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ON THE TORELLI PROBLEM OF ABELIAN COMPLEX
LIE GROUPS

ERICH SELDER

0. Preliminaries.

We consider the Torelli problem to be the question, whether the objects
of a certain category of complex spaces are determined by the Hodge structures
on their cohomology groups. Of course this presumes, that on the given
category there is a functor, which assigns to each object a Hodge structure
on the cohomology. In the case of compact kidhlerian manifolds this is well-
known since long, and the existence of a functorially depending Hodge
structure on arbitrary complex algebraic varieties (possibly singular and
noncompact) is due to Deligne (cf. [3]). However on complex manifolds,
which are not necessarily assumed to be compact or algebraic, such a Hodge
structure functor does not exist (even if we assume our manifolds to be
kdhlerian). So if we want to consider non-compact complex manifolds, we
have to impose additional structures. In the present paper we deal with abelian
complex Lie groups, which we endow with “pseudo-algebraic” structures,
which are modelled in analogy to commutative algebraic groups. In this
category we are able to define natural Hodge structures, so the Torelli
question makes sense.

As to the Torelli problem there are many positive as well as negative
results, but most of them concern the case of compact objects. Apart from
the classical result for polarized compact Riemann surfaces a positive answer
was obtained for K3-surfaces and also for some classes of singular varieties.
For the case of noncompact, but smooth objects, there seem to be no
important results.

For the above mentioned category of pseudo-algebraic commutative groups
we are able to answer the Torelli problem. More precisely, on the moduli
space Ext(Y, Z) of pseudo-algebraic commutative groups with fixed compact
quotient Y and fixed linear subgroup Z the Torelli mapping, which assigns
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to each pseudo-algebraic commutative group X a natural Hodge structure on
the cohomology, is a holomorphic homomorphism of groups, which is
injective if and only if Z is an algebraic torus (C*)-.

In the first two sections we repeat the well-known results on Hodge
structures and extensions of Hodge structures, which are needed in the
sequel. The third section concerns with the definition of the category of
pseudo-algebraic abelian complex Lie groups; in particular we describe
moduli spaces of such groups. The results are very similar to the facts known
in the algebraic case, but our calculations are explicit and very simple. In
section 4, we prove the existence of Hodge structures on pseudo-algebraic
groups and we analyse the Torelli mapping, and the last section states some
applications of the theory, as are the description of the Néron-Severi group
and the Picard group.

Throughout this paper we will assume all our complex Lie groups to be
connected. Furthermore we will use the following notations:

H* = Homy(H,Z) for any finitely generated abelian group H;
Ve = Homg(V,C), V¢ =Homg(V,C),
Ve = Homg(V,C)={f:V —C; fR-linear, f(iz) = —if (z)}
for any complex vector space V;
G,(C) = C as additive algebraic group;
Gn(C) = C* = C\{0} as multiplicative group.

1. Hodge structures.

1.1. Pure Hodge structures.

A pure Hodge structure H of weight me Z consists of a finitely generated
abelian group H; (or a finite-dimensional Q-vector space Hg) and a
decreasing filtration F'(H) = (FP(H)),ez of H¢:= H; ® C (respectively
Hg ® C), such that

Hg = FP(H)® FYH) for all p,geZ with p+q=m+1,

where the bar denotes complex conjugation (note that H. is defined over R).
The filtration F'(H) then induces a decomposition
Hc = @ HPA,
ptq=m

where H?? = F?(H) n FiH), p+q = m, such that H*? = H”? (Hodge de-
composition).

If X is a compact kdhlerian manifold or a complete nonsingular algebraic
variety over C, then the cohomology groups H™(X,Z), meN, carry pure
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Hodge structures of weight m, which behave functorially with respect to holo-
morphic mappings or regular algebraic morphisms respectively, and which are
compatible with cup-products and Kiinneth formula (cf. [S, Chapter 0.6.], [2]).

If for example Y is a compact complex torus, given as the quotient W/A
of a complex vector space W by a lattice 4 <« W of maximal rank
2dimgW, then H'(Y,C) is isomorphic to Homg (W, C) = Wy, and the Hodge
structure Hy on H'(Y,Z) is given by the decomposition :

Wa— W @ Wg, [ b (9,h)

with g(w) = ¥(f (w)—if (iw)), h(w) = 3(f (w)+if (iw)). The Hodge structure
on H™(Y,C) = A™Whg is then given by the decomposition
A"Wr= @ (APWE ®c ATWE).

ptq=m

1.2. Mixed Hodge structures.
A (mixed) Hodge structure H consists of

(i) a finitely generated abelian group H,,

(ii)) an incressing filtration W.(H) = (Wy(H));cz of Hq:= H; ®;Q
(weight filtration),

(iii)) a decreasing filtration F'(H) = (FP(H)),ez of Hc = H; ® C
(Hodge filtration),

such that the filtration F'(H) induces on each of the Q-vector spaces

gt (H) = W,(H)/W,_,(H) a pure Hodge structure of weight d. As usual one
defines

HP 2= (gl (H))P.

If the weight filtration W.(H) is induced by a filtration on H,, we say
that the Hodge structure is integrally defined.

A morphism of Hodge structures ¢@: H' — H” is a homomorphism
¢z: H; - H7 between the integral lattices, which is compatible with the
filtrations W. and F' (and consequently with F'). Thus the Hodge structures
together with their morphisms define a category, which is abelian and
admits duals and tensor products.

