E, are S-sets
whose intersection is a U-set, then every pseudofunction on E, U E, is synthesizable on E, U E,.

In ([8, pp. 226-232]), Y. Meyer describes the notion of Bochner’s Property
holding for a closed set E when proving that certain perfect symmetric sets
are sets of bounded synthesis (see property (P) below). In our paper, we
introduce a modified version of this property (property (BH)) and study its
connections with bounded synthesis. In this setting, we show that certain
M,-sets possess some favorable synthesis properties (Theorem 1). Our
methods also lead us to results concerning the question of when the union
of S-sets is again an S-set (Corollaries 2,3, and Proposition 2). Our hope is
that this study will help in the understanding of basic spectral synthesis
properties of pseudomeasures.

We refer to [2] for notation and basic facts. A closed set E in the real
line R is a set of spectral synthesis, or an S-set, if every pseudomeasure sup-
ported by E is the limit of a net of measures {y,} £ M(E) in the w*-topology
d(PM, A). Whenever possible, we define the constant B to be the infimum
of all numbers B such that for every S in N(E), the w*-closure of M(E), there
exists a sequence {u,} & M(E) satisfying

sup ||uallew < BlISllpye  and > S.
n
In the case that there exists no such B, we set By = co. A set E is then a set

of bounded synthesis, or bounded-S-set., if E is an S-set and Bg is finite. The
existence of S-sets for which By is infinite was first proved by Varopoulos [13],
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and later refined by Korner [7], Katznelson and Korner [4], and Katznelson
and McGehee [5], [6]. Conversely, there are well-known examples of non-S-
sets E where B is finite (see [2]). Primarily, we are interested in studying
for which sets E the condition Bg < oo holds. Without loss of generality, we
will assume that all of our sets are compact.

In [8], where certain perfect symmetric sets are shown to be bounded-S-
sets with By = 1, the following property is utilized.

There exists an increasing sequence {E,} of finite
(P) § subsets of E such. that f € C(E) and sup,l|fll4,) < ©
imply that f € A(E) and ||/l ae) = supillfll4(z,)-

Property (P) is well-adapted to the sets considered in [8], but is not as
applicable to the question of bounded synthesis in general. For example, let
E be an independent set. Then, by Kronecker’s theorem, for every countable
collection {E,} of finite subsets of E whose union is dense in E we have

S‘:P W Nae,) = Sl:p“f“C(Ek) = Ifllc) for all fin C(E).

Property (P) holding for the set E would then imply that A(E) = C(E), that
is, E must be a Helson set. Thus, at least in the case of independent sets,
property (P) is too restrictive. Furthermore, there exist independent, non-
Helson sets E for which By is either finite or infinite, so that an
attempt to modify this property by requiring that sup|lfll4g,) < oo only
for those f in A(E) is also insufficient for our investigations of bounded
synthesis. We note that since there exist independent Helson sets for which
spectral synthesis fails [7], property (P) does not itself imply spectral
synthesis for E. What property (P) does give us is that every pseudo-
measure in N(E) is synthesizable by a PM-norm-bounded sequence of
measures {u,} satisfying suppu, € E,, k =1,2,3,... (cf. Lemma 1). This
condition, as evidenced in the result of Meyer, can be considered a weakened
form of the property defining Herz sets. A closed set E is a Herz set if it
satisfies the Herz criterion ([2, p. 76], or [10, pp. 166-169]): there exist
discrete subgroups G, E R generated by positive elements x,, k = 1, such that
(JxGy is dense in R and for each k the set H, = {x € G: dist(x, E) < x,} is
contained in E. Herz sets are sets of bounded synthesis: every pseudomeasure
with support in E is the w*-limit of a PM-norm-bounded sequence of
measure supported by the sets H,. For our study, we introduce the following
definition.

DeriNITION 1. A sequence of subsets {E,}°-, of a set E is said to satisfy
the Bochner-Herz property, or property (BH), if there exists a constant b such
that ||@ll4z = b-supillollyeg, for every ¢ in A(E).
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The infimum of all b satisfying the condition above will be called the
Bochner-Herz constant for the sequence {E,}. It is clear that if (BH) holds
then the union (J,~,E, must be dense in E. Since F S E implies that
ll@llary = ll@llae for all ¢ in A, if property holds for some sequence {F;}
then it also holds for the sequence {E,}, where E, = U'j‘ -1 F;. We will always
assume that E, € E, ,, for all k.

