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EQUIVARIANTLY PARALLELIZABLE MANIFOLDS

RYSZARD L. RUBINSZTEIN*

1. Introduction.

In [10], M. Kervaire has proved that a stably parallelizable closed smooth
connected manifold M of dimension 2n, n > 0, is parallelizable if and only if
its Euler-Poincaré characteristic y(M) = 0.

The aim of this paper is to extend Kervaire’s result to the case with a finite
group action.

Let G be a finite group and let M be a closed G-manifold. T(M) is the
tangent bundle of M. We assume that there exists a representation V of G
such that

TM)® R =M x (V @ R*)

equivariantly, for some integer s.

Assume furthermore that for all subgroups H = G all connected com-
ponents of M¥ are even-dimensional.

We construct an elementary abelian 2-group C(M, V) and an element
{(M, V) in C(M, V), both depending only on M and V, and we prove:

THEOREM 2.8. T(M) = M x V equivariantly if and only if
1)y (M,V)=0in C(M,V), and

(2) x(L) = 0 for any subgroup H < G and any connected component L of
M* with dim L > 0.

Then we examine a series of examples. Let G, be the elementary abelian
2-group Z/2 x ... x Z/2 (k factors). ¥, is the real regular representation of G,.
¥, is the orthogonal complement of the trivial summand in V,. S(V;) is the
unit sphere in ¥, and M, = S(V;) x S(V;). Then

T(S(h) ® R' = S(W) x (V. ®R")
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and
TM,) ®R?> =M, x (V. ® ¥, ®R?)

equivariantly and, moreover, M, satisfy the condition (2) of Theorem 28.
We show, however, that M, and S(V,) are G,-parallelizable if and only if
k = 1,2, 3. This is a consequence of the fact that {(M,, V, @ V;) + 0 for k > 3.

The G,-manifolds S(V,) and M, have some connection with the Hopf
invariant one problem and the Kervaire invariant one problem. This is
explained in [13].

The paper is organized as follows: in Section 2 we define the group
C(M, V) and the element {(M, V) and we formulate the main Theorem 2.8.
Section 3 is purely technical. Section 4 contains a proof of the main theorem.
. In Section 5 we investigate the manifolds M,.

Throughout the paper G is a finite group. The term “G-manifold” means
a compact smooth Riemannian manifold without boundary equipped with a
smooth left action of G such that G acts through Riemannian isometries. All
G-vector bundles which appear are assumed to be equipped with G-invariant
Riemannian metrics. All G-isomorphisms of vector bundles are orthogonal in
those metrics. If M is a G-manifold and H < G is a subgroup, then

M" = {xeM|hx = x for heH)}.

2. The main theorem.

G is a finite group.
Let V be an orthogonal (finite dimensional) representation of G and let M
be a G-manifold.

DerINITION 2.1. (i) M is V-parallelizable if its tangent bundle T(M) and the
product bundle M x V are G-isomorphic as G-vector bundles.

(ii) M is V-specially stably parallelizable (we shall abbreviate this to: M is
V-ssp) if, for some nonnegative integer s, T(M) @ R* and M x (V @ R®) are
G-isomorphic G-vector bundles. Here R® is the trivial s-dimensional
representation of G.

(iii) M is G-parallelizable if it is W-parallelizable for some representation
W of G.

For the rest of this section M is a V-specially stably parallelizable G-
manifold. We define an abelian group B(M) as follows:
Let

M, = {x e M|dim M6x = 0},
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Here G, is the isotropy group of the point x. (Observe that, for any subgroup
H < G, all connected components of M¥ have the same dimension equal to
dim V¥ Hence M, = {x e M|dim V% = 0}). M, is an invariant, finite subset
of M. We define B(M) as

B(M) = Map(M,/G, Z/2),

the group of all mappings from the set M,/G to the group Z/2 = {1}.

We define now a group AM,V). Let OV @®R"), n=0,1,... be the
orthogonal group of V@®R" G acts on O(V @ R") by conjugation:
g(f)=gfg~ ' for feO(V @ R") and g € G. The embedding of R" into R"*!
on the first n coordinates induces G-embeddings

O(V ® R") c O(V @ R"*1),
Let
O(V, ) = lim O(V @ R")

be the limit space with the inductive limit topology. We define A(M, V) as
the group of all G-homotopy classes of G-maps from M to O(V, x),

AM, V) = [M,O(V, ©)]e.

The group structure of A(M, V) is induced by that of O(V, ).
We define also a group homomorphism h: A(M, V) —» B(M) as follows:
Let

f:M->OW @®R"

be a G-map and x € M,. Then dim VG- = 0 and (V @ R")% = R". Further-
more, f(x)e O(V @ R")%. It follows from the Schur lemma that f(x)(R") = R".
Observe that the restricted isometry f(x)|R" is independent of the choice of
x within its orbit, ie. f(x)|R" = f(gx)|R" for any geG. We define
h: AM,V ) - B(M) by

h([fD(x) = det(f (x)IR") e {1}

Let KOg!(-) be the (—1)st functor of the reduced equivariant real KO-
theory. Let W, be the real regular representation of G,

nmeg = Wreg@"'® Wreg

(n summands). G acts on the orthogonal group O(nW.,) by conjugation,
g(f) = gfg™* for f €O(nW,,), g€ G, and in the similar way on
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Og(0) = lim O(n W)

Then KOG '(M.,) = [M, Og(c0)]s.
We choose an orthogonal G-embedding i: V' <, noW,,, for some integer n,,
and an orthogonal G-embedding j:R' < W,. i and j yield G-embeddings

i VOR o e+nWe, i,=i®jD...0 J.
—

i, induce G-maps
,:O(V +R") = O((no +n)W,,),

L(OImi, = f, i,(f)|(Imi,)* = id for f e O(V @ R"). The sequence {i,} gives a
G-map i, : O(V, o) = Og(0), which in turn induces a group homomorphism

J:AM,V)-> KOs M,).

We have also a group homomorphism H:KOg!(M,)— B(M). It is
defined as follows: let k:M — O(nW,,) be a G-map and xeM,. Then
k(x) € O(nW,,)% and it follows from the Schur lemma that

k(x)((nWeg)Cx) = (nWeg)Cx.
If ye My, y = gx for some g € G, then
I((nWeg)Gx) = (nWeg)%
and the diagram
(nWeg)0= 2 (W)
g g
(nWeg)r 8 (1 W, )6

commutes. It follows that det(k(x)|(nWeg)%) = det(k(y)l(nW,,)%). We
define the homomorphism

H:KO;'(M.) - B(M)
by
H([k])(x) = det(k(x)|(nW,e)C-) e { £ 1}.

H is well defined since H([k])(x) = H([k])(gx) for any g€G.
It follows directly from the definition of the homomorphisms h, J and H that

22) h=H-J.
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Let @: T(M)® R* > M x (V @ R®) be a G-isomorphism. We shall assign
to @ an element a(P)e B(M). It is constructed as follows: Let xe M,. The
tangent space of M at x, T,(M) is a G,-space and (T, (M))% = 0.

o T.M)®R >V @R

is a G,-isomorphism, V6 = 0. It follows that @,(R*) = R®. We define a map
@(®P): My - O(R®) by a(®)(x) = (P,|R*). Observe that &(®)(x) = a(P)(gx)
for any g € G. Finally we define a(®): My/G — Z/2 by

(2.3) a(@)[x] = det(@®P)(x)).

