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A NOTE ON THE TRANSFER MAP

RYSZARD L. RUBINSZTEIN*

Introduction.

Let X be a space with a base point. We denote by Q(X) the space Q*S*(X)
with the compact-open topology.

Let G be a compact Lie group, M a compact smooth G-manifold without
boundary and ji: P — B a principal G-bundle over a finite complex B. We
shall denote by u the associated bundle P x; M — B.

In [3] Becker and Gottlieb have defined the transfer map of the bundle g,

©(u): By = Q((P xg M).).

Let p: (P xg M), — S° be the based map which transforms P x; M into
the non-base point of S°.
We define a p-transfer map of the bundle y,

T(u): B, — Q(S°)
as the composition
B, 2 Q((P x6 M), ) 2B 0(s°).

Let Q(S°), i € Z, be the connected component of maps of degree i in Q(S°).
If n = y(M) is the Euler-Poincaré characteristic of M, then 7(u)(B) <= Q(5°)).

The aim of this note is to give some sufficient conditions for the map
#(u): B > Q(S°)m to be contractible over some skeleton of B.

We have a following result in this direction: If the tangent bundle T(M)
of M contains M x W, for some representation W of G, as a G-subbundle and
dimgW = m, then 7(u) is contractible over the (m—1)-skeleton of B
(Corollary 1.7).

Suppose now that 7(u) is indeed contractible over some (k—1)-skeleton
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B%*~D of B. Then it can be factorized up to homotopy as

B—, 0(5%))

N\ /r

B/B*~ "

for some map F: B/B*~ ! —» Q(S°),,. Given any map g: S* - B/B*~ ", we can
consider the composition f = Fog,

f:8 > 0(8%)m

and the element it yields in the kth stable stem [ f] e m,(Q(S°)).

It would be interesting, in our opinion, to know what elements in
7,(Q(5°)) can be obtained in this way.

We show that for k = 1,3,7 maps f : S* - Q(S°),,, with the Hopf invariant
one can indeed be obtained in such a way. See Section 3.

The paper is organized as follows: In Section 1 we prove our criterion
for the contractibility of the transfer map over the skeleta. Section 2 contains
some examples. In Section 3 we conduct some cohomological computations
and show how maps with the Hopf invariant one can be obtained from
transfer maps. In Section 4 we formulate some problems relevant to the
Kervaire invariant one problem.

NOTATIONS AND CONVENTIONS.

Throughout the paper G is a compact Lie group. The term “G-manifold”
means a compact smooth Riemannian manifold without boundary equipped
with a smooth left action of G such that G acts through Riemannian
isometries. We assume that all G-vector bundles which appear are equipped
with a G-invariant Riemannian metric and that the Riemannian metric of a
Whitney sum of bundles is an orthogonal sum of the metrics of the summands.
We assume also that all G-isomorphisms of vector bundles that appear are
orthogonal in those metrics.

If M is a G-manifold and H < G is a subgroup then

MY = {xeM|hx = x for heHj}.

If X is a topological space, X, is a disjoint union of X with a one-point
space. The extra point is the base point of X ,. px: X, — S° is a based map
such that

px(X) = {the non-base point of S°}.
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If X is a G-space, then X, is a G-space as well. G acts trivially on its base
point.

x(X) is the Euler-Poincaré characteristic of X.

S™ is the unit sphere in R™* !,

1. Properties of the transfer map.

Let G be a compact Lie group and let M be a G-manifold. n: T(M) - M
is the tangent bundle of M. n is a G-vector bundle.

Let ji: P - B be a principal G-bundle over a finitt CW-complex B. Let
u:P xg M — B be the induced fibration. We denote by 1 the induced vector
bundle over P xo M

P xgn:P xgT(M)—> P xgM.
Our first aim in this section is to prove

ProprosiTiON 1.1. If n has a nonvanishing cross section over P xg M, then
the transfer map of the fibration u

T(1): By - Q(P xg M),)
is homotopically contractible to the base point.