ExaMpLEs. 1. Let E be any (closed) set, and fixx, € E. For k 2 1, let
E, = {xo} U {xeE:dist(x,E) 2 27%}.

We can find functions {¢,} € A so that ||g.|| £ 4, xo ¢ supp ¢, and ¢, = 1
on a neighborhood of E,\{x,}. It is now easy to see that-{E,} satisfies
property (BH). In Theorem 2 we show that this example works if we replace
{xo} by any closed countable set.

2. Let E be a Helson set with Helson constant

¢ = sup{llfllag : I1f llee = 1}.
If {F,} is a collection of finite subsets of E with F, & F,,, and ( JF, = E, then

I Nae) = clifllce) = ¢ supllfllce,) Sc Supk“f”A(Ek)'

Thus, property (BH) holds for any increasing sequence of subsets whose
union is dense in a Helson set. Note that the existence of a Helson non-S-set
again shows that property (BH) does not imply spectral synthesis for the set E.

3. Let E, be an independent Helson set disobeying spectral synthesis.
Katznelson and McGehee [6] have shown that there exists a sequence of
finite sets {H;}®,, with gp({J;H;) n"Eo = @, so that E = E, U (J;H; is
a set of synthesis but not of bounded synthesis. Since Br =1 for any
Helson set F, and since By _y < 3B for any finite set H, we can set
E,=Ey v U';= 1H; and obtain sup,Bg, < 3. Therefore, by Proposition 1(i),
we see that property (BH) must fail for the sequence {E,}.

Our interest in the Bochner-Herz property can be found in the following
lemma, which is an easy application of a classical theorem of Banach.

LemMA 1. Property (BH) holds for E and an increasing sequence of subsets
[E} -1 with constant b if and only if, for every SeN(E), there exist
SceN(Ey), k 2 1, satisfying ISillpm < blIS|lpy and S, S.

Proor. Consider the linear space N, of N(E) defined by Ny = | J; » | N(E)).
For any ¢ € A, the condition (||| 4& = b-supillll4g, holds if and only if,
for each & > 0, there exists an Se N, such that |IS||lzy = b+e and KS, ¢
= |||l &) Applying the result of Banach ([1, p. 213]) now gives the result.

Note that since N(E) is the w*-closure of M(E), N(E) is always realized as
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the w*-closure of the set UkM(Ek) and hence of (J,N(E,). However, the
synthesizing measures are not, in general, PM-norm bounded.

ProrosiTioN 1. (i) Suppose E = EE—,(, with E, € E,,, and suppose that
property (BH) holds for the sequence {E,}. If sup,Bg, is finite, then By is finite.

(ii) Suppose that E = | JyE, and that Bg is finite. Then the sequence {E,}
satisfies (BH) with Bochner-Herz constant b < Bj.

Proor. (i) Let Se N(E). Since (BH) holds, by Lemma 1 we can find
Sc€ N(E,) such that ||S|lps < blISllpp and S, S. Set sup,Bg, = B. Then
for each S, there exists a sequence {y; ,},>1 & M(E,) satisfying

supyllialles < BliSullow < BblISllen, and g, S,
n
Since A(E) is separable, it is clear that we can find a subsequence {v,} from
{m ) satisfying suppv, € E, and ||villpss = Bb||S||ps for k 2 1, and v,(w—.> S.
Thus, Bg is finite with Bg < Bb.

(ii) Let ¢ € A(E) and ¢ > 0 be given. There is an S in N(E) with ||S||pp = 1
such that ||@ll 4 < (1+¢€)I(S, @)|. Since Bg is finite, we can find a measure y
in M(E) with |lullps = BgllSlles = Be and KS, 9)| < (1+¢)[Ku, ¢)|. Because
p is supported by the countable union ( J,E,, there is an integer K so that
the measure v = pg, satisfies

IVlesr < (1 +€)llullea = (1+€)Bg, and
IKi, @)1 < (1+€)Kv, @)

We now have
lollae S (1+)KS, )l < (1+€)*Kn, @)
S (1+)Kv, o)l S (1 +e)IVllpadloll 4,

S (1+¢€)*Bg- S‘:P lloll4&,)-
Since ¢ in A(E) and ¢ > 0 are arbitrary, this proves (ii).