If H' and H"” are Hodge structures, then the abelian group Homg(Hz, Hz)
carries a natural Hodge structure Hom(H’, H"), which is determined by the
filtrations:

Wa(Hom(H', H")) = {¢ € Homq(Hg, Hg): ¢(W,(H')) = W, . n(H")VreZ}
FP(Hom(H', H")) = {9 e Homg(Hg, HZ): o(F'(H')) = F"*P(H") VreZ}.
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By the results of Deligne (cf. [3]) the cohomology groups H'(X,Z) of an
arbitrary complex algebraic variety carry mixed Hodge structures, which
depend functorially on the algebraic variety. Moreover the Hodge structures
are compatible with cup-product and Kiinneth formula.

Now let Z be a commutative Stein group. Then Z is isomorphic (as a
complex Lie group) to

(G.(C)) x (Gn(C)) = C* x (C*

for some uniquely determined integers k,/ € N, and is hence a linear algebraic
group (cf. [7] or [4]). An easy computation shows, that the canonical Hodge
structure Hy on H'(Z,Z) is pure of weight 2r, and is in fact of type (r,r)
(that is (H%)?? = 0 for (p,q) # (r,r)). In particular the Hodge filtration on
H'(Z,C) is given by

H'(Z,C) = F'(Hy) > F"*'(H}) = 0.

1.3. Jacobians.
Let H be a mixed Hodge structure, Then
JacP(H) := H¢/(FP(H)+H;), peZ

is called the pth Jacobian of H (here as usual we identify H, with its image
in the complexification Hg).

If W, (H)/W,_,(H)=0 for all r> 2p, then the image of H, in the
complex vector space Hg/FP(H) is a discrete subgroup, and consequently
JacP(H) has a natural structure of an abelian complex Lie group. Note that
JacP(H) depends functorially on H (cf. [1]).

We compute an example, which will be needed in the next sections.

Let Y = W/A be a complex torus and let Z = C* x (C*)' be a commutative
Stein group. We represent Z as a quotient C**!/4, where 4 = {0} x Z' = C**%.
Then H'(Z,Z) = A* and its complexification

H'(Z,C) = Hom,(4,C)
can be identified with Ug, where
U=4®;C = {0} xC'c Ct*!,

Then the Hodge structure Hom(H}, H}) is pure of weight —1, and is given
by the Hodge filtration

F~'(Hom(H}, H})) = Homg((H}), (Hy)) = Homg(Ug, Wg) >
> FO(Hom(H}, Hy)) = Homg(Ug, We) = F' (Hom(Hz, Hy)) = 0.



ON THE TORELLI PROBLEM OF ABELIAN COMPLEX LIE GROUPS 177

According to the decomposition Wy = W¢ @ Wg we can identify the quotient

Homg(Ug, WR)/Homg(Ug, W) with  the space Homg(Ug, Wg). The
projection

Homg (Ug, Wg) — Homg(Ug, W¢)
maps the lattice Homy(4*, A*) onto the lattice
Hom;, (4%, A*) := {¢p e Homg(Ug, Wg): (2Re 0)(d ®; C)|A € A*
for all § e 4*}.

Consequently for the Oth Jacobian of Hom(H1, H}) we have the natural
isomorphisms :

Jac’(Hom(H}, Hy)) = Homg (Ug, WR)/(Homg(Ug, W)+ Homg (4%, A*))
= Homg (Ug, Wg)/Hom, (4*, A*).

2. Extensions of Hodge structures.

Let H', H” be Hodge structures. An extension of H' by H' is an exact
sequence of mixed Hodge structures

0-H LHEBH 0.

A morphism of two such extensions is a commutative diagram of morphisms
of Hodge structures

0—- H—- H-H"-0

a c b

0-» > A-A"-0.

The notions of epi-, mono-, isomorphisms are evident. An isomorphism of
extensions with a = idy., b = idg. is called a congruence and the extensions
H and H of H” by H' are called congruent. An extension

0-H LHBH 50

is called a split extension, if there exists a section, i.e. a morphism s: H” — H,
such that pos =idg.. Any split extension is congruent to the trivial
extension, which is given by the direct sum of H' and H”. We define
Ext(H”, H') to be the set of congruence classes of extensions of H” by H'.

A standard argument on abelian categories yields, that Ext(H",H') is
an abelian group with Baer summation as composition law and with the class
of split extensions as neutral element. Ext defines a bifunctor on the
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category of mixed Hodge structures with values in the category of abelian
groups, which is contravariant in the first, covariant in the second variable.

We say, that the Hodge structure H' is separated from the Hodge
structure H”, if the highest weight of H' is less than the lowest weight of
H”, ie. if for all peZ, such that W, (H')/W,_,(H') = 0 for all g = p, we have
W,(H") = 0.

Remark. If H' is separated from H”, then for any extension
0-H ->H->H"-0
the weight filtration W.(H) is uniquely determined.

In fact the weight filtration on the trivial extension H' @ H" is uniquely
given by
u/p(Hl @ HH) = m(HI)@ v‘/p(Hu);

but since the sequence 0 - Hy = Hq = Hg — O splits and is thus congruent
to the trivial one, the weight filtration on H is also unique.