We start by recalling the Becker-Gottlieb definition of transfer, [3]. If
¢:D — X is a G-vector bundle over a compact G-space X, then we define
the fibrewise one-point compactification X, of £ to be a quotient space
X, = D/~, where, for d\,d,eD, d, ~d, if and only if either d; =d, or
&(d,) = &(d,), ||dy]| 2 1 and ||d,|| 2 1. Here ||- || is the Riemannian norm in &.

If the fibre dimension of ¢ is 0, we define X, to be the disjoint sum
XLIX. '

There is the projection &: X, — X defined by &([d]) = ¢(d) and there are
two cross sections: The zero-section s3:X — X, defined by s?(x) = [do]
with dy e D such that ¢(dy) = x and ||dy|]| = 0, and the section at infinity
s@: X — X, defined by s?(x) = [d,] for any d, € D such that {(d,) = x and
lidyll = 1.

The triple (X, & s¥) is an ex-space over X, see [11].

We define the Thom space X* of ¢ to be the quotient

X8 = Xo/s2(X).

The image of s? is a base point of X*.
Let E =P xgM. The transfer map t(u): B, = Q(E,) of the bundle
u: E — B is defined as follows.
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There exists an orthogonal finite-dimensional representation V of G and a
G-embedding i: M — V. Let w be the G-normal bundle of i. Define a G-map

y:SY > M)A S
to be the composition
(1.2) SV S ML M®Y YL (M)A SY,

where SY is the one-point compactification of V, ¢ is the Pontrjagin-Thom
map associated to the embedding i, j is induced by the inclusion w =« 7 @ w
and y is induced by a G-trivialization of the bundle 7 ® w.

We have a commutative diagram of maps

PxgS" —L» Pxg(M,)AS)
B

where 7' = idp x4 7.

Let ¢ denote the vector bundle P x; V — B and let { be a vector bundle
over B such that & @ ( is trivial with a trivialization ®:¢ @ { - Bx R".

Let us consider the map

(1.3) ¥ Apli(P xgS") AgBr— (P xg((My) A S")) AgBy

where “ Ag” is the fibrewise smash product of the bundles over B, see [3;
Section 3]. B is embedded through the sections at co in both the range and
the domain of y’ Ag1 and y' A g1|B = 1. There are canonical identifications

{(P xS") ApB,/B = B*®" and

1. . .
(14) (P x6((M,) A SV)) ApBy/B = (P xg My*¢®Y = g0,

Therefore, ' A g1 yields
y BEOY L, prEeD),

The trivialization @ induces isomorphisms &: B*® 5 (B,) A §" and
u*(®): B9 L (E,) A s
The transfer t(u): B, — Q(E. ) is defined as the adjoint to the composition
(1.5) u*(@)oy" o d 1 (B,) AS"> (E,) A S"

If &:D;,—> X, i=1,2, are G-vector bundles over X, then there is a
G-embedding

0 .
f".‘n-éz'xéz - Xfx D¢,
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defined by f?, .,([d]) = [s¢,(62(d)) @ d] for d € D,. There is also a G-map

f?l-éz:xh - XC:@C:

given by f& .. ([d]) = s g, (&([d])). Both f2 ., and fZ ., are maps of
ex-spaces over X.

Lemma 1.6. If the G-vector bundle &, has a nonvanishing G-cross section,
then f?, ¢, and f ., are G-homotopic as ex-maps over X, i.. there exists a
G-homotopy h, from f2, , to & ., such that

(61 ®&)oh =& and hos =sPq: for tel

ProoF. Let s: X — D, be the nonvanishing G-cross section of £,. Assume
that ||s(x)|| = 1 for x € X. We define a G-homotopy

h':Xéz—}Xfl@éz’ tEI=[O,1],

by
h([d]) = [/ 1=11dI*s(E @) D d] if |ld)| = 1
for de D,.

Then hy = f2, ., and h; = f¥ .,. Observe also that, for every tel,
hiosg =g, and (L@ &)oh =&

This proves Lemma 1.6.
We shall use (1.6) only in a non-equivariant form.