We remark that the hypothesis in (ii) cannot be weakened to the case
where E = [ J,E,. To see this, we only need consider -an independent set E
which is the support of a measure u # 0 whose Fourier-Stieltjes transform A
vanishes at infinity (see [9]). Then E is a non-Helson set (see [2, Theorem
4.5.2]). Furthermore, it is well-known that B; = 1 whenever every portion
of E supports a non-zero measure whose transform vanishes at infinity
(cf. [6]). If each E, is a finite subset of E, then, as we noted earlier,
supxll@ll4g,) = ll@llcxr for each ¢ in A(E). Since E is non-Helson, the A(E)
and C(E) norms are not equivalent on A(E), and so property (BH) must fail.
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It is not unexpected, based on Lemma 1, that we should be able to
draw similarities between bounded synthesis properties and the Bochner-Herz
property. We in fact employ or modify many of the methods used to prove
results in bounded synthesis. However, these methods take us only so far,
mostly because many constructions demonstrating the failure of bounded
synthesis begin with the existence of a non-synthesizable pseudomeasure, that
is, an element supported by a set E but not in the w*-closure of M(E),
whereas we know that N(E) is always equal to the w*-closure of UkN (Ey).
Let us denote by PF the space of pseudofunctions, so that

PF = {SePM :lim sup |S(x)| = 0},

and set PFo(E) = PF n M(E) and PF,(E)= PF n N(E). If PF,(E) + {0},
then E is called an M,-set, and if PF,(E) # {0} then E is called an M,-set.
Every M,-set is necessarily an M {-set, but Pyateckii-Sapiro showed that there
exists an M,-set which is not an M,-set (see [2, Theorem 4.4.2]). We will
say that E is a UMg,-set (UM,-set) if every portion of E is an Mg-set
(respectively an M,-set). For classical results concerning My- and M, -sets,
see [15, Chapter IX]. Finally, note that if E is a UM,-set, then PF,(E) is
a closed subspace of PF whose dual space is A(E).

LeMMA 2. Let E be a UM, -set, and suppose that {E,},, is an increasing
sequence of subsets with E = | JyE,. If SePF,(E), then there exist pseudo-
functions S, € N(E,), k Z 1, such that ||S; —Sllpm — O.

Proor. Let N, denote the PM-normed closure of the space (),PF,(E,);
N, is then also a closed subspace of PF,(E). If S¢ N,, by the Hahn-Banach
theorem there is a ¢ in A(E) = dual space of PF,(E) such that {(T,¢) =0
for all T in N, and ¢S,¢) # 0. For a fixed x€E, let F = E n1, where I
is any closed interval containing x in its interior, and set W, = E; n F. Note
that the set F, being a portion of a UM,-set, is also a UM,-set. Since
F = | )iW,, the Baire category theorem now implies that there exists an
index n and a portion F' of F so that F' S W,. But then F' satisfies
PF,(F’) # {0} and so we have PF(W,) # {0} as well. Hence there cxists a
pseudofunction Sge PF,(W,) S N, with Sg(0) = |IS¢llpm = 1. By choosing a
nested sequence of portions {F;} with ();F; = {x}, we can find {S;} € N, so
that §; ¥} 5, in the topology 6(PM, A). It follows that the w*<losure of N,
in N(E) contains all discretc measures supported by E, and therefore must
cqual N(E). In particular, S € N(E), and since {T,¢) =0 for all T in N,,
we obtain ¢S, ¢)> = 0. This contradiction proves the lemma.
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Remark. The condition E = | J,E, can be weakened to E = DkEk if we
know that each E, is a UM, -set. Furthermore, if each E, is a UM,-set, then
we can choose the pseudofunctions S, as measures.

LEMMA 3. Let E be a UM -set. Then for every S in N(E) there exists a
sequence of pseudofunctions {8} € N(E) such that ||Sillpse = |IS|lpas for all
k=1and S,">S.

Proor. Since E is a UM, -set, the second dual of PF,(E)is N(E). Thus, for
every S in N(E), |ISllps = 1, and for every finite collection {¢,..., 0,} E A(E),
there exists a sequence {S,} & PF(E) such that ||S,||py = 1 and

S, 05 - (S,@pp for j=1,..,n

(see [14, Theorem IV.8.3]). Since A(E) is separable, the result now follows.