Of course, a(®) depends only on the stable class of &, that is a(dP)
= a(P @ idg.), and if

D, P, TM)P R > Mx (V@R

are G-homotopic, then a(®,) = a(P,).

Every pair of G-isomorphisms @,,®,: T(M)® R* - M x (V @ R*) deter-
mines an element y(®,, $,)e AM, V). y(®,, ®,) is the G-homotopy class of
the map

7Py, P2): M > O(V @ RY), 7(®y, D,)(x) = P, 0Py 5

LEMMA 24. If @,,9,: T(M) @ R°* > M x (V @ R®) are two G-isomorphisms
of vector bundles, then

a(P;) = a(Py)+h(y(P,, D))
in B(M).
ProOF. a(®,)+ h(y(P,, P,)) is represented by a map f: M,/G — Z/2,
f([x]) = det(@(®,)(x))- det((P,, ° P1 ;)R
= det(((®2,x° D1,3)IR*) © (@(Py)(x)))
= det(((®,, ° P1,5)IR’) © (P1,,IR%)) = det(®, |R*) = det(@(P,)(x))
= a(®,)[x] for xeM,.
Thus a(P,) = a(P,)+h(¥(Py, D))

LEMMA 2.5. Let ®,: T(M)® R* - M x (V @ R®) be a G-isomorphism and
weA(M, V). There exists an integer n and a G-isomorphism

D, TM)DR">Mx(VHR"
such that a(®,) = a(P,)+h(w) in B(M).
Proor. Let w be represented by a G-map f:M — O(V @ R'). We set
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n = max(s,t). We may assume that s =t = n. Let
O, TM)®R">Mx(V@®R"

be defined by &, , = f(x)o P, , for xe M. Then y(®,, ?,) = w. Lemma 2.5
follows now from (2.4).

DeriniTION 2.6. If M is a V-specially stably parallelizable manifold, we
define an abelian group C(M, V') and an element {(M, V)e C(M, V). C(M, V)
is the quotient Coker(h). {(M, V') is the image of a(®)e B(M), where

&:T(M)D R > Mx (V@ R)
is a G-isomorphism of vector bundles, in Coker (h).

Remark 2.7. (i) It follows from (2.4) that {(M, V) does not depend on the
choice of .
(ii) If {(M, V) = 0, then there exists a G-isomorphism

P TIM)®R » Mx (V@R
with a(®) = 0. Indeed, if {(M, V) = 0, then there exist f€ A(M, V) and
o, TM)DR > Mx (VDR
such that a(®,) = h(B). Apply now (2.5) with w = — .
(iii) If M is V-parallelizable, then {(M, V) = 0. Indeed, let ¥: T(M)>M x V

be a G-isomorphism of vector bundles. By the definition, a(¥) = 0. Conse-
quently, {(M, V) = 0 as well.

Let us observe that if M is a V-ssp manifold then, for every subgroup
H < G, M¥ is a stably parallelizable manifold.

The following is our equivariant generalization of the Kervaire theorem
([10], [7; Theorem 2], [15; Section 3]):

THEOREM 2.8. Let M be a V-specially stably parallelizable manifold such that

(i)  for every subgroup H = G, dim M™ is even or M*" is empty,

(i) if H< G is such a subgroup that dimM*" > 0 and L is a connected
component of MY, then y(L) = 0,

(i) ((M,V)=0in C(M,V).

Then M is V-parallelizable.

Theorem 2.8 will be proved in Section 4. (2.8) (ii) and (2.8) (iii) are also
necessary conditions for M to be V-parallelizable.
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3. G-fibrations.

G is a finite group.

DeriniTION 3.1. Let E and B be G-spaces and let p: E - B be a G-map.
p is said to be a G-fibration if

@) for any G-CW-pair (X, A), G-homotopy F,: X - B, G-map H: X — E,
and G-homotopy h,: A - E such that poh, = F,|, for tel, hy = H|,
and poH = F,, therc cxists a G-homotopy H,: X — E such that
h,=H,|,, peH,=F,fortel and H, = H,

(i)  for every subgroup H < G, p": E¥ — BH is surjective.

If p satisfies the property (3.1) (i) for a fixed G-CW-pair (X, A), we say that
p has the G-covering homotopy extension property with respect to (X, A).

ReMARk 3.2. If Z is any space, Y is a G-space and H < G is a subgroup,
then there is a bijective correspondence between maps f : Z —» Y# and G-maps
f:(G/H)yx Z - Y, where G acts on (G/H)x Z via trivial action on Z and
the left multiplication on G/H. Indeed, the correspondence is given by
f@H,z) = gf (z). Compare [12; (2.1)].

LEMMA 3.3. p:E - B is a G-fibration if and only if p":E® - B" is a
Serre fibration for every subgroup H < G.

Proor. Let p:E — B be a G-fibration, H =« G be a subgroup and (Z, Y)
be a CW-pair. The covering homotopy extensions property of p#: E# — BH
with respect to (Z,Y) follows from the G-covering homotopy extension
property of p with respect to the G-CW-complex ((G/H)x Z, (G/H)x Y).
See (3.2).

Suppose now that, for all subgroups H = G, p":E" — B¥ are Serre
fibrations. In order to prove that p satisfies the requirements of (3.1) it is
enough to show that p satisfies them in the case when X = 4 U, ((G/H) x D")
and f:(G/H)xS" ! - A is a G-map. This in turn would follow from (3.1)
being satisfied for X = (G/H)xD", A = (G/H)x S"~'. But the G-covering
homotopy extension property of p with respect to the pair ((G/H)x D",
(G/H)x 8" ') follows from the covering homotopy extension property of p¥
with respect to the pair (D", S"1). See (3.2).

If p:E—B is a G-fibration and beB, then the fibre of p over b,
p~!(b) is a Gy-space. If H = G is a subgroup and be B¥, then (p~'(b))? is
the fibre over b of the fibration p?: E¥ — B4,

Let {;:E;, = X, i =1,2, be G-vector bundles over a G-CW-complex X.
Suppose that there exists a G-isomorphism &: &, — £,.
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We have a G-vector bundle Hom(¢,,&,) over X, see [2; Sections 1.2
and 1.6]. If heHom(¢,,&;), h:éi(x) > &' (x), xeX and geG, then
g(h)e Hom(¢ '(gx), &5 '(gx)) is given by g(h) = gohog™!.

The G-vector bundle Hom(¢,, £,) contains a nonlinear G-subbundle

Iso({y, &;) = {he Hom(¢&,, &;)|h is an orthogonal isomorphism}.
We denote by I:1Iso(&y, £,) = X the bundle projection.
LemMa 34. I:1s0(¢,, &) = X is a G-fibration.