ProoF oF ProposiTiON 1.1. Let {pt} be a one point G-space. The G-map
f:M® > {pt} induces f:P xgM®— P xg{pt} = B. Let g:{pt} » M"®
be the embedding of the base point. g is a G-map and it induces an
embedding

§:B =P xg{pt} » P xeg M*®°

Let [:P xgM® > P x¢M"®® be the composition | =gof. [ is an
ex-map over B.

If n has a nonvanishing cross section over E = P xg M, then the ex-map
over B (see (1.2))

idp xg j: P xgM® = P xg M"®°

is ex-homotopic to I. Indeed, let A be the vector bundle P x;w over
E =P xgM. Observe that P x;M® is a quotient space of E, and
P xgM*®? is a quotient space of E,g; In fact, P xgM® =E,;/~,
where, for x,y € E;, we have x ~ y if and only if either x = y or x = sP(a),
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y =s2(b), a,beE and p(a) = p(b). Similarly, for P xz M"®“. Moreover,
under those identifications the map | is a quotient of f°; and the map
idp xg j is a quotient of f9 ;. According to (1.6) there is an ex-homotopy
h, over E from fQ, to fX, h, induces an ex-homotopy over B from
idp X j to | on the quotient spaces.

Define now a G-map

Yoo :SY > (M) A SY
to be a composition
SY S ML, MO Y (ML) A S,

Since g o f maps the whole M® into the base point of M*®®, y_ maps SV
into the base point of (M,) A S”.
Define

Vi P xS = P xg((M3:) A SY)

as y, =1idp Xg7V,. Since idp xXg(gef) =1 is ex-homotopic over B to
idp x¢ j, we get that y and y,, are ex-homotopic over B as well. Moreover

7P xgS8Y) = Bc P xg((M4) A SY).

Consequently,
Yoo Apli(P %x68%) ApB;— (P xg((M4) A SY)) A B;

is ex-homotopic over Bto the map y’ A 51 of (1.3). When we pass to the quotient
spaces of (1.4), ., Aglandy’ A g1 induce homotopic maps. On the other hand
yw A gl induces trivial map while y A 51 induces the transfer t(u).

CoRrOLLARY 1.7. If there exists a representation W of the group G such that
the equivariant tangent bundle T(M) contains M x W as a G-subbundle and
dimgW > dim B, then the transfer

T(u): B, — Q(E,)
is homotopically trivial.

Proor. Let A: P x; W — B be the vector bundle associated to the principal
G-bundle u: P — B and the representation W. Since M x W < T(M) equi-
variantly, the vector bundle n over E = P x; M contains a subbundle

P xgMxW)—> P xgM =E.

We have 1= p*(4), u: P x¢ M - B. Since dim B < dimgW, 4 has a non-
vanishing cross section (see [10; Section 8.1]). Therefore 4 = u*(4) also has
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a nonvanishing cross section and, consequently, the bundle n has one such as
well. Corollary 1.7 follows now from (1.1).

Lest us recall that the p-transfer of the bundle u: P x; M — B,
T(u): B, — Q(S°)
is the composition
B, (P x M),) 2 0(5°),

where p = pp . m: (P xg M), — S° (See Introduction.)

We shall now recall some well-known facts about the p-transfer. Let A(G)
be the Burnside ring of the group G, (see [7], [8; Chapter 5]). The G-manifold
M represents an element [M] in A(G).

For a (finite dimensional) representation V of G let [S¥,S"]¢ be the set
of G-homotopy classes of G-maps from the one point compactification S¥ of V
into itself. If W is another representation of G, there is a suspension map

oy.w:[S,5"]¢ - [SV@W, SV@W]G.

0 =lim[SY, 8" ]q,
—_—

14

where V runs over the set of isomorphism classes of real representations of G
and oy y are the transformations in the direct system. wg is a commutative
ring with unit. .