THEOREM 1. Suppose E is a UM, -set and that E = | J,E, for an increasing
sequence {E,} of subsets of E. Then {E,} satisfies property (BH) with constant 1.
In particular, for every S in N(E) there is a sequence {S,} of pseudo-
Sfunctions with supp S, € E,, |ISillem = |ISllpum for all k, and such that S,(w—: S.

Proor. If S € N(E), then by Lemma 3 there exist pseudofunctions P,, n 2 1,
such that supp P, € E, ||P,|lpp = IIS||par, and P,,ﬂ S. By Lemma 2, each P,
is realized as the PM-normed limit of a seugnce {P,,}, > ; of pseudofunctions
with supp P, , € (supp P,) n E, € E,. A simple diagonalization proces applied
to {P,,} (and multiplying by appropriate scaling factors r, — 1 if necessary)
produces the required sequence {S,}.

An easy consequence is the following result.

CoroLLARY 1. If E is a UM -set, then By is finite if and only if there exists
an increasing sequence of subsets satisfying E = UkEk and such that
supy B, is finite.

Thus we find that the UM, -set condition guarantees (bounded) synthesis
by pseudofunctions in much the same way that the UM,-set condition
guarantees bounded synthesis by measures. One might consider to what extent
either of these conditions can be weakened. For example, let E satisfy the
condition: given any portion F of E and any ¢ > 0, there exists a non-zero
measure u with support in F such that

lim sup |A(x)| < &llullpm-

It is not difficult to show that such sets have By = 1. We can then ask
whether every set E satisfying the following similar condition always has the
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Bochner-Herz property: given any portion F of E and any ¢ > 0, there exists
a non-zero pseudomeasure S in N(F) such that

lim sup S(c)| < &lSllpw.
The answer is yes, for the reason that every set satisfying this condition is
necessarily a UM -set. To see this, recall a result of Pyateckii-Sapiro (see
[2, Theorem 4.3.4]) which says that every set E with PF,(E) = {0} is the
countable union of closed sets F, for which there exist numbers 5, = #(F,) > 0
satisfying

lim sup |§(x)| Z nilISllpm

for all § in N(F,). Since E, as a closed subset of R, is a complete metric
space, the Baire category theorem would imply that there is a neighborhood V
and an index n such that the nonempty portion E n V of E is contained in
F,. For all S in E n V we would then have

lim sup [S(x)| = 7,/ISllpa-

But this contradicts our original assumption on E. Thus, every such set is a
UM, -set. For sets which are not UM, -sets, we know that other conditions
are needed for a sequence of subsets of E to satisfy property (BH). Define

the limit set of a sequence {E,} as the intersection Eq = (- E \E,. It is
not surprising that the set E, plays a major role in whether or not (BH)
holds. For example, if E, is a non-S-set, then (BH) may fail even if
ENE, is a countable set (Example 3). In the case when E = | J,E,, it is
clear that for every x in E, there is an index k, so that xeE, for all
k = k,. We will be concerned primarily with increasing sequences {E,} for
which E = | J,E, and E, € E,, and then consider what conditions on E,
imply that property (BH) holds.

Before stating our next result, we recall some basic facts about pseudo-
measures. Let f be a function in 4 with suppf S[-1,1], f =1 on a
neighborhood of 0, and ||f]| £ 3. For n 2 1, define f,e 4 by f,(x) = f(nx).
For every teR, define f,,e4 by f,,=f,*0,. We have ||f, |l =3 for all
n21 and all . Let S be a pseudomeasure. Then for each r the sequence
{Sfin}*-1 E PM is bounded in norm by 3||S||lpm, and converges w* to 0
for every t e R\J, where J is a countable set contained in the support of S.
By passing to a subsequence of {f,}, we may assume there exist complex
numbers g, so that Sf,',,w—‘v a,d, for each t in R. Then, whenever F is a finite
set and u = Y, b0, is in M(F), we have

S(fa *l‘)‘g:’ Us = Za,b,é,
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and

llusllen = <l1m sup |1/, * ull) (1S1lpas-

Theorem 2. Suppose E = | ) E,, E, € Ei+y, and that Eq = (WE\E, is a
countable set. Then {E,} satisfies the Bocher-Herz property.

