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STRUCTURE AND DERIVED LENGTH OF FINITE
p-GROUPS POSSESSING AN AUTOMORPHISM OF
p-POWER ORDER HAVING EXACTLY p FIXPOINTS

IAN KIMING

Introduction.

Everywhere in this paper p denotes a prime number.

In [1] Alperin showed that the derived length of a finite p-group
possessing an automorphism of order p having exactly p” fixpoints is bounded
above by a function of the parameters p and n.

The purpose of this paper is to prove the same type of theorem for the
derived length of a finite p-group possessing an automorphism of order p"
having exactly p fixpoints. However, we will restrict ourselves to the case
where p is odd.

A strong motivation for the consideration of this class of finite p-groups
is induced by the fact that the theory of these groups is strongly similar to
certain aspects of the theory of finite p-groups of maximal class. For the
theory of finite p-groups of maximal class the reader may consult [2] or
[4, pp. 361-377].

In section 1 we derive a more useful description of the groups in
question and we show that the theory of these objects is naturally connected
to the theory of finite p-groups of maximal class. We illustrate the ideas in
abelian p-groups.

In section 2 we study p-power- and commutators-structure.

Based on the results of section 2 we prove the main theorems in section 3.
The method leading to the proof of our main theorems does not resemble
Alperin’s method. The former method may be described as a detailed analysis
of commutator- and p-power-structure of the groups in question. The central
method is a development of a method mentioned by Leedham-Green and
McKay in [5] and is of “combinatorial” nature.
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Notation.

The letter E always denotes the neutral element of a given group.
If X and Y are elements of a group we write

X'=Y'XY and [X,Y]=X"'Y 'XY.
Then we have the formulas
[X,YZ] =[X,.Z][X,Y][X,Y,Z] and [XY,Z]=[X,Z][X,Z Y][Y,Z]

([X19"'3Xn+l] = [[Xh---, Xn]’Xn+l])-

If « is an automorphism of a group we write X* for the image of X
under a.

If « is an automorphism of a group ®, and M is an oa-invariant,
normal subgroup of ®, then we write a also for the automorphism induced
by « on G/R.

For a given group, ®, the terms of the lower central series of & are
written 7;(®) for i eN.

If ® is a finite p-group, then w(®) = k means that |6/6*| = p*.

We now define a certain class of finite p-groups which turns out to be
precisely the objects in which we are interested, that is the finite p-groups
possessing an automorphism of p-power order having exactly p fixpoints.

DerFINITION. Suppose that & is a finite p-group. We say that G is
concatenated if and only if ® has

i) a strongly central series
®=®1 gﬁzg...g(ﬁn={E}

(putting ®, = {E} for k 2 n, “strongly central” means that [G;, ®;] < 6,,;
for all i,j),

ii) elements G,e®;, i =1,...,n, and

iii) an automorphism, a,

such that

1) 16;/6;+,|=p,i=1,..,n—1,

2) ©,/®;., is generated by G;®,,,, i = 1,...,n,

3) [G,a] =G;'G!=G;+y mod Gy, i=1,...,n—1.
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In this situation we shall also say that G is a-concatenated. It is easy to
see that a has p-power order whenever « is an automorphism of the finite
p-group ® such that ® is a-concatenated.

If ® is a finite p-group, then the statement “® is a-concatenated” means
that ® possesses an automorphism, a, such that ® is a-concatenated.

Whenever ® is given as an a-concatenated p-group, we shall assume that
a strongly central series ® = &, = %, = ... and elements G, ®; have been
chosen so that conditions 1), 2) and 3) in the definition above are fulfilled ;
the symbols ®; and G; always refer to this choice.

THEOREM 1. Suppose ® is an a-concatenated p-group.
For all ieN, &, is the image of ®; under the mapping

X b XX = [X,«q]

and if &;/®;,, is generated by X®,;,,, then ®;,,/®,,, is generated by
[X,a]6;, ,.

Proor. Suppose that ® has order p"~'. Then [G,_,,2] = E and so
[Gi_,,a] = E for all a. Assume that the enunciations have been proved for
iZ2k+1, where 1 £k< n—1. If Xe®,—6,,,, we write X = G;Y, where
ae{l,...,p—1} and Y € ®,,,. Then,

[X,a] = [G:, a][Gi, a Y][Y,a] whence

[X,a] =[Gy, a]® mod G,,, sinde it is easy to see that
[Gi, a] =[G, @]" mod B, ., fot all r. Thus we deduce
[X,a] =Giiy mod G, ,.