There is a ring isomorphism I5: A(G) - wg, see [9], [15], [8; Theorem
8.5.1]. I may be described as follows: let « € A(G) be represented by a com-
pact G-manifold M. We choose a representation V of G and a G-embedding
i:Mc V. Let pry: (M) A S — S¥ be the projection on the second factor.
Then Ig(a) € wd is represented by the composition

S L (M) A SV B2 87,

where y is the map defined in (1.2). In particular, the stable G-homotopy
class of pr,oy depends only on the element in the Burnside ring A(G)
represented by M.

Let M;, i = 1,2, be two G-manifolds. We have two fibre bundles

w:PxgM;—»B, i=12,

and two transfer maps

t(w): By > QP xg My)y), i=1,2.
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Furthermore, we have two maps
Q(1): Q((P xg M)y ) = Q(B,).
Let us consider compositions
Q(ui)et(p): B+ — Q(B.).

ProrosiTion 1.8. If [M,]=[M,] in the Burnside ring A(G), then
Q(ur)ot(4y) is homotopic to Q(uz) o t(py).

Proor. Since [M] = [M,] in A(G), it follows from the construction of I
described above that there exists a representation V of G and G-embeddings
i,:M, > V,i,: M, - V such that the compositions

SY I (M,,) A SYEL SV and S¥Ih (M,,) A S¥ 22 8V

are G-homotopic. Here y, is constructed as in (1.2) from i; and y, from i,.
Let us consider the maps

7i:P xgS¥ = P xg8%, 7i=idp xg(pryeoy:), i=12,
and then the maps
7i Apli(P xgS¥) AgB; = (P xgSY) ApB, i=1,2
(compare (1.3)). As in (1.4), the maps j; A g1 yield
y:B*®C S B 2,
Finally, under the identification &:B*® 5 (B,) A S" we get
Ji=Py'®d :(B,)AS">(B,)AS, i=12

Since pryoy, and pr,oy, were G-homotopic, §; and j, are homotopic.
Observe now that Q(u;)° t(y;) is represented by §;,, i=1,2.

CoroLiArY 19. If [M;] = [M,] in the Burnside ring A(G), then the
p-transfers

T(u1), T(u2): B4 = Q(S°)
are homotopic.

ProoF. 7(y;) = Q(p;) o t(y;), where
pi: (P xg M), = 8% pi=pp xg M;*
Let us consider pg: B, — S° Then
pi=ppop; and () = Q(pg)° Qu) o (k).

Corollary 1.9 follows now from (1.8).
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Let ug: EG - BG be the universal principal G-bundle over the classifying
space BG of the group G. Let M be a G-manifold. We denote by ug(M)
the associated bundle ug(M): EG x¢ M — BG.

BG is not a finite complex. It follows, however, from the Sullivan theory
of compact Brownian functors [17; Section 3] that there is a well-defined
homotopy class of a map

(1.10) T(u6(M)): BG , — Q(S°)
characterized by the property:

if B < BG is a finite subcomplex, P = ug'(B), fi:P — B, ji = ug|P
and u:P xgM — B is the associated bundle, then tHe p-transfer
T(u): B, — Q(S°) of the bundle u is homotopic to T(ug(M))|B. .

It follows from Corollary 1.9 that the homotopy class of T(ug(M)) depends
only on the element [M] in the Burnside ring A(G). Thus we get a trans-
formation

(1.11) 7: A(G) - [BG,, Q(8%)].

defined by 7([M]) = T(ug(M)). Here [, ], denotes the set of based homotopy
classes of maps.

The loop-sum and the composition product on Q(S°) induce in
[BG,,Q(S°)], a structure of a commutative ring with unit. 7 is a homo-
morphism of rings.

There are other ways to describe the transformation 7, see for example [12].

2. Examples.

Let R" be the space of n-tuples of real numbers and let Q, be the
negative definite form Q,(x,, ..., x,) = — Y x? on R". C, is the Clifford algebra
of the form Q,, ig,:R"—C,, see [2], [5], [10]. We shall follow the
notations and definitions of [2]. C¥ is the group of invertible elements of C,,
I', = C¥ is the Clifford group. Pin(n) = I', is the subgroup of elements of
norm 1.