In the case of separated Hodge structures the group Ext(H”, H') carries
a natural complex structure :

ProposITION. Let H', H" be mixed Hodge structures, such that the extension
group Ext(Hz, H;) of the integral lattices is trivial, and such that H' is
separated from H'". Then the Oth Jacobian Jac®(Hom(H', H")) is an abelian
complex Lie group and there is a canonical isomorphism

¥:Jac®(Hom(H",H')) - Ext(H", H').

For the proof we refer to [1]. Since we need it in the sequel, we will briefly
recall the construction.
Given y e Homg(H¢, Hg) we consider the automorphism

GW):Hc := Hc ® Hc = He, GW)(W,h") := (W +y(h"),h").

Now we define the extension ¥(y) by taking H, := H; @ H; as integral
lattice,

Wa(H) := Wo(H') @ W,(H"), meZ,
as weight filtration, and
FP(H) := G(y)(FP(H')® F*(H")), peZ,

as Hodge filtration.
One easily shows (using the separation hypothesis and the triviality of the
integral extensions), that any extension of H” by H' is congruent to an
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extension of the form ¥(y). Furthermore two extentions ¥(y) and ¥(y) are
congruent iff

¥ —y e F°(Hom(H", H'))+ Homy (Hy, Hy).
Consequently:
Ext(H", H') = Homg(Hg, H¢)/(F°(Hom(H", H'))+ Hom, (Hz, H3))
=~ Jac®(Hom(H", H’)).

We consider again the example of 1.3. So let H} (respectively H%) be the
canonical Hodge structures on the cohomology groups of the complex torus
Y = W/A (respectively on the linear group Z = C* x (C*)"). Here HY is
separated from H% and thus Ext(HY, H%) is isomorphic to Jac®(Hom(H%, H%)).

In particular for r = 1 we have

FO(H}) = (H), F(Hy) = (Hy), F*(H}) = 0 = F*(Hy),

and hence any extension H of H} by H} is already determined by the
subspace F!'(H) < H¢. If H is given by y e Homg((H}), (Hy):), then

F'(H) = G(y)(F'(Hy) ® F'(H}))
= {(f+Vv(9).9)e (Hy) ® (H): f e We, g€ U},
where U = {0} x C! = C*x C.

3. Pseudo-algebraic structures on abelian complex Lie groups.

3.1. Let X be an abelian complex Lie group. Then X is isomorphic to
(G4(C)f x (Gu(C)) x T,

where k,leN are uniquely determined integers and T is a toroidal group
(i.e. O(T) = C), which is uniquely determined up to isomorphy (cf. [7], [8]).

We may represent X as a quotient X = V/I' of a complex vector space V
by a discrete subgroup I' = V.

REMARKS.

a) X is compact iff I' = V is of maximal rank 2n, n = dimgV.
b) If X is a toroidal group, then n+1 < rank(I') < 2n.
c) Xis Steiniff T = 0.

For further results we refer to [11].

3.2. By the well-known theorem of Chevalley (cf. [9]) every commutative
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algebraic group X is an extension 0 - L - X — 4 — 0 of an abelian variety
A by a linear group L; moreover the extension is unique up to congruence.

In analogy to the algebraic case we define a pseudo-algebraic structure
on the abelian Lie group X to be a congruence class of strict extensions

0-Z5X5Y-0

of a compact complex torus Y by a Stein group Z (here “strict” means, that
the homomorphisms ¢ and 7 are assumed to be holomorphic).

A morphism between pseudo-algebraic groups X and X' is given by a
commutative diagram

0—Z-5X5Y—0

[ bbb

0— Z' < X' 2 Y — 0,

where a, B, y are holomorphic homomorphisms. So the pseudo-algebraic
abelian complex Lie groups together with their morphisms form a category,
which we will denote by ¥z,

Via the exponential mapping an extension 0 - Z = X 5 Y — 0 defines a
commutative diagram

-0 0 0
l ! !
0—mA—T—> A1—0
i ! i
*) 0o—-UvSHvhw—o
! ! !
0—Z-X-5Y—0
i ! !
0 0 0

where 0 » U % V' 4 W — 0is an exact sequence of complex vector spaces and
04->TI'->A4-0

is an exact sequence of free abelian groups, such that Z =~ U/4, Y = W/A
X = V/I.
Conversely, any diagram of the form (*) defines a strict extension of Y by Z.

ReEMARKS. a) Any abelian complex Lie group X carries at least one
pseudo-algebraic structure.

To see this, we represent X as quotient X = V/I'. Let V' < V be the
complex vector space generated by I' and let U’ < V be a complex direct



ON THE TORELLI PROBLEM OF ABELIAN COMPLEX LIE GROUPS 181

complement of V' in V; then U’ n I' = 0. Furthermore, let W < V' be the
maximal complex vector space, which is contained in I' ®, R < V', and let
U” < V' be a complex direct complement of Win V'. Then 4 :=T nU" < U”
is a lattice in U := U’ @ U” with rank4 =dimgU” and Z :=U/4 is a
Stein group, which is isomorphic to C*x (C*), k = dimcU’, | = dimcU".
If #: V - W is the projection according to the decomposition V = U @ W,
then the lattice I' = V projects onto a lattice A = W of maximal rank 2dim¢g W,
and the sequence

0-U->Viw-o
defines an extension 0 > Z - X » Y = W/A — 0 of the desired form.

b) If X is neither compact nor Stein, then there are many non-congruent
pseudo-algebraic structures on X. Moreover it may happen, that some of those
structures are algebraic (which means quasi-projective in our case), whereas
others are not. Note that the pseudo-algebraic structure

0-Z-X-Y->0

on X is algebraic iff Y is an abelian variety.