As a consequence we have demonstrated the last enunciation (for i = k) and
that the image of ®, under the mapping X ~ [X,a] is contained in G, .
It follows that the group of fixpoints of « on ® is ®,_,.

Now, for X,Y € G,,

[X,a] =[Y,a] =YX ' = (YX ')« YX '€b,,,

and since ,_,; < ®,, we see that the image of the mapping X  [X,a]
restricted to &, has order

1
6r:6,_ | = ;|@k| = |Gy 44l

Thus this image must be all of G, ;.

THEOREM 2. Let ® be a finite p-group and let a be an automorphism of
p-power order in ®. Then the following statements are equivalent :
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1) ® is a-concatenated.
2) o has exactly p fixpoints on 6.

PrOOF. 1) implies 2): If ® has order p"~! then Theorem 1 implies that o’s
fixpoint group on ® is ®,_, ; but |6,_,| = p.

2) implies 1: We show by induction on |®| that & is a-concatenated.
Of course we may assume that |®| > p.

If 9 is an o-invariant, normal subgroup of ®, it is well-known that a has
at the most p fixpoints on G/MN (XN is a fixpoint if and only if X ' X*eN;
X 'X*=Y 'y*if and only if YX™! is a fixpoint of « on ®). Since the
order of a is a power of p, « must have exactly p fixpoints on G/N.

Let # be the group of fixpoints for a on ®. Since a has p-power order,
Fis contained in the center of ®. From the inductional hypothesis we conclude
that &/ is a-concatenated. Therefore there exists a strongly central series

6/F =6,/F=...26,/F = {E)

and elements G; € ®; such that &,/®;,, has order p,

®,/®;, , is generated by G;®;,, fori =1,...,n—1 and
[G,'.g'-,a]EGi.;ltg" m0d®i+2/xg;, i= 1,...,n—2.

Then
[G,a] = Giyy mod By, fori=1,..,n—2and E # [G,_,a]€ Z.

Putting G, = [G,-,,«], G, generates #. Put ®,,; = {E} for ieN.
Then we only have to show that the series

6=®1;62%...g®n=92(§"+1={E}

is strongly central. Consider the semidirect product $ = G{a). Since the terms
of the series are all o-invariant we get 7,(9) =< ®; for i = 2. Since
[Gy,a,..,a]e®;— 6, if & # {E}, we see that ,(H) = ®; for i = 2. Then

[(5.', (51'] = [7:'(53), 7,'(55)] s ?i+j(55) = (5.'+j
for all i,jeN.

CoroLLARY 1. If ® is a finite, a-concatenated p-group, then the only a-
invariant, normal subgroups of ® are the ®; for i eN.

Proor. Suppose that R is an a-invariant, normal subgroup of ®. Since «
has p-power order, a has exactly p fixpoints on R. Thus «’s fixpoint group
on ® is contained in M. By induction on |G| the statement follows
immediately.
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The next theorem shows that the theory of finite, concatenated p-groups
is connected to certain aspects of the theory of finite p-groups of maximal class.

THEOREM 3. Let ® be a finite p-group.
Then ® is a-concatenated for an automorphism, a, of order p if and only if
® can be imbedded as a maximal subgroup of a finite p-group of maximal class.

Proor. Suppose that ® is a-concatenated, where O(a) = p. Then ® is
imbedded as a maximal subgroup of the semidirect product § = G{a). From
Theorem 1 we see that § has class n—1 if ® has order p"~!. Thus § is a
finite p-group of maximal class.

Suppose § is a finite p-group of maximal class and order p". Let U be
a maximal subgroup of §. We have to show that U is a-concatenated for
some automorphism, o, of order p and may assume that n 2 4.

Put §; = y(9) for i 2 2 and H, = Cg(H2/94). It is well-known that

51 =C$($i/$i+2) for i=2a"'an—3;

this is also true for i =n—2 if p =2 (see [4, p. 362]). Since $ has p+1
maximal subgroups we deduce the existence of a maximal subgroup, U, of $
such that U, is different from U and from

Cq(Di/Di+2) for i=2,..,n=2.

IfU =<U, 9> and U, = (U, H,), then § is generated by U and U, . Suppose
that Se Cg(U;) n U and write § = Uj UbX with X €$,. Then U, commutes
with U®X. Since $ is not abelian, we must have b = 0 (p). Then S = U%Y,
where Y € §,. Since Se U # U; we must have a = 0 (p). Then S € H,. Since

Uy ¢Cq(9i/Di+2) for i=2,..,n-2

we deduce S€9,_., = Z(9).