Proor. Since there exists a G-isomorphism @: &, — &,, (3.1) (ii) is satisfied.
Let H < G be a subgroup. According to (3.3) it is enough to prove that

I":1s0(¢y, &) —» X"

is a Serre fibration. We have

Iso(¢;, cz)H = Iso(,|xn, 5z|x")"-

For every xe X" there is a neighbourhood U = X¥ such that &y is
H-isomorphic to U x (¢ !(x)). Indeed, for complex H-vector bundles this
fact is a consequence of [2; Proposition 1.6.2]. If { is a real H-vector bundle
over X¥, we choose a neighbourhood x e U; < X and an H-isomorphism

©:{®Cly,»U; x({"'(x)®C)

such that ¢l;-1)gc is the identity. Let i:{ -»{® C be the embedding
corresponding to the embedding R <, C and let

pr:Uyx(('(x)®C) > Uy x{ ™ (x)

be the projection corresponding to the projection a:C — R, a(z) = $(z+2).

The composition ¥ = proego (ily,) is an H-vector bundle homomorphism

and it is the identity on the fibre { ~!(x). Hence there exists a neighbourhood

U of x in X¥ such that yly:{jy » Ux{ '(x) is an H-isomorphism.

(Compare [6; p. 15].) Observe that we may assume that y|y is orthogonal on

fibres. If not, we can apply the Gramm-Schmidt orthogonalization procedure.
It follows that

Lso(&1ly> E2lu)” = U x (Iso(1 *(x), &3 1 (x))).

Consequently I7: Iso(&,, &,)% — X is locally a product bundle and, therefore,
a Serre fibration.

Let V; and V, be two orthogonal representations of G. We shall denote
by St(V;, V1) the space of all linear isometric embeddings of V; into V¥, (that
is St(V;, V,) is homeomorphic to the Stiefel variety of orthonormal n-frames
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in R™, where n = dim V; and m = dim V,). St(V;, V,) is a G-space with the
action of G given by g(h) = ghg™! for heSt(V,,V,). If V, =V,, then
St(Vy, V1) is the group O(V}), i.e. the group of all orthogonal automorphisms
of V, with the usual action of G.

Let iy: V, - V; @ V, be the embedding of the second summand. There are
two G-maps

(3.5) OV) L OV, @ Va) 5 St(Vy, V; @ V),

Jj is a G-embedding given by j(f) = f @ idy, for f € O(V;). The projection n
is defined by n(h) = hoi, for he O(V; @ V3).

LEMMA 3.6. For every subgroup H = G
O L5 OV, @ V) 25 St(Va, 1 @ Vo)
is a Serre fibration.

Proor. O(V, @ V,)" is a closed subgroup of the compact Lie group
O(V, @ V,). Hence O(V; @ V,)" is itself a compact Lie group. Similarly
O(V;)! is a closed subgroup of the compact Lie group O(V;) and, conse-
quently, itself a compact Lie group.

J oM - oW, @ V)
is an embedding onto a closed Lie subgroup. Therefore the sequence
(3.7) oML 0, ® V)" - O ® V)" /0"
is a Serre fibration. (3.7) is homeomorphic to the sequence
(3.8) O L O, @ V)55 St(Vy, V; @ V).

Consequently, (3.8) is a Serre fibration.

CoROLLARY 3.9. The sequence of G-maps
o)L 0, @ V) 5 St(1, ¥ @ Va)
is a G-fibration.

Let us now consider a case when ¥V, = R is the 1-dimensional trivial

representation of G. Let S(V; @ R) be the unit sphere in V; @ R. Then there
is a G-homeomorphism

0:St(R, ¥, ® R)-= S(V, @ R), @(h) = h(1) for heSt(R,V, ® R),
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and upon this identification (3.5) takes form
(3.10) o) Lo ®@R) 5 S(1, @ R),

with n(f) = f(0 D 1).
Setting V = V; we obtain

CoroLLARY 3.11. For any orthogonal representation V of G and any subgroup
HcG

i) OW)LOW @RYS S(V @ R) is a Gfibration,

. . H
(i m OV @ R, O(V)") = {‘; A
_ dimo,

Proor. (i) is a special case of Corollary (3.9).
(ii) According to Lemma 3.6

oWy L o @ RS S(vV @ R)H
is a Serre fibration. Thus
OV @ R, OV = n,(S(V O RA, 0D 1) = n,(S(V* ® R0 D 1)

and (3.11) (ii) follows.

4. Proof of Theorem 2.8.

If (X, A) is a CW-pair, then dim(X, 4) is the supremum of the dimensions
of cells in X\A. Let (X,A4A) be a G-CW-pair and let &:E—> X be a
G-vector bundle over X.

DEerINITION 4.1. & satisfies the (GD)-condition over (X, A) if for every sub-
group H = G and every connected component (XH), of the subcomplex X,

dim(¢¥|xm),) > dim((X™), (XH); 0 A).

Here dim(£#|yxs,) is the dimension of the fibre of ¢¥ over any of the
points of (X¥),.

ProposITION 4.2. Let &:E;—» X, i = 1,2, be two G-vector bundles over
a G-CW-pair (X,A), both satisfying the (GD)-condition over (X, A).
Let ¥:&)|4— &3la be a G-isomorphism of vector bundles over A and
D:(,DR-E DR a G-isomorphism of vector bundles over X such that
®|, = P ®idg. Then there exists a G-isomorphism ¥:& — &, of vector
bundles over X and a G-homotopy F,: &, ® R = &, @ R, tel, such that
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i) F.: ¢, @R &, ® R is a G-isomorphism of vector bundles over X for
every tel,

(i) Fo=®and F, =¥ ®idg,

(i) F,|, =Y @idg for every tel.

In particular ¥|, = ¥P.

Proor. We prove (4.2) by induction on dim(X, A).

If dim(X, A) = 0, it is enough to prove the absolute version of (4.2) for
every orbit of G in X \A separately. We can hence assume that X = G/H
for some subgroup H < G and that A4 is empty. In such a case, the
bundles &; correspond to two representations V;, i = 1,2, of the subgroup H.
Existence of @ implies that V; @ R and V, @ R are isomorphic representations
of H. Consequently, V; and V, are isomorphic representations and we can
identify them with a representation V of H, V; =V > V,. Given the
identification, @ corresponds to an element & e O(V @ R)!. Since ¢; satisfy
the (GD)-condition over G/H,dimgV* > 0. The unit sphere S(V @ R)¥ is
connected. It follows from (3.11) (i) that

J4 11 (0O(V)) > no(O(V @ R)Y)

is surjective. Let ¥ e O(V)H be such that j#([¥]) = [#]. Here [#] and [P]
denote the connected components of @ in O(V @R)¥ and of ¥ in
O(V)H, respectively. ¥ corresponds to a G-isomorphism ¥: &, — &, over G/H
and it follows from our choice of ¥ that

q’@ldn.€1®R‘-’éz@R

is G-homotopic to @. This proves (4.2) if dim(X, A) = 0.