¢)f0-Z—> X - Y —0is a pseudo-algebraic structure on X, then X
carries a natural structure of a holomorphic Z-principal fibre bundle over Y.
For details on this viewpoint we refer to [11].

3.3. Let Z be a commutative Stein group and Y a compact complex torus.
As usual we define Ext(Y,Z) to be the set of congruence classes of strict
extensions of Y by Z. Similarly as in the algebraic case (for which we refer
to [10]), Ext(Y,Z) carries a natural structure of an abelian complex Lie
group, which we will describe more precisely. First we note that for compact
complex tori Y, Y’ and commutative Stein groups Z, Z’ there are canonical
isomorphisms

Ext(Y x Y, Z) = Ext(Y, Z) x Ext(Y’, Z),
Ext(Y,Z x Z') = Ext(Y, Z) x Ext(Y, Z').
So if Z is a commutative Stein group, isomorphic to
(G4(C))* x (Gu(C))' = C* x (C*)',
we have
Ext(Y, Z) = (Ext(Y,C)}* x (Ext(Y,C*))

for any compact complex torus Y: The structure on Ext(Y, C) and Ext(Y,C*)
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is given by the following proposition, which is essentially due to Serre (cf.
[10], Chapter VII).
ProrosITION. Let Y = W/A be a compact complex torus. Then:
a) Ext(Y,C) is canonically isomorphic to
H'(Y, Oy) = Homg(W, C)/Hom¢ (W, C).

b) Ext(Y,C*) is canonically isomorphic to the dual torus

Y := Pic®(Y) = H'(Y, Oy)/H'(Y, 2)

=~ Homg(W, C)/(Homg(W, C)+ Homg (4, Z)).

Proor. a) Every extension of Y by G,(C) = C is given by a commutative
diagram with exact rows:

0—0— I HA—0

Lol

0o—wCcowthw—o

where £ and # are the natural injection,- respectively projection. The iso-
morphism p induces a homomorphism

pP'®R=1:W=4@,R-T®;RCOW

such that #ot = idy. Thus t is of the form (¢,idy) with ¢ e Homg(W, C),
and we have ' = t(A) cC @ W.
So we constructed a surjective homomorphism

Homg(W,C) - Ext(Y,C), ¢ + &(p),
where the extension ®(¢) is given by the sequence
0-CoCOWITI->W/A-0
with I' = (@,idy)(A) = C D W.

Now if &(¢p), ¢ €e Homg(W,C), represents the trivial extension, which is
given by

0— C - cew 1 w—o0

I ! l
0—C-—CoWwW/{0}dAa> W/A—0
Il =

CxWA
then there is a C-linear isomorphism y:C@® W —» C @ W, such that the
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following diagram commutes:

AT T

W—Law—0

1T

0— -PO —4} A— —«) —0

0— C ———*C@W——» W—-»O

Now y(z,w) = (z+a(w), w), where 6: W — C is a C-linear mapping. Since
(p.idw)(A) = ¥ 71(0,4) = (—0(4),4) = (—0,idy)A), Vie4,

and since A = W is a lattice of maximal rank, we have ¢ = —o¢; in particular
¢ is C-linear.

Conversely every C-linear homomorphism ¢: W — C defines an extension
congruent to the trivial one. So we get the isomorphism

Ext(Y,C) = Homg(W, C)/Homg(W,C) = H'(Y, Oy).
b) An extension of Y by C* is determined by a commutative diagram
0—zLH 1 L A—0
o—CcScowtbw—o

where the rows are exact and Z <, C is the natural inclusion. In particular
I is an extension of A by Z, and so (since Ext(4, Z) = 0) the upper sequence
splits. We choose a section s: 4 — I, that is pos =id,. Then the R-linear

mapping
=s®R:W=4A@,R-T®;RsCOW

is of the form a(w) = (¢(w), w), where @: W — C is a R-linear mapping.
If we set

9d@):COW-SCDW, g(@)zw):=(z+eW),w),

then one checks easily, that g(o)(Z & A) =
Conversely for ¢ € Homg(W, C), the setting

r =g@e)ZdA)cCow

defines an extension of Y by C* =~ C/Z. So we have got a surjective homo-
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morphism
@ : Homg (W, C) — Ext(Y,C*).
If ¢ e Homg(W, C), then in the commutative diagram

»ZPA—— A—0

AW

—_— W—->0

g9(®) \

oO—||—m2—|— I —| 2 4—0

A

0—C

the mapping g(¢) is C-linear, and so determines a congruence from the trivial
extension (upper rows) to the one given by &(¢).
Now let f e Homg(4, Z), and consider

¢:=f®@®R:A®;R=W->C.
Then
9IP)ZDA) =20 4,
so that &(¢) defines the trivial extension. Hence we have
Hom¢ (W, C)+ Homgz(A4, Z) < Ker(P)

(where as usual we identify Hom,(A4, Z) with its image in Homg (W, C)).

On the other hand consider ¢ € Homg (W, C), such that &(p) is the trivial
extension, I' := g(p)(Z @ A). Then there is a commutative diagram, which
gives a congruence from the trivial extension to the one defined by I':

» 2P A——A—0

0 Y4
71,/
0—C —mCpW —mW—0
|
0— I—-»Z—— — [—| »A—0
0—*0/—‘—>C®/-—*-—>W2__.0

Here n is C-linear, n(Z @ A) = I', and 7 is necessarily of the form
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niz,w) = (z+L{w),w) = g()(z,w),

where {: W — C is C-linear. Hence

g@)NZ D A) =T = g(()Z @ A).