Let g,:Pin(n) - O(R") be the twisted adjoint representation of Pin(n)
(see [2; p. 7-8]), Spin(n) = g, '(SO(R")). Let ¢: Pin(n) - O(R') be the non-
trivial representation with Ker ¢ = Spin(n).

We define §,:Pin(n) - O(R") as the tensor product of representations
0, = 0, ® ¢ and we refer to g, as the untwisted adjoint representation of
Pin(n) on R". Compare [5; Section 2.3, p. 49]. Let us identify R" with its
image by the embedding iy : R" = C,. Then, in C,, we have sxs™! = §,(s)(x)
for x € R" and s € Pin(n).



208 RYSZARD L. RUBINSZTEIN

Let N be a (finite-dimensional) module over C,. We may assume that N
is equipped with an inner product {-,-) such that Pin(n) acts on N as a group
of isometries. Let S(N) be the unit sphere in N. S(N) is a Pin(n)-manifold,
and we have:

ProposITION 2.1. The Pin(n)-equivariant tangent bundle T(S(N)) contains a
Pin(n)-vector subbundle S(N) x g, of dimension n.

Proor. If we identify
T(S(N)) = {(x,v)e S(N)x N|Kx,v) = 0},

then the action of Pin(n) on T(S(N)) is the restriction of the diagonal action
on S(N)x N.

The map u:S(N)xR" = S(N)xN, u(x,w) = (x,ig, (w)(x)) gives an em-
bedding of the trivial bundle S(N)x R" on a subbundle of T(S(N)), see [10;
Section 11.2].

If Pin(n) acts on S(N)x R" through g(x, w) = (gx, g,(9)(w)) for g € Pin(n),
x€S(N) and we R", then u is a Pin(n)-map. Indeed,

p(g(x, w)) = plgx, 3,(9)(w)) = (gx,iq,(@x(9)(W))(gx))
= (gx, (gig,(W)g™")(gx)) = (gx, gig,(W)(x))
= g(x,ig,(W)(x)) = gu(x,w),

since g,(g)(W) = gig,(W)g ™' in C,.
Thus u gives a Pin-embedding of the subbundle S(N) x g, in T(S(N)).

CoroLLARY 2.2. If N is a C,-module and a(N)e A(Pin(n)) is the element in
the Burnside ring of Pin(n) represented by the sphere S(N), then the transfer map

(a(N)): BPin(n), — Q(5°)

is contractible on the (n—1)-skeleton of BPin(n), .

For further examples see [16; Section 5].

3. Some cohomology computations. The Hopf invariant.

All homology and cohomology groups which appear in this and the next
Section are with Z/2-coefficients. We write H*(X) for the cohomology ring
H*(X;Z/2) of a space X.

Let us consider the elementary abelian 2-group G, = Z/2x ... xZ/2
(k factors) and let V; be the real regular representation of G,. We assume that
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Vi is equipped with a G,-invariant scalar product. S(¥,) is the unit sphere
in V.

Let «, be the element of the Burnside ring A(G,) of the group G,
represented by the G,-manifold S(V;). For a subgroup H < G,, we denote
by xu:A(G,) — Z the homomorphism given by yy([M]) = x(M*"). Here M is
a G,-manifold and [M] is the class of M in A(G,). According to [16; (5.2)]
the element «, is characterized by

2 ifH =G,

Xoa() = {0‘ if H g G,

Let n: G, — Z/2 be a group homomorphism, n € Hom(G,, Z/2). We define
an element 7j € A(G,) as 7j = [G,/Kern].
ProposiTioN 3.1. (E. Laitinen). In A(Gy)

1—a, = H ®w—1).
n € Hom(G,, Z/2)
n#0

ProoF. See [12; p. 68].
Let us consider the p-transfer map of the element 1 —a,

T(1—o): BG, = Q(5%))-

a(w,) € H"1(Q(5%)))

be the suspension of the nth Stiefel-Whitney class w, e H"(B(Q(S5°);))). We
denote o(W) = Y ;5 20(w;).

We shall compute (7(1 —a,))*(6(W)) e H*(BG,).