ProoF. Let ¢ € A(E) and set a = sup|loll4,)- Let ¢ > 0 be given, and let
SeN(E), |ISllpy =1, have KS, (pl > (1—¢)ll¢ll 4k By our remarks above,
we can find a sequence {f,}>-; € 4 such that Sf, , converges to a,d, for each
tin R. For every k = 1,2,3,.., let ¢, € A satisfy ¢, = ¢ on E, and

llewll < lloll 4, (1 +k~1).

Since the pseudomeasures {S¢; }, » ; are bounded in norm, we can find a subse-
quence which converges w* to a pseudomeasure S, with ||S|lpp = allS|lpy < o
Furthermore, since S e N(E), and since for any open set V disjoint from E,
we have, for k sufficiently large, S¢, = Sp on V (that is, f € 4 and supp f S V
imply {S¢..f> = {(So, ), we find that supp(S¢ —S,) € E,. Having support
in a countable set, S, = S — S, is almost periodic, and so there exists a finite
set Fo £ E, and a measure u with suppu = Fy and ||So —pllpy < & By
using a standard construction (see [5, Lemma 1]), given any finite set H,,
we can find a measure v, with the following properties :

(1) lim sup,llvy * full = 3;
2) vyg({t})=1for all t in Hy;
(3) suppvy = H < gp(H,) and H is finite;

here gp(H,) denotes the algebraic group generated by H,. We first apply this
construction to the set F, to obtain a measure v; with supp vy = F & gp(Fy),
and then set H, = F. n E. We can now also find a measure vy for the set
H, with supp vy in a finite set H.

Consider the sequence {S(f, * v4)}+- . By our choice of f, € A, we see that

SUsve)Bv= Y va({thad.

teH nE'H

The measure v satisfies ||[V||pp < 3, and suppv E H n (supp S) is finite. We
write
#=So+(—So) =S¢—S;+(n—So)

= (S—v)p+vep—S;+(u—=So)
and, since supp 4 = F,, obtain

[(S—v)fp+wp—31+(ﬂ—So)](ﬁ.*vF)‘f:+ B
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But

(suppve) NES F nE = Hy S {t:vy({t}) = 1},

so that (S—v)(j;,*vp)w—i 0. Since suppv is a finite subset of E, we have

lIvellpa < 3o, hence

[lellppr = 3(||V(P||PM+||Sl||PM+||ll‘So”PM)
S 3Ba+a+e)
1200+ 3e.

But then S¢ = S, +(So — u)+ u satisfies ||S@||py < 13 +4e. In particular,

(I =)ol e = KS, @Dl = KSe, 1)
< 1(Se) (0l
< ISollpp < 1300+ 4e.

Since ¢ is arbitrary, we have

ol ae = 13Stzp ol a(,)-

Since we are interested in determining when By is finite for a given set E,
we try to combine the conditions required for (BH) to hold and the bounded
synthesis properties of the subsets E,. The basic idea is that we attempt to
build the set E from subsets E, in such a way which guarantees that Bj is
finite. Most constructions of sets E for which By is infinite are attained by
producing disjoint portions E, of E where By — oo. The example of
Korner [7] further demonstrates that even if F, and F, are S-sets with
Bp =Bp, =1 and F, nF, = {0}, it is possible that B . is infinite.
Here, we can consider E, as the set F;, n F, = {0}, and let

E,=E, u{xeF,; uF,:dist(x,0) 2 &},

where ¢, — 0. Then (BH) holds but sup,Bg, is infinite. Our concern is to find
conditions on E and {E,} which imply that B is finite. Our initial results
lead us to some interesting consequences concerning the spectral synthesis
propérties of the union of two S-sets. First, we give a lemma which is well-
known from the study of the union problem for Helson sets.

LEMMA 4. Let E be a Helson set with Helson constant c. Then for every
closed set F such that gp(E) n F = ¢ and any measure p supported by E U F
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we have

”#lE”PM = CZ”,“”PM'

Proor. See [2, Theorem 2.1.3].

THEOREM 3. Let E = (J\E,, E, S Ey+y, and suppose the limit set
Eo = (\«E\E, is a relatively open subset of E, for each k. Suppose further that

(i) Eq is a Helson S-set;
(il) B = sup,Bg, is finite;
Then Bg is finite.