We assume now that (4.2) holds for G-CW-pairs (X, A) with dim(X, 4) < k.
Let (X, A) be a G-CW-pair, dim(X, A) =k, and let X*~ 1 be the (k—1)st
skeleton of X. Denote Y = X*~1 { 4. (4.2) holds for the G-pair (Y, 4). We
apply (4.2) to the G-isomorphism

P =&|y: ¢ @ Rly = & @RIy
Let ¥':&,|y = &3]y be a G-isomorphism and
Fi:{i ®Rly- ¢ ®Rly, tel,

a G-homotopy such that F; = &', F| = ¥ @ idg and F|, = @'|,for tel. It
follows from (3.4) that the G-homotopy F; can be extended over X to a
G-homotopy K,:{; @ R — £, @ R such that K,|y = F; for tel and K, = ®.
It is now enough to prove (4.2) for the G-isomorphism K,: ¢, @ R - &, @ R
instead of .

We have K|y = Fy = ¥ @idg. It is therefore necessary to deform K,
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only over the interior of top dimensional cells of (X, A). That can be done at
each G-cell separately. We can thus assume that X = (G/H)xD* and
A = (G/H)x S*~!, where H c G is a subgroup, D* is a k-dimensional disc
and 0D* = S*'. In this case K, = &. Let p,eS*~ ! and let

xo = (eH, po)e (G/H)x S*~! = A.

Xo is a fixed point of H. & !(x,), i = 1,2, are orthogonal representations of
H. Existence of @ implies that they are isomorphic. We denote one of them,
say &7 '(xo), by V. Let H act trivially on D*. Then (G/H)xD* can be
identified with G x yD*. Furthermore, both bundles ¢, and ¢, can be
identified with the G-vector bundle

E:Gx y(D*x V) — G x zD*.

Here H acts on D*x V via the second factor.

Let &:D*x V — D* be the product H-vector bundle.

Given all these identifications, the G-isomorphism ¢ corresponds to an
H-isomorphism of H-vector bundles #:E@ R —» @ R over D*. & is given
by a map &:D* - O(V @ R). Since ®|, = ¥ @ idg, we have that

&(S* ) = 1Oy
Let us consider the homotopy class
[#] e m(O(V @ R)H, O(V)H).

The bundles &; satisfy the (GD)-condition over (X, A) and, consequently,
dimg V¥ > k. Therefore, according to (3.11) (ii),

n(O(V ® R, 0(V)*) = 0.

It follows that & is homotopic rel. $*~! to a map ¥: D* — O(V)!. This in turn
implies that there exists an H-homotopy

F:ZoR-Z®R, tel,
over D* such that F, are H-isomorphisms of H-vectors bundles and
Flg-1 = Blg-+ for all tel,

Fo=® and F, = ¥ @ idg for some H-isomorphism ¥:& — &
It is now enough to define the G-homotopy F, as

F,=GXH(F,)Z§®R—Pf@R

and the G-isomorphism ¥ as ¥ = G x yx(¥): & — & This completes the proof
of Proposition 4.2.
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Let M be a G-manifold and V be an orthogonal representation of G.

CoROLLARY 43. If &: T(M)® R* > M x (V @ R®), s 2 1, is a G-isomor phism
of G-vector bundles over M, then there exists a G-isomorphism

Y. TM)®R!' > Mx (V@R
such that ® and ¥ @ idg:-1 are G-homotopic.

ProoF. If s > 1 then T(M)@® R*~! (and, consequently, M x (V @ R*™ 1))
satisfies the (GD)-condition over (M, @). It follows from (4.2) that there exists
a G-isomorphism

®:TM)®R !> Mx (V@R

such that @ and @' @ idg: are G-homotopic. In the next step we apply this
reduction process to @' and continue until s = 1.

The proof of Theorem 2.8 will go along the lines of the Bredon-Kosinski
proof, [7], of the corresponding case (without any group action) of the
Kervaire theorem.

Let M be a G-specially stably parallelizable manifold. Let V be an
orthogonal representation of G and ¢: T(M) ® R! - M x (V @ R!) a G-iso-
morphism of vector bundles over M. We denote by e: M — T(M) @ R! the
cross section of T(M) @ R! given by 1eR!. Let

p2:Mx(V@®R!) >V @R!

be the projection on the second factor. The Gauss map of the trivialization
& is the G-map

ve: M - S(V @ RY)

defined by vg(x) = p,®Pe(x), compare.[7; p. 86].
Observe that if H = G is a subgroup, then T(M)? = T(M¥),

@": T(MH) @ R' - M¥ x (V¥ @ R")
is a stable trivialization of T(M*) and (v4)?: M# — S(V¥ @ R!) is the Gauss
map of ¢4,
44) ()" = vgu.

We choose zo e S(V @ R!)%, zo = 0@ 1 as a base point of S(V @ R!). Jus
as in the non-equivariant case we have :

LemMa 4.5. @ is G-homotopic to ¥ @ idg: T(M) ® R' > M x (V @ R?) for
some G-isomorphism ¥:T(M)— M xV if and only if v4 is G-homotopically
contractible to the base point zo € S(V @ R!).
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Compare [7; 4.1].

Proor. If @ is G-homotopic to ¥ @idg then v, is G-homotopic to
Vg gia- But vy g;q maps whole M onto the point zo e S(V @ R').
Let us assume now that v, is G-contractible to z,. Let

fi:M > S(V@®R!), tel,

be a G-homotopy such that f, = vg, fi(M) = {z0}. Let
m:O(V @ R!) > S(V @ R')

be the map from (3.5) and (3.11), i.e. m(h) = h(zo) for he O(V @ R!). Let
Yo = idygr €O(V @ RY)C.

We have n(yo) = z, and we define g: M — O(V @ R!) by g(x) = y, for all
x € M. Since, according to (3.11), n is a G-fibration, there exists a G-homotopy
gi:M - OV @ R!), tel, such that g, =g and f, = nog,. This homotopy
yields a G-homotopy of G-vector bundles isomorphisms

G:Mx(VOR)->Mx(V@R!), tel,
given by G,(x,w) = (x,g,(x)(w)) for xe M,we V @ R!. Let
F:TM)®R' > Mx V@R, tel,

be defined by F,= G, 'ec®. F, is a G-homotopy of G-vector bundle
isomorphisms over M. Since

Gl = ide(yeRI),
F, = &. Let us consider F,. The Gauss map v of F, satisfies
Vio(X) = p2Fo®Pe(x) = p2Go ' ®Pe(x) = (go(x)) ™ (p2Pe(x))
= (go(x)) "' (ve(x)) for xe M.

We have also

9o(x)(z0) = mgo(x) = fo(x) = ve(x).

Consequently, vg (x) = zo for all xe M. It follows that there exists a G-iso-
morphism ¥: T(M)— M x V such that F, = ¥ @ idg. This proves (4.5).

We shall now recall some results which allow us to determine the
G-homotopy class of the Gauss map v,.