Let us consider first the case G; = Z/2. Then BG, = RP®. The p-transfer
of the element [G,]—1€ A(G,),

7([G,]-1):RP® —» Q(So)m
is homotopic to the James map
RP® - SO L 0(5%)4),
(see [6; p. 120]). Thus
(3.2) E([G1]-1)*(e(wy)) = u"™!

in H*(RP®), where u € H'(RP®) is the generator. See [4; Lemma 3.5].
Let

¢:Hom(G,, Z/2) » H'(BG,)
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be the isomorphism given by ¢(n) = B(n)*(u) for n € Hom(G,, Z/2). We identify
Hom(G,, Z/2) with H!(BG,) through ¢.
Let n € Hom(G,, Z/2). Then the p-transfer

T(f—1): BG, — Q(So)u)

of the element 17— 1 € A(G,) satisfies
3.3) @ = 1) e wa)) = n""!

in H"~'(BG,). Indeed, let n*: A(Z/2) - A(G,) be the homomorphism induced
by n. Then f—1 = n*([G,]—1) in A(G,). It follows that 7(5—1) is equal to
the composition

BGk B(n) > BG1 f([Gl]"'l) Q(SO)(“.

Consequently,
(= 1)*(0(w,) = Bm)*@"™') = (B)*@)y ™' =n""".
COROLLARY 34.

F1—a))*eWpsr)) = Y x"

x € H'(BG,)

in H"(BG,) for n 2 1.
Proor. It follows from (3.1) that

(1 —o) = [T @@GE-1)
neHom(G,, Z/2)
n#0

in [BGy, Q(5°)1,]- In this formula the product on the right hand side is the
multiplication in [BG,, Q(5%)4,] induced by the composition product in
Q(8°))- The classes a(w,,+1)eH"(Q(S°)(”) are primitive with respect to the
composition product in Q(S°),, (see [4; Lemma 3.5]). Thus, Corollary 3.4
follows from (3.3).

We identify H*(BG,) with the graded polynomial ring Z/2[x,..., ;] in k
independent variables x;, degx; = 1.

Lemma 3.5. In H*(BG,) = Z/2[x,, ..., x;] we have

@) flsn<2-~1,then Y x"=0,
xe H'(BGy)

(@) ifn=2~1then ) x"+0.
xeH'(BG,)
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ProoF. Let V < Z/2[x,, ..., x,] be the vector subspace spanned by x;, ..., X.
Let

T(x1,..0X) = Y X"€Z/2[xy,..., %]
xeV
We denote by W(i,, ..., i,) the monomial x'f x',:‘ We shall determine which
monomials W(i,, ..., i) can appear in T,(x,, ..., x,) with nontrivial coefficients.

Step 1. Let us first consider those monomials W (i,, ..., i) for which at least
one i; = 0. We may assume that

Wiy, ...i) = Wiy, ...i,0,...,0), s<kandi; #0,...i, #O0.

If such a W(i,...,i,) appears nontrivially in T,(x,,..., x,), then it must already
appear with the same coefficient in the polynomial (x, +...+ x,)". Indeed, this
follows directly from the equality

T.(xXy, .. %) = Y k}( Y xn> )

Ac{l,.., acA

Furthermore, such a W(iy, ..., i) cannot appear nontrivially in (x;, +...+x;)"
if

(.8} & (L),

Wi(,,...,is0,...,0) appears with the same coefficient in all polynomials
((xy+...4+x,)+y), where ye Y = span{x,,,..., X}. Thus

T(xyen X)) = Y (Z x,) + Y (g4 +x)+ )
k}

Ac{l,.., aeA yeY
{,...,s} ¢ A4

Since cardinality of Y is 2*~* and k —s > 0, it follows that W (iy,...,i,0,...,0)
has multiplicity 2*~* in T,(x,, ..., X;), i.e. multiplicity 0.

Thus we have proved that no monomial W(iy,... i) with at least one
i; = 0 can appear with a nontrivial coefficient in T,(x,, ..., X).