Proor. By (ii) and Proposition 1(i), it is sufficient to show that the
sequence {E,} satisfies the Bochner-Herz property. Let ¢ € A. Since E, is an
S-set, there is a ¢, € A such that |||l < 2|l¢ll4k,) and @, = ¢ on a neigh-

borhood of E,. If there exists a constant b for which property (BH) holds
whenever ¥ € A has ¥ = 0 on a neighborhood of E;, we obtain

Nollae = Nlooll+ 1190 — @l ak)

IIA

2lloll4g,) +b - suplloo — @ll 4k,

IIA

2lloll4k,) + bll@oll +b - supill@ll 4k,
(2+3b)sup,llell 4k,)-

IIA

Thus, we can assume that ¢ = 0 in a neighborhood of E,. Now choose
¢ >0 and let Se N(E), ||Sllpy < 1, such that (1 —¢)llell 4 < IKS, @D|. Set

o = sup llella,)-

We now proceed as in the proof of Theorem 2 to obtain pseudomeasures S,
and S, satisfying So = S —S,, |ISillpm < o, and supp S, € E,. Note that
Soe M(E,) & N(E,) for all k. Since ¢ vanishes on a neighberhood of E,,
supp S¢ is disjoint from E, and therefore is contained in some E, . But
SeN(E), so there is an index k = k; so that SpeN(E,), and therefore
S, = S¢—S,eN(E,). By (i), there exists a sequence of measures {y,} in
M(E,) satisfying

sup llillpse S BlISyllpr S Be and 11,5 S,.

Set v, = p,|g, ; by Lemma 4, we have ||v,llpy = c*lltallpn S ¢?Ba for each n,
where c is the Helson constant of the set E,. Since E, is a relatively open
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subset of E,, it is clear that
"nw—"> So = S1IEO-

Hence ||So|lpp < c?Ba. Writing S = S, + S, we find that IS@llppm = (1+¢2B)a.
We conclude as in Theorem 2 that

”(p”A(E) = +CZB)5‘:p ”‘P”A(E,‘i'

This proves the theorem.

RemaRrks. 1. The above proof estimates the Bochner-Herz constant b as
b <5+3c?’B < 8¢?B.

2. Theorem 3 remains valid if we replace (iii) by the slightly weaker
condition

(iii') there is a countable set H S E such that gp(H) nE, = ¢ and
gp(Eo) nES Ey UH.

This follows because, given any measure y with support in some E,, we can
use the result of ([5, Lemma 1]) to extract a measure w with suppw E H,

llwllpas = 3llpllpar. and supp(u—w) N H = @. If then {u,} synthesizes S, € N(E,)
as in the above proof, the measures v, = (1, — w,)|g, satisfy

Vallear S llta— @allpn S 4c?||tallpar < 4¢?BliSyllpw and v, S,

Thus, the conclusion of the theorem still holds. The Bochner-Herz constant
will now satisfy b < 20c*B.

3. Example 3 shows that Theorem 3 is false if we do not require that
E, be an S-set.

We now obtain the following corollary concerning the union problem
for sets of spectral synthesis.

CoroLLARY 2. Let K, and K, be S-sets. Suppose there exist closed sets
F,, = K1 (V) Kz, k g 1, such that Fk = Fk+1s Kl UK2 = Uka, and Kl A Kz
= (\(K; U K;)\F,. Suppose further that

(i) K, n K, is a relatively open subset of F, for each k;
(ii) K, n K, is a Helson S-set;

(i) gp(K; N K;) n(K; UK;)=K; nKy;

(iv) B = sup,By, is finite;

(v) K; u K, has measure 0.

Then K, U K, is a set of spectral synthesis.

Proor. Set E, = K; nK,, F = K, UK,, and assume that F disobeys
spectral synthesis. Then there exists a pseudomeasure S, ||S|lpp <1,
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suppS € F, and a function ¢ in 4 with ¢ = 0 on F such that ¢S, ¢) = M,
where M is a positive constant to be determined later. Our proof consists
of applying the method of Katznelson and McGehee ([6, Theorem VI];
see Example 3) in order to obtain a contradiction. We may assume, as done
in the proof of ([6, Theorem VI]), that F contains no rational multiples of =.
Since F has measure 0, their construction yields an increasing sequence of
finite sets H, S {rn: rrational}, k = 1, for which all of the limit points of
(UxH, are in F, and so that the set E=F U JH, is an S-set and yet
B 2 M. In particular, we obtain

“4) lloll 4y 2 M, and
(5 I<u, D] < |lullpay  for each measure u supported by E.