If « denotes the restriction to U of the inner automorphism induced by U,
then, consequently, o has exactly p fixpoints on M. Then U is a-concatenated
according to Theorem 2. Furthermore,

UPeCy(Uy) N, S Cg(Uy) N U = Z($)
so a has order p.

Now we compute the structure of finite, abelian, concatenated p-groups.
The purpose is to provide some simple examples that will display certain
phenomena occuring quite generally.

THEOREM 4. Let U be a finite, abelian, concatenated p-group.
T hen U has type
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e, ... p**t L p*, ..., p*) forsome peN,s=0,d>s.
s d-s
Proor. Suppose that U is a-concatenated. Let w(U) = p*. Now, U/UP is
a-concatenated so we deduce the existence of elements A,,..., 4,eU and
A € U? such that

AP = AAiy, for i=1,..,d—1, A%=A,A and U =<(A,,...AD.
If we put p4% = 0(4;) we deduce u, =...2py,. Let s=20 and ueN
be determined by the conditions u; =... =y, =pu+1 and p, > p,,; if
U =...=yyweputs=0and u=py,.

If s > 0, then

(Als"'.wl)u = Ag“HIAz‘}fll = AIS"\H
and so p,—u,,.,*=1, since a has exactly p fixpoints on U. Then
Uesy = ... = Uy, since A,,..., A; are independent generators.
THEOREM S. For integers u,s,d with u,deN and d > s 2 0, we consider the
finite, abelian p-group
U(p, u,s,d) = (Z/Zp**' ¥ x (Z/Zp*y'~*

with canonical basis (A, ..., Ay) (so O(A;) = p** ' fori = 1,...,s and O(A;) = p*
Jfor i >s).

For any integers b,,...,b, with b, # 0 (p) we define the endomorphism o in
U(p, u,s,d) by

A;. = Al'Ai+l for i= 1,...,d"‘1 and A:= A“A,

where A = A" ... AP,
Then o is an automorphism of W and U is a-concatenated.

Put A;=[A,,, ...,a] and U; = (Aj|j 2 i) for ieN.
i-1

Then the order of « is determined as follows:
Let u 2 0 be least possible such that d < p*(p—1), (ueZ).

1 d <p(p—1): If du+s S p“, then O(a) is p°, where o is least possible
such that p° 2 du+s.
Otherwise, O(a) = p***, where k 2 1 is least possible such that

du+s—p"

2
ke d
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2°d=p“p—1): Let re{p**',....,du+s) be least possible such that

oo a0 L) ()

pHi—1 A-n Ap"”+leur+l;

if du+s < p**!', we put r = du+s. (Part of the statement is that such an r
exists.)

Then O(a) = p****!, where k Z 0 is least possible such that

du+s—r

2
ke d

Proor. It is easily verified that « is an automorphisms of 1, that a has
exactly p fixpoints and that « has p-power order. So, U is a-concatenated
by Theorem 2.

By an easy inductional argument (on the parameter du+s) we see that, for
all i,

AP = A%, , mod U,;,,,, for some a % O (p).

By induction on k we get

0) G

P = AjAivy .- Ajsg-1A;4, forall i
From this we see that
AV = AjAiype mod W, o,y for alliand all ¢ = u,
since d > p°(p—1) for ¢ < u.
1°. d < p*(p—1): By an easy induction on k = 0 we get
A = A g mod W e
where b(k) # 0 (p). Here we have used the ineqaulity
(1—=k(p—1))d < p** ' —p“.
2°. d = p*(p—1): With the same technique as in 1° we see that
XeWpryy.

Ifr = du+s,then the statement is obviously true so we assume thatdu +s > p**!
and U,,, # {E}. Then we may write

A7 = 4,4, modl,,,
where b # 0 (p). Letting (x—1)""! operate on this congruence we obtain
A7 = 4,48, mod Uy, .y,
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Then using the inequality r + kd < p(r+ (k—1)d)for k = 1 we get by induction
onk =1

art

= b(k)
A = A AT - 1)a mOdQ[i+r+(k—l)d+l

for all i with some b(k) # 0 (p).