Let M be a G-manifold, m = dim M. We assume that every connected
component of M is orientable (in the ordinary sense) and that M is
G-connected, i.e. M/G is connected.
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We shall define an orientation homomorphism of the action of G on M.
Let {M;};c, be the set of all connected components M; of M. G acts
transitively on J. We denote by G; the subgroup {ge Glg(M;) = M;} of G.
Let [M;]e H,(M},Z) be an orientation class of M; We choose j,€J and
define the orientation homomorphism of the action of G on M,

om,6:Gj, > Z/2Z by g,[M; ] = (-1)uc0)[M;] for geG,.

The orientation homomorphism ) ¢ depends on the choice of j,eJ.
However, if we choose another j, €J and define an orientation homo-
morphism w)y ¢: G; — Z/2Z for this choice of component, then there exists
an isomorphism of groups a:G; — G; such that wy ¢ o = @iy,¢.

Let ¢:G - O(V) be an orthogonal representation of G. 'We define an
orientation homomorphism of g,

wW,6:G—Z/2Z by det(e(g)) = (—1)?c@® for geG.

We are going to write wy g instead of w, ¢ if it is clear which representation
¢ on the space V we mean.
Observe that if dim V' > 1, then wy ¢ = wgy).6-

LEMMA 4.6. If V is an orthogonal representation of G and
P TM)® R > Mx (V@R
is a G-isomorphism of vector bundles over M, then wy ¢ = wV,GIGh.

Proor. Let D, be the unit disc bundle of T(M;, ) ® R and let D, be the
unit disc bundle of M; x (V @ R®). Then &(D,) = D,. D, is orientable as a
manifold with boundary. If f : M;, = M is an isometry, then the differential

T(f) @ idge: T(M,,) ® R* > T(M,,) ® R*
satisfies
(T(f) ® idg:)(D,) = D,

and T(f) @ idg. preserves an orientation of D,, see [1; 14.15 and 14.16]. In
particular, the induced action of G;, on D, preserves orientation. It follows
that the action of G;, on D, also preserves orientation. However, if
[D;]eH;p+(D;, 0D,, Z) is an orientation class of D, and g e G;, then

gt[D2] = (- l)"""ﬁ(g)"’wv,c(y)[Dz].

We have therefore that wy,g(g)+wy,6(g) = 0 in Z/2Z for every g € G;, and,
consequently,

WM, = wV,GlG,,,'
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Observe that if M is a G-specially stably parallelizable manifold and V
a representation such that T(M) ® R! and M x (V @ R!) are G-isomorphic,
then for every subgroup H < G and every connected component (M¥), of MH
we have

dim(MH); = dimS(V @ R')4.

Let N(H) < G be the normalizer of H in G and let W(H) = N(H)/H be
the Weyl group of H in G. M¥ is a W(H)-manifold. If

&:T(M)® R* > M x (V @ R°)

is a G-isomorphism of vector bundles over M, then V¥ is a representation
of W(H) and

" T(M")® R* »> M x (V¥ @ R)
is a W(H)-isomorphism of vector bundles over M.

CoroLLARY 4.7. For every subgroup H = G and every W (H )-connected com-
ponent N of M"Y, the orientation homomorphism wy wu, is a restriction of the
orientation homomorphism wyx wyy of the representation V¥ of the Weyl
group W(H).

We shall now recall some results from the equivariant homotopy theory.
Let M be a compact smooth G-manifold and U be an orthogonal representa-
tion of G. Assume that for every subgroup H < G and every non-empty
connected component L of M¥

(i) L is an orientable manifold,

(i) dimL =dimU”—-1 and dim L is even,

438) | @) if G(L? = {qeGIg(L) =L}, .G(L) = G(L)/-H c W(H), o gu) is
the orientation homomorphism of the action of G(L) on L and

wyn w s the orientation homomorphism of the representa-

L tion U¥ of the Weyl group W (H), then wy 1) = @yn wmy|G(L).

ProposITION 4.9. Under the assumptions (4.8), two G-maps fy, f,: M — S(U)
are G-homotopic, if and only if for every subgroup H — G the restriction maps
H fH. M¥ - S(UM) are homotopic.

Proor. This proposition is essentially proved, for example, in [8; Theorem
8.4.1]. The only difference is that we do not assume that M are connected
as well as we allow dim M#: = dim M¥2 for two different isotropy types
(H,), (H;) on M with (H,) ¢ (H_). It follows, however, from our assumption
(4.8) (ii) that if (H) is an isotropy type on M, L is a connected com-
ponentof M#and L = {x e LIH g G,},theneither L = LordimL < dim L-2.



EQUIVARIANTLY PARALLELIZABLE MANIFOLDS 233

Consequently, if L\L # ¢, then L—L is connected and
H4mL(L/G(L), L/G(L); 0L 6w = Z.
The rest of the proof proceeds just as in [8; Theorem 8.4.1].

ProOOF OF THEOREM 2.8. Let . T(M)P R* > M x(V @ R*) be a G-iso-
morphism over M. It follows from the assumption (2.8) (iii) as well as from
the remark (2.7) (ii) that we can choose @ in such a way that a(®) = 0.
Moreover, according to (4.3) we may assume that s = 1.

Let vg: M — S(V @ R!') be the Gauss map of &. It follows from (4.5) that
Theorem 2.8 will be proved as soon as we show that vg is G-homotopically
contractible to the base point z, e S(V @ R!).

Let U = V @ R!. For every subgroup H c G

o TMH)d R! > M x UH

is an isomorphism. Consequently, M¥ is a stably parallelizable manifold and,
in particular, it is orientable. Furthermore, for every connected component
L of MH, we have dim L = dim U¥ — 1. According to (2.8) (i), dim L is even.
Thus, assumptions (4.8) (i) and (ii) are satisfied. Corollary 4.7 implies that
(4.8) (iii) is satisfied as well. We can now apply Proposition 4.9 in order to
determine G-homotopy class of v.

Let y: M — S(U), y(M) = {z,}. We are going to show that for every sub-
group H c G, (v4)" and 7y are homotopic maps from M¥ to S(U¥).

If diim M¥ = 0, then M¥ < M. In such a case U¥ = R! and

(o) = o (P)M™): M* — S(RY),

where &(®): M, —» O(R') is defined as in (2.3) and ¢: O(R') - S(R!) is the
evaluation map ¢(f) = f(zo)- Since a(®P) is the homotopy class of &(®P) and
a(®P) = 0, it follows that (vg)¥ = yH.

If dim M¥ > 0 then, according to (4.4), (vy)" = veu, where

ver : MH o S(VH @ RY)
is the Gauss map of the stable trivialization
" T(M¥)® R! > MH x (V¥ @ R!)

of the tangent bundle of the manifold M¥. If L is a connected component of
MH then

veu|L: L - S(V¥ @ R')
is the Gauss map of the stable trivialization

&, :T(L)® R - Lx (V¥ @ R).
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According to [7; p. 89], x(L) = £2deg(vgn].). (Observe that we can claim
the equality only up to the sign since we have not followed the Bredon-
Kosinski orientation convention on p. 86 of [7].) Let us recall that this result
holds only for connected even-dimensional manifolds L with dim L > 0.