Set H = | JH,, and note that H is a countable set satisfying condition (iii’)
in Remark 2 above for the sets E and E,. We now proceed to define sets
E, for which the conditions of Theorem 3 hold. First, note that since
F = UkF « 1s a totally disconnected set, we can find closed sets D, & F, and
compact neighborhoods ¥, of D,, with V; € V;,,, satisfying

(6) Eo nVi=9;
() F AV, =Dy
8) F=E, u Uka;
) Eo = (WF\D,.

For each k, let P, = H, U (V, n H), and set E, = F, U P,. Then E = | J,E,
and E, € E,,,; also, by (i), (6), and the fact that H, is a finite set, E, is a
relatively open subset of E,.

Now suppose that Te N(E,) for some k. Let P, be any finite subset of
P,, and let v = v, be a measure determined by ([5, Lemma 1]) satisfying
conditions (1), (2), and (3) for some finite set P < gp(P,) < gp(H). The
sequence {T(v*f,)}, & PM, being uniformly bounded in norm, has a sub-
sequence that converges w* to a measure u whose PM norm is bounded by
3|IT||pm> which has finite support in the set P nsupp T S P,, and for which
u =T in a neighborhood of P,. By taking an increasing family of finite
subsets which exhaust P,, we can find a sequence {u,} & M(P,) with
sup,lltallem = 31| Tllpsr and which converges w* to a pseudomeasure T; for
which supp(T —T,) € F,. Set T, = T — Tp. Note that D,, being both an open
and closed subset of F disjoint from E,, is an S-set. Hence T}, having support
in the disjoint sets D, and F,\D,, equals T on a neighborhood of F,\D,.
Since T € N(E,), this implies that T, e N(F,). We therefore find that, for each k
and every T in N(E,), T is the w*-limit of measures from M (E,) whose norms
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are bounded by 4B ||T||pp. Thus, sup,Bg, = 4B. Theorem 3 and Remark 2
following now imply that the sequence {E,} satisfies the Bochner-Herz
property with constant b < 80c?B, where ¢ is the Helson constant of the
set E,.

However, whenever T = T,+Tp,e N(E,) as above, since ¢ =0 on
K, UK; 2 F, 2 supp T;, we have (T, ) = 0. Thus, (5) gives

KT, o3| = KTy, 9> +<{Tp, 9>| = KTp, )|
= lim [{,, @)

= 3ITllpu
for all T in N(E,). We conclude that ||@||g,) = 3 for all k 2 1, that is

supillollqg,) = 3.

This, together with (4), forces b 2 M/3. By choosing M > 240c2B, we obtain
our contradiction. Thus, K; U K, is a set of spectral synthesis.

We note that Corollary 2 remains valid when K, n K, € E, € K,. The
condition that K; U K, has measure zero is required for the construction of
Katznelson and McGehee. Even though one would not expect the measure of
a set to be directly related to its spectral synthesis properties in general, it
is likely that condition (v) is consistent with the requirements imposed by the
conditions (ii)}-(iv).

ExampLE. 4. Let E, and E, be disjoint perfect sets whose union is a
Kronecker set ([8, §5.1.2]). Then A(E, + E,) is isometric to the tensor algebra
V = C(E, ® C(E,) via the canonical identification of E, +E, with E, x E,
(see [12]). Let g: E, — E, be a nondecreasing continuous function; it is then
easy to check that the set

F={x+y:xeE,,y = g(x)}

is a Kronecker set, and so a Helson S-set. Let K, and K, be S-set subsets
of E, + E, whose intersection E, = K; n K, is contained in F. Then E, is
a Helson S-set satisfying gp(E,) N (K; v K;) = E,. Set

E$ = {(x,y):x€E;,y = g(x)}.