ReMARk. In case 1° of Theorem 5 we see that the order of U is bounded
above by a function of p and O(a). This fact is easily seen to imply the
existence of functions, s(x, y) and t(x, y), such that whenever ® is an a-con-
catenated p-group where O(a) = p* then either G, ,, has order less than t(p, k)
or w(®, ) has form p*(p—1).

It is thus clear that the concatenated p-groups, ®, with w(®) of form p“(p — 1)
must play an important role in the study of the derived length of finite, con-
catenated p-groups. In the sequel we shall get another explanation of this fact.

2.

DerinITION. Let G be an a-concatenated p-group. For t 2 0 we say that G
has degree of commutativity t if and only if

[6,6;] < 6;,;,, forallijeN.

In the proof of our main theorem, we shall show that if ® is a finite,
concatenated p-group, then for sufficiently large s, ®, has high degree of
commutativity (in comparison with n if |&,| = p").

In this connection it will be useful to single out a certain class of finite,
concatenated p-groups having “straight” p-power structure.

DeFINITION. Suppose that ® is a finite, a-concatenated p-group with w(®) = d.
We say that ® is straight, if and only if the following conditions are fulfilled :

1) G&f = ®;,, forallieN.
2) Xe®, and Ce®, implies X "?(XC)? = C’* mod G,,,,, for all r;seN.
3) IfG®,,, isa generator of ;/®;, ,, then G’G, . , ., generates ®;, 4/®; . 4. ;.

We now give a criterion for straightness.

THEOREM 6. Let-® be a finite, a-concatenated p-group with w(®) = d.
If ® is regular or has degree of commutativity 2 (d+1)/(p—1)—1, then &
is straight.

Proor. For the theory of finite, regular p-groups the reader is refered to [3]
or [4], pp. 321-335].
Let |G| = p"~!. We prove the theorem by induction on n. Thus we may assume
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that ®, is straight. Put w(®,) = d,. We may assume that & does not have
exponent p.

a) If Xe®, and Ce®,, r <5, then
X P(XC)P =C?P mod 67,6, ..,

If ® is regular then
X"?(XC)? = C? mod y,{X, CH)?

and generally we get, using the Hall-Petrescu formula (see [4, pp. 317-318]),
X"P(XC)P = C? mod y,({X, C))Py,KX, C)).
Now, y,({X, C)) £ ®,,, and if ® has degree of commutativity

d+1
r2 E‘:“l' —1, then y,(KX,C)) = Ot -1y +p-1x =6, 544

b) d; 2 d: We may assume ®,,, = {E} and have to prove % = {E}. Let
Y € ®; for some i 2 2. According to Theorem 1 there exists X € ®,_, such that
[X,a] = Y. Since X?€ G,,, (from now on we will use Corollary 1 without
explicit reference) we have according to a)

E=[X?a]=X"P(X*)F=X"P(X[X,a])’ = [X,0]? = Y’ mod G5,_,Gy;_, ...
Now, ®,;_,,, = {E} and since certainly d, 2d—1, ®5,_, = {E}.

c) &F = ®;,, for all ieN: This is clear from b) and the inductional hypo-
thesis.

d) If Xe®, and Ce®,, r < s, then
X P(XC)y =CP mod ®,, .
This is clear from a) and c).

e) d, = d: We may assume ®,,, > {E}. Choose G € ® such that G’ ¢ 6, ,.
Then

[G? a] = G™?(G[G,a])” = [G,«]” mod G, 3

because ofd). Since [G?, 2] ¢ ®y4 3, [G,a]? ¢ ®,. ;.Since[G, a] € ®,, thisproves
dy Sd.

f) If G®, generates ,/®, and X €  we may write X = G°Y with Y € ®,.
Then

G P°X?=Y?=E mod @,14.2.

Since ? = G, , we must have G? ¢ G, ,. Then G?G, , generates G, /G, ,.
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We shall be needing some information about w(®) in case ® is a con-
catenated p-group and in particular in case ® is a straight, concatenated
p-group. First we need some lemmas.