This implies g(@ —¢{)Z @ A) = Z @ A and consequently (¢ —{)(A) = Z; so
there is a homomorphism r € Hom, (4, Z) with ¢ —{ = r ®; R. It follows, that

¢ = {+(¢p—{)e Homg(W, C)+ Homy,(4, 2).
So we have a natural isomorphism
Ext(Y,C*) = Homg(W, C)/(Hom¢ (W, C)+ Hom;, (4, Z)).

The right hand side being isomorphic to H*(Y, Oy)/H'(Y, Z) (where as always
we identify H'(Y, Z) with its image in H'(Y, (y) by the projection

H'(Y,Z) o H'(Y,C) — H\(Y, Oy)

according to the Hodge decomposition H*(Y,C) = H*°(Y) @ H®!(Y)), which
is nothing else but the dual torus Y = Pic®(Y), the proof of the proposition
is finished.

CoroLLARY. If Y = W/A is a compact complex torus and Z is a commutative
Stein group, isomorphic to C* x (C*)! = U/4,withU = C**!, 4 = {0} xZ! < U,
then

Ext(Y, Z) =~ Homg(W, U)/(Homg (W, U)+ Hom, (4, 4))
=~ (H'(Y, Oy)F x (Y) .

4. Hodge structures and Torelli problem on pseudo-algebraic commutative Lie
groups.

4.1. We consider abelian complex Lie groups X provided with pseudo-
algebraic structures, which are given by exact sequences

0Z5X5Y-0,

where Z =~ C* x (C*)! is a commutative Stein group and Y = W/4 is a
compact complex torus.
Ifwewrite Z=U/Awith U=U'@U”, U’ =C, U"=C", 4={0} x4" U,
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4" = Z' < U”, then X is determined as quotient X = V/I" @ where
@ = (¢, ") e Homg(W, U) = Homg(W, U’) x Homg (W, U"),
r,=9(@)4®A)={0+¢(A),4);0ed,Aled}cV=UW,

and ¢ = are induced by the canonical injection U <, V, respectively
projection V— W.

ReMARKS. a) The homomorphism ¢” € Homg (W, U"”) defines an extension
X" :=V'lp, V'=U"@W, I, =ge")4"®A) V", of Y by
Zu c= U://A// = (C*)l:

02" X" 25 Y 0.

If p:U — U” denotes the projection to the second factor, then p maps I,
bijectively onto I';; hence p induces a morphism of extensions

0— Z-->X-5Y—0
S
0—mZ'— X'— Y—» 0,
which induces isomorphisms in cohomology, r 2 1:
0— H'(Z,Z) «~— H'(X,Z) «~=—H'(Y,Z)+—0

R

0 —H"(Z",Z) «“— H"(X",Z) <=~ H"(Y,Z) «—0
where a* is even an isomorphism of the Hodge structures H%.. and HY.
(b) Let
0—Z5HXS5Y—0
| L
0—Z25H XL yv—o0
be a morphism of pseudo-algebraic Lie groups, where
Z=UaU0/{0}xa", Y=W/A, X=V/I,
¢ = (¢, ¢")eHomg(W, 0" @ 0").
Then g, g, t are induced by complex linear mappings

o:U@U U0, ¢6W-oW, t:V-o7,
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such that

0({0} x 4”) = {0} x 4", é(A) < 4, t([,) < .
Since

U'=4"®,C, U'=1"®,C,

¢ induces a complex linear mapping ¢” = U” — U", such that the following
diagram commutes:

0 » U U'®W— W—0

A e

0—UeU—UU®W— W——0
é” é
é

LY

0

0—| >0 — |20 0W—|-W—0

L / L/ »/

0— 00— 00 edW— W—0

An easy computation shows, that (U’) = U’; hence there is a complex linear
mapping

f”:U”@W‘—’U”@W,

which completes the above diagram, such that t"(I',.) = I';.. Clearly
(0", 1", 8) defines a morphism (g"”, 1", g) between the extensions given by ¢”
and @”. This shows, that the assignment, which associates to a pseudo-
algebraic group

0 Z5 X5 Y->0
the sequence
02" -5 X" 5 Y -0,

determines a functor &:%s,, — %1,, such that the transformation
H* — H*o & (where H* denotes the cohomology functor H*: %2y, = S eto)
is an isomorphism of functors.

42 THEOREM. Let X be an abelian complex Lie group, provided with a
pseudo-algebraic structure given by the exact sequence

0Z5 X5 Y0,

where Y = W/A is a complex torus, Z = C* x (C*)! is a commutative Stein
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group. Then there is a unique extension H) of the Hodge structure H} by H},
which depends functorially on X € |91, such that the underlying sequence of
integral lattices is given by the cohomology sequence

0 - HY(Y,Z)-5 H (X, Z2)-5 HY(Z,2) > 0.
If
Z=UxU"/4")= U & U")/4,

where U =C 4" =2'cCl'=U",4={0}x4"cU=U@U", and if X
is given by

¢ = (¢, ¢")e Homg(W, U) = Homg(W, U’) x Homg (W, U"),
then the extension Hy € Ext(H}, H}) is determined by the homomorphism
(=9")*:(U") > Wa, [ —foo"

Proor. The uniqueness assertion is clear from functioriality. Note that the
remarks in 4.1. allow us to consider only the case Z =~ (C*)'. So we will fix
our notations as follows:

Z =U/A, where U=C", 4=2'cC!;
X =V[Il,, where V = U @ W, 9 e Homg(W,U), T, = g(e)(4 D A).