However, according to the assumption (2.8) (ii), x(L) = 0. It follows that
deg(ven]L) = 0 and vgu|, is contractible. Consequently, vgr is contractible,
ie (vp) ~9H.

It follows from Proposition 4.9 that v, and y are G-homotopic, ie. vy
is G-contractible to the base point z, € S(V @ R!). This proves Theorem 2.8.

5. Examples.

Let G,=2/2®...® Z/2 (k summands), k = 1,2,..., be the elementary
abelian 2-group. We denote by V, the real regular representation of G,
dim ¥, = 2X. As before, we assume that ¥, is equipped with an invariant
inner product. ¥, < V, is the orthogonal complement of the trivial sub-
representation Vg < V.

Let S(V;) be the unit sphere in V,. S(V) is a G,-manifold and it is
¥,-specially stably parallelizable.

Let M, = S(V,)x S(V,) with the diagonal action of G,. M, is (V@ ¥,)-
specially stable parallelizable. Since MS* + ¢, W =V, @® ¥, is the only
representation of G, for which M, can be W-ssp.

In this section we shall show that

(@) if k = 1,2,3, then S(V,) is a V,-parallelizable (and, consequently, M, is
(V, ® V,)-parallelizable for k < 3),
(i) if k > 3, then M, is not (V, ® V,)-parallelizable.

ReMARK 5.1. Since dim S(V;) = 2¥—1, S(V,) is not parallelizable for k > 3
even without any group action. On the other hand, manifolds M,, when
considered as H-manifolds for any proper subgroup H c G,, are (V, @ V,|H)-
parallelizable. This follows either from Theorem 2.8 and Lemma 5.2 below or
can be shown directly.

LemMma 5.2.
(i) dimS(K)% =0 and x(S(V)%) = 2,
(ii) if H < Gy, H #+ G,, then dim(S(V;)") > 0 and xSV = 0.

Proor. V, is the representation of G, induced from the 1-dimensional
representation of the trivial subgroup {e}, V; = Ind{Ge“}(l). Let H< G, be a
subgroup. Then

Vi = Ind{} (1) = Ind§} Ind{}, (1)
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and, since G, is abelian, the restriction of ¥, to the subgroup H satisfies
(5.3) Resy(V;) = Resy Indj} Indf;) (1) = |G,/H|Ind{}, (1),
where |G,/H| is the cardinality of G,/H, see [14; Section 7.3, Proposition 22].
It follows that

dim V¥ = dim(Resy (V) = |G,/H|.

Hence, if H = G, then dim V{f = 1, and if H # G, then dim V{ is even and
greater than 0. Since S(¥,)" is the unit sphere in VI, Lemma 5.2 follows.

The next three examples show that the usual trivializations of the tangent
bundles of S!, S3, and S” are, respectively, G,-, G,-, and G;-equivariant.

ExampLEs 5.4. (i) Let k =1 and let &, be a generator of G, = Z/2. We
identify ¥; with the complex plane C, ¢, acts on C by the complex conjugation.
Thus G, acts on C through ring isomorphisms. The norm ||z|]| = zZeR is a
real quadratic form on C. Let (-, ) be the associated symmetric bilinear form.
{:,*) is a G,-invariant inner product on C. ¥, is then identified with the
imaginary axis Ri = C.

S(V,) is the unit circle S! in C. The tangent bundle T(S(V;)) = S! x C,

T(S(V)) = {(z,21)€S" x C|{z,2,) = 0}.

G, acts on T(S(V})) by restriction of the diagonal action on S* x C, ¢,(z, z;)
= (2_9 z.l )'
The map ¢:S' xC — C, ¢(zz,) = z,z" ! is G,-equivariant and

@(T(S(V)) = Ri = 7.
Thus ¢ yields a G,-isomorphism of G,-vector bundles
&:T(S(V) » SV x ¥y, d(2zy) = 2, 0(z,21)).

S(V,) is V,-parallelizable.
(ii)) Let k =2 and let &;,¢, be generators of G, = Z/2 @ Z/2. We shall
identify ¥, with the algebra of quaternions H. Thus

H=R-1®R-i®R-j®R"ij
and i?=j*= —1, ij=—ji, 1"i=i, 1'j=j. G, acts on H through

& (h) = ihi™1, &;(h) = jhj~! for heH. With this action of G,, H is indeed
isomorphic to V,.

Let () be the quaternion conjugation, i.c.

a+bi+cj+dij = a—bi—cj—dij.
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Observe that G, acts on H through ring isomorphisms and that this action
commutes with ().

Let ||h|| = hheR for heH. ||| is a real quadratic form on H. Let (-,-)
be the associated symmetric bilinear form. Since the form ||-|| is G,-invariant,
{*,) is a G,-invariant inner product on H. H°2 = R- 1 and ¥, is identified
with the orthogonal complement of R- 1.

S(Vy) = $* = {heH||lh|| = 1}. Again T(S*) = S>x H,

T(S?) = {(h,v) e S* x H|(h, v) = 0},

and the action of G, on T(S?) is restriction of the diagonal action of G,
on S3xH. Let ¢:S3xH-H, @hov)=vh!. ¢ is a G,-map and
@(T(S?)) = V,. ¢ yields a G,-isomorphism

D:T(S*)~ S*xV,, ®(h,v) = (h, o(h,v).

Thus S(V;) is V,-parallelizable.

(iii) Let k =3 and let &,,&,,&; be generators of G = Z/2 @ Z/2 @ Z/2.
We shall identify V; with the algebra of Cayley numbers €. Thus, see [9;
p. 17], € = H @ H with the multiplication

(a,b)(c,d) = (ac —db,da + b¢é).
Let G5 act on € by
¢1(a,b) = (£1(a), &, (b))
&2(a,b) = (§2(a), £2(b)),
where the action of ¢; and £, on H is that defined in (ii), and
¢s(a,b) = (a, —b).

Observe that G, acts on € through algebra isomorphisms.

The action of G; on ¥ commutes also with the involution (-), where
():€ — € is given by (a,b) = (@, —b). This representation of Gy on ¥ is
isomorphic to V;.

The element (1, 0) is the unit of €. For x € € the norm ||x|| € R is defined by

xx = ||x|I(1, 0).
The norm ||-|| is preserved by the action of Gj;. Since xy = yx for
x,y €€, we have ||xy|| = |Ix||* |ly)l. The norm || || is a real quadratic form on €.

Let ¢-,-) be the associated symmetric bilinear form. {,*) is a G,-invariant
inner product on %. Let R = € be the real subspace of € spanned by
(1,0). R = ¥%. Thus ¥, is the orthogonal complement of R.

S(V3) = 8" = {xe¥|llx|l = 1}.
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Again T(S7) = 8" x &,
T(S") = {(c,w)eS” x €|{c,w) = 0}

and the action of G; on T(S7) is the restriction of the diagonal action of
Gy on S"x%. The map ¢:8" x€ - €, ¢(c,w) = we™ ! is Gy-equivariant and
o(T(S7)) = V5. ¢ yields a G;-isomorphism

®:T(S") - 8" x =V, @c,w) = (c, p(c,w)).
Thus S(V3) is V,-parallelizable.