Step 2. We shall now consider monomials W(iy, ..., i) with all i; > 0. The
coefficient of such a W(i,,..., i) in T,(xy,-.., X;) is the same as its coefficient
in (x; +...+x)"

Let n = Y7 4a;2/, a; = 0 or 1, be the 2-adic expansion of n. Then

hd J j
g+ +x) =] & o)
j=o

If n <2*—1, then n = Y%Z8a;2. For n <2*—1 the number of these a;s
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for which a; # 0 is less than k. It follows that no W(i,,...i,) with i; >0
for j = 1,...,k, appears with a nontrivial coefficient in (x; +...+ x,)".
Hence T,(x,...,x)=0if n <2*—1. If n =2*—1, then n = Y*2§2/ and

k—1 ; .
G+t =1 o +..+xD)
j=0
LIy monomials which do not include
= Symm X . .
=1 all variabels at the same time.

Here Symm(-) is the symmetrization operator with respect to the group of
permutations of all variables x;.
Thus

i=1

k k—i
T X1y 0 Xs) = Symm(n X );eo ifn=21.

ReMARK 3.6. The element Ty_,(xy,...,x.)€ H ~'(BG,) is not detected
by any proper subgroup of G,;. It is of the lowest possible dimension among
all the elements of H*(BG,) with this property and the only one in this
dimension. Furthermore,

Tik_l(xl,...,xk)= l—[ Y.

yeH' (BG,)
y#0

Compare also [13; Lemma 3.25].
COROLLARY 3.7. (i(1— a))*(0(wp)) # 0 in H* ~1(BG,).

It follows from (1.7) and [16; (5.4)] that for k = 1,2,3 the p-transfer of
o € A(Gy)

T(o): BGy, — Q(So)(m

is contractible over (2*—2)-skeleton of BG,. Let I: BG, — Q(S°),,, be a map
which transforms all BG, into one point of Q(S°), Then

T(1—oy) = I—7(%)

in the ring of (non-based) homotopy classes [BG,, (S°)].
It follows that for k = 1,2, 3 the p-transfer

#(1-a): BG, ~ Q(5°),

is contractible over (2% —2)-skeleton BGS‘?'Z) of BG,.
Let

pi: BG, » BG,/BGZ 2



A NOTE ON THE TRANSFER MAP 213

be the contraction map and let
F.: BG/BGY ™% - (%),
be a map such that the diagram
=2 98,

N

BG,/BGY ™Y

is homotopy commutative. Such F, exists for k = 1,2, 3. We are going to show
that it does not exist for any other value of k. It follows from (3.7) that

F}owp) £ 0 in H* '(BG/BG®?). Since BG/BGZ? is (2*—2)
connected, there exists a map

fi:8"7' - BGyBGY™?
such that the composition
"~ Lo BGy/BGY T4 0(S%)

satisfies (Fy° fi)*(a(wx)) # 0 in H* _1( ), i.e. the composition Fyo f,
is a map with the Hopf invariant 1.

CoroLLARY 38. Let i(1—a): BG, » Q(S°)y, be the p-transfer of
1—o, € A(Gy).

@) If k > 3, then ©(1—0y) is not homotopically trivial over the (2*—2)-
skeleton of BG,.

Gi) If k=1,2,3, then T(1—ay) is homotopically trivial over the (2*—2)-
skeleton BG( -2 of BG,. There exist maps

F.:BG/BGZ 2 > (8%, and f,:S* ' > BG/BGZ ™Y

such that FkOpk BG, - Q(8°)y, is homotopic to T(1-a) and
F,ofy:S — Q(S°)y, is @ map with the Hopf invariant one.

Proor. (i) follows directly from the non-existence of maps with the Hopf
invariant one in dimensions greater than 7, (see [1]). (ii) has been shown
above.