It is enough to show, that the extension H} determined by —¢*: U*c —» Wy
has the required properties.
First we claim, that the Hodge structure H} is well-defined. In fact if

¢ Homg (W, U)+ Homy, (4, 4),
then
—¢* e Homg (Ug, W¢)+ Homgy (4%, A*),

so —@* defines the trivial extension.
Observe, that the cohomology sequence

(Hy): (H3);

(+) 0 - H\(Y,2)= HY(X, 2)=> HY(Z,2) - 0

“= ||= ||=

Hom,(A,Z) Homz(l'p,Z) Hom,(4,Z)
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arises by dualizing the exact sequence

0— A4 I A A0
(++) ¢
O+eA),1) » 4

which admits a section 6: 4 — Iy, a(1) = (p(4), 4).
Since Hj is separated from H}, the weight filtration on HY is uniquely
determined :

Wo(Hx) = 0 = Wi (H) = n*(W,(Hy)) = n*((HY)o)-

Note that W.(HY) is integrally defined.
We set

U0:=4®,RcU=4®,C,
V:i=r,®R={u+ew),w);ucl,weW}cV.
The sequence (+ + ) induces the following commutative diagram
0O—U—V—oW—0
N
0—T—V—ow—0

“1 lﬂ° |

O—mU—V—W—20

where the upper and lower sequences are given by the natural injection,
respectively projection, the homomorphism f; is the inclusion and f, is the
homomorphism B,(u+ (W), w) = (u, w).

Applying the functor Homg(—, C) we obtain the following diagram

Un ® Wh

0—Up — ‘l’lfj —— Wi «—0

ol

= s
Oq—-—Uae——— V;l 4—W;‘1—0

where a*, B# are the restriction homomorphisms.
If we restrict o* P8, P& to the subspaces Ug c Up, respectively
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Uc @ Wq Vg, then by calculating dimension o*, B3, B% become
isomorphisms. Thus we obtain the commutative diagram:
0 « /A* A*(—BA’?A"W———O

04—U04—U0®WR4— R‘_O

*
" B (9(¢))
0e—U0fe— VR = W « 0
o* s
0« 4* — g« ||—A* —0

0 —Ug —— Ug @ Wg «—— Wg «——0

Here the upper rectangle defines the trivial extension of the Hodge
structure H} by H} and the morphism

(B8) o3 Us @ Wp— Uz @ Wi

maps the trivial extension to the extension of H} by H}, given by the
diagram:

HY(Z,Z) H\(X,Z) H(Y,2)
S SV R

T

O—Ug — Us®Wpe—— Wp «—0

H'(@Z.C) H'(X,0C) H‘(Y,C)

But since f3 is induced by the inclusion f, and B is determined by g(¢),
the homomorphism (8§)~ !0 B3 is nothing else but

(B8) "By = @@*) ' = glo)™)* = (g(-9)* = G(—9*).

So the Hodge structure defined by — ¢* is of the desired form.
To obtain functioriality we consider a mcrphism of pseudo-algebraic
commutative Lie groups:
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By the remarks in 4.1. it is enough to treat the case, where both Z and Z
are of pure multiplicative type. We use notations analogous to the ones before.
Now we look at the commutative diagram

00— 4 »AD A » A— 0
/ g(¢)/ /
0— 4 » I, > A 0
0 %o é
0 T é
b b v

0— —»Z"— —-»Z;@Z— - A—0
/ /6@) /
0—Ai—r, v A——0

]
where 1, is the homomorphism £4(d, 4) = (8(5), ¢(4)). With the above con-
siderations we obtain the following diagram in cohomology:

0—Ug —— Uc @ W —— Wg «—0

[ oo/
0 Ug«— Uc @ Wp « Wp ——0
-~ W wt
e* ] o*
o‘ T‘ O"

0« .—UE(— —UE@W;Q— —Wga «—0

J | s | /

0— Uz U@ Wy « Wh ——0

where

3(f,9) = (@*(f), o*(9)) for (f,9)e Uz @ Wi

Since ¢* and o* define morphisms of the canonical Hodge structures le,
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H}, respectively Hly, Hly,rg induces a morphism of the trivial extension of
le by H1y to the trivial extension of H} by H}, and since G(—¢*) and
G(—@*) transport the trivial extensions to the Hodge structures H%,
respectively H}g, 7* is a morphism of qu to HY. Hence (g*, t* o*) defines
a morphism of extensions of Hodge structures and so functoriality is obtained.

Since the higher cohomology groups of X are generated by the first one,
we get as an immediate consequence :

CoroLLARY. The cohomology groups H'(X,Z) of abelian Lie groups
X with pseudo-algebraic structures 0 - Z > X 5 Y — 0 carry uniquely deter-
mined natural mixed Hodge structures H', which behave functorially in the
category %1, of pseudo-algebraic abelian Lie groups, and which are
compatible with cup-products. H' is extension of the canonical Hodge structure
HY% by HY.