LemMa 1. Let i e N. Suppose that 6 € {0, ...,2'—1}. Forse{1,...,2' — 1}, we let
Hq. s be the integer determined by the conditions

HestS =0 (2') and pu'sE{O,u_, 2'__1}

(720000

Proor. We may clearly assume i 2 2. Suppose tnats € {1,...,2°— 1} and that
(2/s) is not divisible by 4. Now,

()= ()4 () - o)+ 22) - ()2

so 2!~ !|s whence s = 2~ !, Furthermore, the integer

N ) by

is even for the following reasons: We have

2-1)
(2‘—1)_ g—2i-1) OTI=

[16’21—1 - 2‘-—1 i-1
<0+2,-_1) fore <2

and from the well-known facts concerning the 2-powers dividing n! for neN,

we see that
2i—1
2i-1 1

()

Ho,2t-1

is divisible by exactly the same powers of 2 as is (2'—1/0) (use o < 2'—1).
LEMMA 2. Let F be the free group on free generators X and Y. Let p be a

Then the integer

is divisible by 4.

is odd and that
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prime number and let n be a natural number. Then,
Xryr = (XY)P'CCP...C‘,.,
where Cey,(F Y and Cpey(FY' ' for i =1,...,n. Each C,i has the form
Cy=[1,X, i X ] V‘l:pp"—.-

mod v, ((FP e (FP Ly (F),

where each V, has the form V, = [Y,5,,...,8 ;] with S;e{X, Y} and S, = Y
for at least one k (in each V,). Furthermore, a; = —1 (p) for i = 1,...,n.

Proor. Let ie{l,...,n}. If U,V €y,(F), then the Hall-Petrescu formula
implies

UVP™ = UF Ve mody,(U, VIP" ]f[1 U, VP

From this and from the standard, elementary facts concerning commutators
the result follows immediately from the Hall-Petrescu formula, except for the
fact that g; = —1(p)fori=1,...n.

Consider the abelian p-group

U of type (pn-i+l,“;’ pn—i+l)
4

with basis 4,, ..., Ay and let & be the semidirect product ® = U{a), where a
is the automorphism in U given by

A7=Aj+1,j= 1,...,pi_'l, and A;1=A1.

Then « has order p'. If rseN, re{l,...,p'}, and r = s(p’) we put 4, = 4,.
Then for r = 1,..., p' we have

-1
(+) [4,,a = o] = AS"V"AS:}V"(I )...A,ﬂ,‘_,
o
and
g 2
(++) [0, 0] = 4tV ALD t )...Ai;},?_('f").

p

Thus, y,,,(®) = U”. Using the same argument with A, replaced by A -
we deduce

}’sp'+1((5)§u"' for seN.

Since sp'+1 < p'**~! for s 2 2 except when p = 2 and s = 2, we conclude
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that

n-(+s-1)

(+++) Ppirs-1 (G ={E} fors=2

except possibly when p =2 and s = 2.
If p=2, we use (+) and (+ +) to conclude that

21

[A,, o, ... a]: n A::(;,t:)
2|‘+l_l =0

2[._1 2'—-1 2|' 2l_1
b(r,r)=(~1)'“(2< . )+SD, (s)( He,s ))

pes€{0,..,2°=1} and p,+s = 1(2%).

where

where

Using Lemma 1, we then see that (+ + +) is true also in the case p = 2
and s = 2.
Now we compute

X = (@4, )V = (@407t (@ 4,07 = (A ... AP
Using the results obtained this far we get
E=a”A} = XCp = X[A 0, ..., o]
p-1
4_‘ i
=((A,...A,,.)(A‘,“"’“‘A‘[‘""’(p' )...A,,i)“i)”" ,
which gives a; = —1 (p).

THEOREM 7. Suppose that ® is an a-concatenated p-group of order p"~*,
where O(a) = p*.

If © centralizes 6,/6;,,, for i=1,...,p* and n 2= p“+2, then
o(®)=d < pk-1.

Proor. The element aG, belonging to the semidirect product $ = G{a)
has the property that aG, ¢ Cg(®,/®;,,) for i =2,..., p*. Since (2G, ) € ®,,
we must have

(aG, V' e (USSR

Now assume that d 2 p*. Then 6f < G,,,. From Lemma 2 we deduce
(note that y,(9) = ®, for i 2 2)

E=do"G} = (@G,F'C = C mod Gy, ,
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where C has the form

C=[G,a ..,o] ' [] V> mod CETN

p—1 u
where each V, has the form [G,,X,,...,X,_,], where X e{a G,} and
X, =G, for at least one s (in each V). Since G,eCqx(6,;/®;,,) for
i=2,..,p" we deduce V,e G, for all y. But then

C=[Gya .., a]"' # E mod Gy,

p-1

a contradiction.
CoRrOLLARY 2. Let ® be an a-concatenated p-group where O(a) = p*. Then

®; 4 (1+...+p+-1) IS a straight, a-concatenated p-group.