ReMARK 5.5. (i) If k =2 2, then G, acts on V} through oriented orthogonal
transformations. This follows directly from (5.3).

(ii) The Stiefel-Whitney classes w;(V;) € H' (BG,, Z/2) of the representations
V;, were computed in [11; Lemma 3.26, p. 59]. In particular, the second
Stiefel-Whitney class w,(V;) # 0 and w, (V) = O for k # 2.

(iii) Let g,:Spin(n) » SO(R") be the twisted adjoint representation of
Spin(n), [5; p. 7-8]. It follows from (i) and (ii) that the representation ¥,
of G, can be lifted to a homomorphism 7y,:G, — Spin(2¥) such that
gx oy = V if and only if k = 3.

(iv) For the same reason as in (iii), the representation ¥, of G, can be
lifted to a homomorphism 7, :G, — Spin(2*—1) such that gu_, o, = ¥,
provided k = 3. This shows that the ¥;-parallelizability of S(V3) follows also
from [13; (2.1)].

The rest of this section is devoted to proving that the G,-manifolds
M, = S(V,)x S(V,) are not (V, @ V,)-parallelizable (and, consequently, are not
W -parallelizable for any representation W of G,) provided that k > 3.

We assume that k =3. Let 7.:G,— Spin(2t) be a lifting of the
representation V;, see (5.5), (iii).

We start by considering the ¥;-ssp manifold S(V;). Let

H:ROg!(5(V)+) - B(S(W))

be the homomorphism defined in Section 2. Let 4 € O(¥,) be the reflection
in the hyperplane ¥, c V,. Then

A€O0(%)6 c Og ().
Let
fa:8(V) = Og, ()

be the map which takes all S(¥;) into the point A4,
SaS8(h)) = {4}
fais a Gy-map. [f,] e KOGl“(S(V,,L) is the G,-homotopy class of f,.



238 RYSZARD L. RUBINSZTEIN

ProrosiTION 5.6. If k = 4, then the image of
H:ROg!(S(h)+) = B(S(Ve)
is generated by H([ f4]).

Proor. Let y, € S(V,) be a fixed point of G,. We shall consider S(V;) as a
G,-space with the base point y,. Let S° be the 0-dimensional sphere with the
trivial action of G,. Then

ROg, ' (S(h)+) = ROG'(S(K)) @ ROG,'(8°).

The subgroup H(KOg'(S°)) = B(S(V;)) is generated by H([f,]).
We shall show that H (KO(}*‘(S(V,‘))) = 0, provided that k = 4.
Let V; be the one-point compactification of V;. Then

KOg,'(S(W)) = RO (V).

The structure of the RO(G,)-module KO&(Vﬁ) has been determined in
[3; Theorem 6.1]. We assume that k = 3. Let 4, e KO, (V5) be the Bott class
of y,. Then KO%.(Vi) is a free RO(G,)-module on one generator .

Let j:R' o V; be an isometric embedding of R' on the trivial sub-
representation of V. After compactification we obtain a G,-embedding
j:S* > Vi, G, acts trivially on S!. j induces an RO(G,)-module homo-
morphism

j*:KOg,(v5) - RO, (s*).
Since all real irreducible representations of G, are of real dimension 1, we have
KOg (s') = RO°(S') ® RO(Gy),
see [6; Proposition 8.1], and
j*:ROg, (V5) » KO°(5') ® RO(G),).

Let £:RO(G,) — Z be a group homomorphism defined by (W) = dimg(WG)
for a representation W of G,.
We have

S(V;:)O = S(Vk)G. = {}’o, "‘.Vo},
see Section 2 and Lemma 5.2. Let { € B(S(V;)) be given by
£:85(Wdo = 2/2,2/2 = {£1},{(y0) = L,U(—yo) = — 1.
We define a group homomorphism

F:RO°(S") ® RO(Gy) = B(S(%))
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by
FE® W) =¢eW) for WeRO(G,).

It follows from the definition of H that
(5.7) HIROg'(S(W)) = Foj*.

Let £ KO°(S') = Z/2 be the generator. Then

wiy_ JE®VW, k=3
©8) / ('1")’{ 0, ifk>3.

This equality is proved in Corollary 5.12 below. Assuming it for a moment
we shall complete the proof of Proposition 5.6.

Since 4, generates RO(G,)-module KO%_(V;) and j* is a RO(G,)-module
homomorphism, it follows from (5.8) that j* =0 provided that k > 3.
Consequently, (5.7) implies that H(KOE.‘(S(V,‘))) =0 if k > 3. This proves
Proposition 5.6.

We shall now proceed to prove Corollary 5.12 which we have used in the
proof of Proposition 5.6. To this end we need the next two lemmas.

Let 4%, A~ be the two real 4-Spin representations of Spin(2*), see [4; p. 483]
and [5; Proposition (5.5)].

LEMMA 5.9. j*(4) = ¢ ® y¥(4*) in KO°(S!) ® RO(G,).

PrOOF. 4 = 4* @ A~ is a graded module over the Clifford algebra Cy,
[5; Proposition (5.5)]. Let <-,- ) be the G,-invariant inner product on ¥, and
let g:V, - R be the quadratic form g(x) = —{x,x). We identify Cx with
the Clifford algebra C(q) of the form q.

Let D(V,) be the unit disc in ¥, 0D(V;) = S(V;). Thus D(V;) = Cx. The
Bott class

A€ RO, (Vi) = KOg, (D(V), S(V3))

is represented by the G,-equivariant sequence
0-DW)x4~ B DWV)x4* -0,
a(v, x) = (v, —vx),

for ve D(V,), x € 4™. See [5: Section 9 and Section 11]. Here G, actson 4%, 4~
via lifting y, : G, — Spin(2*).
Let D' = D(V,)C, S° = dD*. It follows that

j*(4) eKOg,(8') = KOg, (D', 5°)
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is represented by the sequence
0-D'xA” 3 D'xA* -0
w=0D'xA".
We have S° = {y,, —yo} and (w_,,)° (w,,)" ! = —Id .. It follows that
) =E@yk4™),

where y,:G, — Spin(2*) is the lifting of the representation V¥, and
7#(4*) € RO(Gy).

REMARK. Since y, is fixed by G,, the left multiplication by y, establishes
an isomorphism between representations y¥(4*) and y¥(47).

LEMMA 5.10. y¥(4*) = 227" -k=1}, in RO(G)).

Proor. The representation ¥, of G, splits into an orthogonal sum of
1-dimensional real subrepresentations. We may therefore assume that the
vector space V¥, has an orthonormal basis e,,...,ex such that for every
i=1,..,2* and every geG,, ge; = te;. Consequently, G, acts on V,
through compositions of reflections in hyperplanes orthogonal to e;s. Let
E c Pin(2*) be the subgroup generated by e,,...,ex. It follows that
Imy, < Spin(2*) N E.

We shall now compute the character of the representation 4 = A* @ 4~
restricted to the subgroup E° = Spin(2*) n E.