RemARrks. a) The Hodge structures HY are integrally defined.
b) The Hodge structure Hy is of type {1,2}, that is
W,(HY)/W,_(Hy) = 0 for p¢{1,2}.
Consequently the Hodge structures H are of type {r,...,2r}.
c) If
0-Z5X5Y>0 and 02584570
are two pseudo-algebraic abelian Lie groups, then the product
0-ZxZ25 xx X228 yx¥ >0
can be viewed as an extension in
Ext(Y,Z) x Ext(Y,2Z) c Ext(Y x Y, Z x 2).

Since the Hodge structures on complex tori and on linear algebraic groups
are compatible with Kinneth formula, the Hodge structures on pseudo-
algebraic Lie groups defined above are also compatible with Kiinneth formula.

d) Every pseudo-algebraic abelian complex Lie group X is determined by a
Serre fibration

0-Z5X5Y-0
(cf. [6]).

Hence we may calculate H'(X,Z) by the Serre-Leray spectral sequence.
It turns out, that the filtration on H'(X, Z) induced by the spectral sequence
coincides with the weight filtration of the Hodge structure HY.
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This remark may be useful for generalisations of the above theory.
43. For a fixed complex torus Y = W/A and a Stein group
Z=C'x(C*'=UxU"/4",
we define the rth Torelli map, r 2 1:
T%,y:Ext(Y,Z) - Ext(Hz, H}), Tz y(X):= H%,

where HY% is the mixed Hodge structure defined in 4.2.. Furthermore we
define the total Torelli map to be the product of the mappings T7% y:

oo

Tpy:= Y Thy:Ext(Y,Z)— [] Ext(H3, H).

r=1 r=1

Note that T3 y is the zero map, if r > dim¢ Y+dimgZ.

Of course Ty y is well-defined and in fact determines a morphism of the
bifunctors Ext(*, *) and Ext(H',, H,).

If Z=2xZ"with Z’ = C* Z" = (C¥! = U"”/4”, then by the above con-
siderations the projection p:Z — Z" induces the following commutative
diagram

Ext(Y, Z') x Ext(Y, Z") = Ext(Y, Z) —=2%B), Exy(Y, Z")
7Y 7Y
Ext(H%, Hy)— Ext(H%., HY)

where Ext(Y,p) is the projection to the second factor, and is hence a
holomorphic surjective homomorphism of abelian complex Lie groups; the
lower arrow is even a holomorphic isomorphism of abelian complex Lie

groups.
If we use the identifications of the sections 2 and 3:

Ext(Y, Z") = Homg(W, U")/(Homg(W, U”)+ Homg (4, 4")),
Ext(H}., H}) = Homg ((U" ), Wr)/(Homg((U" ), We)+Hom, ((4")*, 4%)),
then T}. y is induces by the (well-defined and) C-linear isomorphism
Homg (W, U") - Homg((U")g, Wa), @ + (= ¢")*.

where (—¢")*(f) = —f ¢ ¢”, f € (U"). The image of

Hom¢ (W, U")+Homgy(A, 4”) =« Homg(W,U")
by this mapping is clearly

Homg (U")e,Ws)+ Homy ((4")%, A*) = Homg((U" )5, Wh),
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hence T y is a holomorphic isomorphism of abelian complex Lie groups.
Since the higher Torelli maps T% y are induced by taking exterior powers
of T} y, we obtain the following result:

THEOREM. Let Y be a compact complex torus, Z a commutative Stein group.
a) The Torelli maps
Ty v:Ext(Y,Z) > Ext(H3, HY), r21,
and
Tz v Ext(Y, Z) > [] Ext(H%, HY)
r=1
are holomorphic homomorphisms of abelian complex Lie groups.

b) If Z=2Z'x2Z" with Z' =Ck Z" = (C*)', then the kernel of T,y is
exactly the subgroup Ext(Y, Z') = Ext(Y, Z). In particular the Torelli map
is injective if and only if Z does not contain a vector subgroup G,(C) = C.

c) The first Torelli map
T} y:Ext(Y,Z) - Ext(H}, H)
is surjective and induces an isomorphism of the complex torus
Y! = Ext(Y, Z") = Ext(Y, Z)/Ext(Y, Z"),
| = dimgZ"”, onto the torus Ext(HY, HY).

5. Applications and further remarks.

5.1. Let X be an abelian complex Lie group. We denote by A?4(X ) = HY(X, Q)
the finite-dimensional complex vector space, which is determined by (p, q)-
forms with constant coefficients. Note that H4(X, QP) is in general infinite
dimensional (cf. [12], [13]). Now the topological cohomology groups H'(X, C)
can be calculated by means of the groups A?9(X):

H'(X,C)= @ A»yX).

ptag=r

For toroidal groups X with finite-dimensional cohomology groups H(X, QF)
this was shown by Vogt in [13]. The general case follows very easily from
Vogt’s considerations.

Now we represent X as quotient V/I' of the complex vector space V by
the discrete subgroup I' = V. If we set V' :=T' ®,C, V' := I ®, R, and if



ON THE TORELLI PROBLEM OF ABELIAN COMPLEX LIE GROUPS 195

W < V' is the maximal complex vector space contained in the real vector
space V', then:

H(X,C) ~ A’((V’);)
AP4(X) = A2(V')e) ®¢ AUWE).