For any neighborhood W* of E} we can find a finite collection R,,...,R,
of disjoint rectangular sets which are both open and closed in E, x E;,, whose
projections onto E, and E, are mutually disjoint, and for which
E$ S |J;R; € W*. Therefore, there exist functions {f}} in V for which
sup,|lf*|ly < o, and open and closed neighborhoods W} of E§, such that
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ﬂ,,W,T =E§, f¥=1on W} and f¥ =0 off W} (see [11, Theorem 1.2]).
Hence, there exist functions {f,} in A(E,+E,), sup,ll fall 4k, +£,) < ©, and
neighborhoods W, of E, such that (),W, = E,, f, = 1 on (E, + E;) n W,, and
f,=0 on (E,+E,;) nW Let K denote the union K,; uK,, and set
Gi=KnW, k=21 Since K, and K, are S-sets, G, is an S-set. If
supBg, < oo, then Corollary 2 shows that K is an S-set. But even when
supyBg, is not finite, we can still use Corollary 2 to show that K is an S-set.
For suppose that Se PM(K) is not synthesizable on K. Then for each
index k we can apply the Herz criterion to find a countable set H,, all
of whose limit points are in Gy, so that G; = G, U H, has B; = 1, and yet
S¢ N(K U | JH,). Furthermore, since E, is an independent set, the H, can be
chosen so that gp(| JH,) N gp(Eo) = {0}. Now let E = K U K5, where, for
j=1,2, we write H, = H(, 1) u H(k,2), with all of the limit points of
H(k, j) lying in Kj, and K= K; U | JH(k, j), and then set F, = E n Wj.
It is easy to show that all of the hypotheses of the corollary are satisfied for

' UK} and the sequence {F,}. Hence K| u K} is an S-set, and this
contradicts the fact that S¢ N(K u ( J,H,). Thus, K, U K, is a set of spectral
synthesis.

The sets E; and E, used in Example 4 can be generalized slightly by
using the results of Kaijser [3], where a topological isomorphism is
established between A(E, + - + E,) and the tensor algebra C(E,) ®--- ® C(E,)
for certain Helson sets E; u--- U E,. The set F in the example can also be
generalized (e.g., the finite uniton of such sets also works). The property used
in the proof of Corollary 2, and what is implied by the conditions (ii)—(iv),
is that, for each k and any S in N(F,), the norm "SIEOHPM is bounded by
|ISllps times a fixed constant independent of S and k. The functions {f,}
in Example 4 provide us with this property for the set E, relative to E, + E,.
We therefore make the following definition (cf. Ditkin sets, [2, pp. 71-73]).
For f in A, we write suppgf for the closure of the set {xe E: f(x) # 0}.

DerFINITION 2. A compact subset F of a closed set E is called an E-Ditkin
set, if there exist functions {f,} £ A(E), with sup,||f,ll.& < o, and neigh-
borhoods W, of F so that f, =1 on E n W,, suppsf,+, & suppef, and

ﬂnS“PPEfn =F.

Note that unlike Ditkind sets, which are sets of spectral synthesis, an
E-Ditkin set might not be an S-set even if E is an S-set. In fact, Example 3
shows that while E, is an E-Ditkin set, we still have PM(E;) N N(E) # N(Eyp).
We now give versions of the last two results obtained with E-Ditkin sets.

TueoreM 4. Let E = | ),E,, E; € E, 1, and suppose that Eq = (\(E\E, is
an E-Ditkin set. If E, is an S-set, then the sequence {E,} satisfies property (BH).
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CoRroLLARY 3. Let K, and K, be S-sets of measure zero. Suppose there exists
a closed set E, with K; n K, € Ey € K, satisfying

(i) Eq is an S-set, and
(i1) E,is a (K, v K,)-Ditkin set.

Then K, U K, is a set of spectral synthesis.

Finally, we remark that the proof of Corollary 2 can be adapted to
obtain the following result concerning pseudofunctions. However, this fact
has a simple proof that we present below.

ProposiTiON 2. Let K, and K, be S-sets whose intersection K; n K, is a
U-set (ie, PF(K; nK;)={0}). Then every pseudofunction supported by
K, u K, is synthesizable on K, U K,.

Proor. Let K, and K, be as in the hypotheses, and let S € PF(K; U K,).
If pe A for which ¢ =0 on K; U K,, it is enough to show that S = 0.
Since K, and K, are S-sets, we have suppS¢p € K; n K,. But S being a
pseudofunction implies that S¢ is also a pseudofunction. Hence, K; n K,
being a U-set forces S = 0.

The author would like to thank Professors C. Robert Warner and John J.
Benedetto for their helpful conversations and suggestions.
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