Let c, : Spin(2*) - Aut(C%) be the natural representation given by the left
multiplication by elements of Spin(2*) = (C%)*. After complexification we
have

C4 ®RC = 22._'_1(A ®RC)1

see [4; (8.29)].
Let A< {1,2,3,..,2"}, A ={ay,...a,}, a; <a;4; for 1 Si<s—1 Let
e €Cp be the element e, = e, e,,...€,. Then {e }, 1, 2 is a basis of
the vector space Cx.
For A;, A, = {1,...,2*} we define B c {1,...,2*} as
B = (4; \A4;) U (A:\4,).

Then
(S.ll) eA,'eAz = ien

in Cx. It follows that e,,-e,, = *e,, if and only if 4, = @.
Since dimgC3 = 22'~!, we obtain for he E°
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_ 0, ifh+ £1
Tr((c, ®g C)(h) = 21 ifh =1
—22-1 ifh = —1.

Vi is a faithful representation of G, and y, is a lifting of V,. Hence
—1¢Imy,. It follows that the character x(y¥(c, ®g C)) of the representation
y¥(c+ ®g C) of the group G, is

0, ifg+#1
* —_
x(¥(c+ ®rC))g) = {2?_1’ i og=1

for g € G,.
Since

78+ ®rC) =22"""1(p(4) ® C) and y¥(4) = 2y¥(4"),
we obtain the character of y¥(4%):

. _ [o, ifg#1
1A N9) = {22._._1’ fg=1

for g € G,. The character of ¥, is

0, ifg#1

1(h)(g) = {zk o1

for g e G,.
Consequently y¥(4*) = 227" =k=1¥, in RO(G,).
COROLLARY 5.12.

@V, ifk=3

j*(lk) = {0’ lf k>3
in KO°(S') ® RO(G,).

Proor. If k = 3, then 2" —k—1=0. I k > 3, then 2" —k—1 > 0,
Corollary 5.12 follows, since ¢ € KO°(S') has order 2.

Let us recall that M, = S(V;)xS(V,). M, is (V, ® V,)-specially stably
parallelizable. Let

ga: M = Og, ()

be the G,-map which takes all M, into the point A4 e Og ().
[941€KOgG!((My).) is the G,-homotopy class of g,. Let

H:KOg!((My)+) = B(M,)
be the homomorphism defined in Section 2. The element H[g,] € B(M,) is
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represented by the map §:(M,)o/Gx — Z/2, where §(x) = —1 for every
x € (My)o.

ProposiTION 5.13. If k = 4, then the image of H:KOgh‘((M,‘)+) — B(M,)
is generated by H([g]).

Proor. Let f € B(M,), f:(M,)o/Gr — Z/2 be in the image of H. It is enough
to show that f(x) = f(y) for all x,y € (M,)o. Indeed, in such a case if f(x) = 1,
then f = H(0) and if f(x) = —1, then /' = H([g])-

(My)o = (M,)% consists of four points. For every pair x,y e (M,), there
exists a G,-embedding i, ,: S(V;) = M, such that

iy (S(V)%) = {x,y}.
Indeed, let S(V,)% = {yo, —yo}. If

x = (¥o,Yo) and y = (—yo, —Yo)s

we set

iry(2) = (z,z) for zeS(W).
If

x = (Yo, —¥o) and y = (—Yo,Yo)
we set

i ,(2) = (z, —z) for zeS(V).
If

x = (Yo,¥o) and y = (yo, —Yo)s
we set

ix,y(2) = (yo,2) for zeS(V),
etc.

Let x,y € (M) and let i, ,: S(V) = M, be a G,-embedding such that
i y(S(V)%) = {x, y}.
i,,, induces homomorphisms
if,:B(M,) - B(S(V,)) and i*,:ROg((My),) - KOG (S(¥)+)
such that the diagram
ROg! (My)+) = ROG! (5()+)
Hl [H
BM) L BEMH)
commutes.
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Let aeKOG_k1 (My)+), H@a) = f. Then if ,(f) = H(i¥ ,(a)). It follows from
Proposition 5.6 that either i ,(f) =0 or if (f) = H([f4])- In both cases
f(x) = f(y). This proves Proposition 5.13.

Let h: AM,, V, ® V,) - B(M,) be the homomorphism defined in Section 2.
It is clear that H([g,])eImh. Let C(M,, ¥, ® ;) be the group and let

(M, Ve ® Vi)e C(M,, . @ T)
be the element defined in (2.6).
THEOREM 5.14. If k = 4 then

i) CM.Fieh)=22022012)2,

(i) (M.Vi@W)+0,

(iii) M, is not Gy-parallelizable (i.e. M, is not W-parallelizable for any
representation W of G,).

Proor. (i) C(M,,V, ® V,) = Coker(h). According to (2.2) the homo-
morphism h can be factored through

H:ROg!(My).) = B(M,,).
Since H([g,]) € Im(h) and H([g.]) # O, we have Im(h) = Im(H) = Z/2.
(Mo = (M) = (My)o/Gy
consists of four points. Thus
dimz,B(M,) =4 and dimz,C(M,, ¥, ® ¥;) = 3.

(i) We choose an isomorphism of representations V; = 7, ® RL. Let n be
the standard normal field to the embedding S(¥;) = V,, that is

n:S(V) = T(V) = Vix Vi, nx) = (x,x).
The field n gives us a G,-isomorphism of G,-vector bundles over S(¥;),
¥:T(S() @ R' - S()x (V @ R').
Let yo € S(V;)%. Thus
S(Vi)o/Gx = {yo, — Yo}

Let a(y):S(V)o/Gx — Z/2 be the map associated to ¥ according to the
definition (2.3). Then a(y)(yo) F (¥ )(— o) .
We identify T(M,) with T(S(V))x T(S(V)) and M, x (V, @ V, &® R?) with

(V) x (% @ R x (S(4) x (7, ® RY)).
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Let us consider the G,-isomorphism
&:TM)®R> > M x (i ® Vi ®R?), &=yxy.

Let a(®): (M,;)o/Gx — Z/2 be the map associated to @ according to (2.3). If
Z1,22€ S(Vk)Gl, then (z,,z;) € (M) and

a(P)(z1,22) = (@(¥)(z1))" (2(¥)(z2))

(in the multiplicative group Z/2 = {*1}). Thus a«(®)(yo, o) = 1 and

a(P)(yo, —¥o) = — 1.
According to the proof of (i) above, Im(h) consists of those maps

fi(My)o — {£1}
which are constant on (M,),. Thus a(®) ¢ Im(h) and, consequently,
(M, Vi ® V) #0 in C(M,, ¥, @ V) = Coker(h).

(ili) (M)% # @ and for any x e (M,)%, the tangent representation of G,
in T,(M,) is isomorphic to ¥; @ ¥,. It follows that if M, is W-parallelizable
for a representation W of G, then W = V,® V,. However, since
(M, V, ® V) + 0, M, is not (¥, @ V,)-parallelizable (see Remark 2.7 (iii)).

Let us recall that, as a consequence of (54) (i)-(iii), M, is (V, ® V,)-
parallelizable for k = 1,2,3.
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