4. Concluding remarks. The Kervaire invariant.

The notations of Section 3 are preserved.
We shall now consider the elements 1 —a? € A(G,).
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Let kyner_, eHZM"Z(G/PL) be the Kervaire class, (see [14]), and let
i*(kpr )€ H T2(Q(S°))

be its image through the map i: Q(S°),, » G/PL, see [4; Section 3].
We are going to show that the p-transfer 7(1—a?): BG, — Q(S°),,, satisfies
21— o2 (kyr _3) # O
in H " ~2(BG,).
Let us first consider the p-transfer of the element (1 —a,)? € A(G,):

(1 —,)*): BG, = Q(5%)y)-

Lemma 4.1
(1 —a,)*)*(@(W) =0
T(1— o)) (*(km_5)) = O for every m 2 2.
Proor. We have

(1 —0,)*) = (F(1 —2,)))?

in [BG,, Q(S8°)]. Lemma 4.1 follows now from the fact that both a(W) and
i*(kp_,) are primitive with respect to the composition product in Q(S°)),
(see [14] and [4; Lemma 3.5]).

We recall now a theorem of Brumfiel, Madsen and Milgram. We quote from
[4; Section 3, p. 94]. Let

4, HXQ(S ) = H*Q(S°)) ® H*Q(5°)))

be the coproduct induced by the -structure on Q(S°)), i.e. the loop sum
structure adjusted with a component shift. Let 4, (x) = 4,(x)—-x ® 1-1 ® x.

TueoreM (Brumfiel-Madsen-Milgram).
A (* k) = Y a(w,) ® a(w,).

s+t=2
st22

ProposiTION 4.2. The p-transfer
#(1-a2): BG, - Q(8°)q,
satisfies
(F(1—ad))*(*(kpre1_5)) # 0
in H*(BG,).

Proor. We have 1 —a? = 2(1 —a,)— (1 —a,)> It follows from Lemma 4.1 and
the Theorem of Brumfiel-Madsen-Milgram that
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(1 =a)*(* (kp1 ) = (FQ2(1 =) = D** ko1 _5))
= [(Z(1 —,))*(e(w»))]* € H*(BG,).

According to (3.7), (7(1—a,))*(c(wy)) # 0. Since H*(BG,) has no zero-
divisors, we get the conclusion of Proposition 4.2. As a matter of fact we have

(@1 - o) (*hp o)) = [T x%
xeH'(BG,)
x#0
Thus, for every positive integer n, we have the map
fo =11 =0a3): BG, > Q(5%)q,

such that
Sr(*(kpne1_3)) # 0.

In this way we are led to

ProBLEM 1. Is the p-transfer f, = (1 —a2) contractible on the (2"*!—3)-
skeleton of BG,?

The positive answer to Problem 1 implies the existence of a framed manifold
of dimension 2"*! —2 with the Kervaire invariant one. Indeed, if the answer
is positive, then there exists a map

F.:BG,/BGY ™ - Q(8°)y,

such that the diagram
BG, —L— 0(8°))
p F,
BG,/BGZ "'~
is homotopy commutative. Furthermore,
F*i*(kp1_5)) #0 in H¥ ~?(BG,/BGZ ' ~).

Since BG,,/BGf,zm s (2"*! —3)-connected, there exists also a map

h,:s*"' -2 ., BG,/BGZ" Y
such that h*(F*(ky+1_,))) # 0. Thus the composition

s 2k, BG,/BGT " Y £ 0(50),,

would represent a framed manifold of dimension 2"*! —2 with the Kervaire
invariant one.

ProBLEM 2. Do there exist a G,-manifold M and an orthogonal representa-
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tion W of G, such that

) [M] = o? in the Burnside ring A(G,),
(i) dimgW =2"*!'-2  and
(ili) M x W is a G,-vector subbundle of the tangent bundle T(M) of M ?

According to Corollary 1.7, the positive answer to Problem 2 implies the
positive answer to Problem 1.

Let us consider the G,-manifolds M, = S(V,)x S(V,). M, is of dimension
2"*!'—2 and it represents the element o in A(G,). According to [16; (5.4)
and (5.14)], M, is G,-parallelizable if and only if n = 1,2, 3. It follows that for
n = 1,2, 3 the answer to Problem 2 and, consequently, to Problem 1 is positive.

Originally it was this connection of manifolds M, with Problems 1 and 2
that was the motivation behind [16].
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