ReMARKs. a) If X = C* x (C*)! x T, where T is a toroidal group, then V'
may be viewed as the complex tangent space at 0 to the subgroup

={0} x(C*)!xT c X,
and V' is the tangent space at O of the maximal compact real subgroup of X.

b) If 0-Z5 X5 Y0 is a pseudo-algebraic structure on X, where
Y = W/A is complex torus, then the universal covering map #:V - W
projects W isomorphically onto W. Thus

n*:H'(Y,C) - H'(X,C) induces an isomorphism
n*: HO"(Y) = A"(Wg)=> HO"(X) = A"(W}).

In particular H®"(X) = (H%)°", where H% is the Hodge structure on
H'(X, Z) induced by the pseudo-algebraic structure on X. Moreover

p
AP P(X) = @ (Hy)» ~°, and
s=0

FP(HT,) (—p Aer-a(x),

5.2. Néron-Severi group.

Again we consider an abelian complex Lie group X.

As usual we denote by NS(X) c H?*(X, Z) the Néron-Severi group, i.e. the
group of Chern classes of holomorphic line bundles on X.

The exact exponential sequence

> H'(X,Z) > H'(X, 0x) > H'(X, 0%) > H*(X,Z) % H*(X, Ox) > -

Pic(X)

induces the following diagram:

HY(X, 03) ——— H*(X,Z)-% H*(X, Ox)

NS(X) = Im(c) = Ker(p).
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Here Im¢p < H*(X, Ox) is already contained in the finite dimensional part
H%2(X) c H3(X, Oy).
Now we provide X with a pseudo-algebraic structure

H} = (H*(X,2), W.(H3), F'(H})).
We consider the commutative diagram:
H*(X,Z) & 2°%(X)

H?*(X,C)

where j is the natural inclusion and $ is induced by ¢. Furthermore the
Hodge structure H% defines the decomposition :

H*(X,C) = (HY)*° @ (HY)™' ® (H3)** ® (HD"' ® (HY"* @ (HY) .

ProrosITION. If X is an abelian complex Lie group, provided with an arbitrary
pseudo-algebraic structure, then

NS(X) = F*(H%) n FY(H3) n H*(X, 2).
Proor. We have
F'(H}) nFY(H}) = (H})*' @ (H}>* ® (HD"' @ (H))'2.
Now
NS(X) = Ker(p: H*(X,Z) - H**(X)),

so the Néron-Severi group consists of those integrally defined cohomology
classes n.€ H*(X, C), such that in the decomposition

N ="Mn0+N2,1+022+M1.1+N1,2+M0,2,
we have 0 = ¢(n) = n,,,. Since 7 is real, i.e. n = #, and since
(H?)*? = (H})*°,

it follows

N2,0=0="102 M1 ="MN12, M, =M1, MN22=MN22-
So NS(X) consists of the integral elements in
(H})>' @ (H})*? @ (H})"' & (H}))"? = F'(H}) nF'(H}).

Remark. If e NS(X) is a Chern class, such that n,, # 0 or 7,, # 0, then
n is not of type (1, 1); a phenomenon which does not occur in the compact
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case. Note that for pseudo-algebraic groups 0 - Z - X — Y — 0, such that
Z =(C*)}4 121, and such that dimcY =1, we have NS(X)= H*(X,2)
(cf. [10]); hence there are Chern classes of holomorphic line bundles, which
are not of type (1, 1). For many further examples we refer to [10].

5.3. Picard group.
Again let X be an abelian complex Lie group. We denote by
Pice(X) = Pic(X) = H (X, 0%)

the subgroup given by holomorphic line bundles, which are determined by
O-factors (cf. [12]), which we call simply theta bundles. Furthermore we
consider the group

Picd(X) : = Picy(X) n Pic®(X)

of topologically trivial theta bundles.

From [12], where it is shown, that every topologically trivial theta bundle
is given by a representation of the fundamental group =,(X), we get the
commutative diagram

= HY(X,2Z)> H'(X, 0x) 22 H'(X, 0%) <> H*(X, Z) -

| ] e |
J

o HY(X, 20 B%Y(X) — Picy(X) - H¥(X,Z)— -

Hence
Picd(X) = Ker(cq: Pics(X) — H*(X,Z))
= Im(exp: A% (X) - Picy(X)) = A*'(X)/j(H (X, 2)).
Now again we endow X with a pseudo-algebraic structure
0-Z5X5Y-0;

then the Hodge structure Hy on H!(X, Z) by this pseudo-algebraic structure
induces the decomposition

H'(X,C) = (HY)"* @ (H)"' & (Hx)*".

In the diagram

H\(X,2)— a1 (x)

| [

H'(X,C) = (Hy)"° ® (H)"' & (HY)*!
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)°:! isomorphically onto A®'(X) and the kernel

the mapping ¢ projects (Hy
of g is (Hx)"° @ (Hy)"".

So
Picd(X) = H>'(X)/j(H" (X, 2))
= H'(X,C)/(Hx)"° @ (HY)"")+j(H" (X, Z))
= (Hx)/(F'(Hx)+H' (X, Z)) = Jac'(H}),

where F'(HY) is the Hodge filtration of the Hodge structure H). Thus we
have proved the following

ProrosiITION. If X is an abelian complex Lie group, endowed with any pseudo-
algebraic structure, then

Picd(X) = Jac' (H}).

REMARK. If X is neither compact nor Stein, the group H'(X, Z) projects to
a subgroup of (Hy)/F'(HY), which is not a discrete subgroup of this
complex vector space. Hence Jac!(HY) does not carry a natural structure of
a Lie group.
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