ProoF. Put s = 1+ (1+ ... + p*!). According to Theorem 7, either ®, has
exponent p or w(®,) £ p*—1. Using Theorem 6 and noting that &, has
degree of commutatitivity s — 1, the statement follows.

THEOREM 8. Let ® be an a-concatenated p-group of order p"~', where
O(a) = p*. Suppose further that ® is straight, that n = p*+2 and that ®
centralizes ®;/®;, , for i =2,...,p~

Then w(®) = p*(p—1) for some ue{0,.. . k—1}.

Proor. We wish to perform certain calculations in the semidirect product
®{a). By the same argument as in the proof of Theorem 7 we see that the
element aG, satisfies

(aGl)ka(ﬁp"+l‘

Put w(®) = d. Assume that the minimum min{p'+ (k—i)d|i = 0, ..., k} is at-
tained for exactly one value of i, say for i = iy €{0,...,k}. Puts = plo+ (k—iy)d.
Let

of G§ = (aG,Y CC,...Cp,
where the C’s have the form given in Lemma 2.
1°. iy = 0: Here we get G! =E mod ®,, , contradiction.

2°. ip > 0: Here we get E = G’l’h = Cpo mod 6,,, and

_pk—io —pko
Cp =[Gy, o «]7""* =Gx”  mod G,
pe—1
and

Gi! " ¢6,.,

contradiction.
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Consequently the minimum min{p‘+ (k—i)d|i =0,...,k} is attained for
two different values of i, say for i = i, and for i = i,. Analysing the function
p*+(k—x)d for 0 £ x < k we deduce |i; —i,| = 1 whence, assuming i, > i,

d=pi(p-1).

Our further investigations will concentrate on the analysis of certain in-
variants that will now be introduced.

DEeFINITION. Suppose that ® is an a-concatanated p-group and that ® has
degree of commutativity t. Then we define the integers a; ; modulo p for
i,jeN thus:

[G.G]] = G‘:‘-'#jj+t mod ®;, ;4.

If G, 4 = E, we put a,-_j =0.

We refer to the a;; as the invariants of & with respect to degree of
commutativity t. (The a; ; depend on the choice of the G; but choosing a
different system of G's merely multiplies all the invariants with a certain
constant incongruent to 0 modulo p.)

THEOREM 9. Let ® be a finite, a-concatenated p-group of order p"~'. Suppose
that ® has degree of commutativity t and let a; ; be the associated invariants.

l) a,-_ja,“,-”ﬂ+aj_ka;.j+,‘+,+a,‘,,-aj’,‘+,-+, = O(P) for l+j+k+2t+l é n.
2) ai’an,-+l,j+a,-,j+l(p) for l+]+t+2§n.
3) IfigeN then for i,j 2 iy

i—io P
=y (-1)3(' s’°>ab,,+,(p) for i+j+t+1 < n.
s=0

4) For reN we have

[(r+1)/2] —5
Aii+r = Z (_l)’ ( 1)a|+: 1, l+s(p) for 2i+r+t+1=n.

s=1
Proor. We shall make use of Witt’s Identity:
(+) [4,B!,C®[B,C ', AT[C, A" ,B]*=E
for elements A4, B, and C in a group.

1) Considering (+) modulo ®;, j,x+2,+1 With A = G;, B= G;, and C = G,
gives us the congruence

‘:}frnu—“n%nnl‘ﬂx Wi = R modulo (ﬁi+1+k+21+1

But if i+j+k+2t+1 = n, then G, ,x+2, ¥ E.
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2) Considering (+) modulo ®;, ;,,+, with A =G, B=a"',and C =G;
gives us the congruence

GRA e+ = E modulo G, ;4.
Butifi+j+t+2 = n, then G, .+, # E.
3) Using 2) this follows easily by induction on i—i..
4) Using 2) this follows easily by induction on r.

The purpose of the introduction of the idea of straight, concatenated
p-groups will be clear from the next theorem.

THEOREM 10. Let G be an a-concatenated p-group of order p"~ '« Suppose that
G is straight with o(®) = d. Let a; ; be ®’s invariants with respect to a given
degree of commutativity t. Then for all i,

i+]+d+l‘+1 é n= (ai‘j = a,~+,,_j(p)).
Proor. If ®;,, > {E}, we have

G? G,H mod ®; ., .1,

where b; # 0(p).

Suppose that ieN and ©;.,,, > {E}. Then Gf, = ([G;,a]Y)? with
Y e®,;,,. Then

[Gi,a] PGPy = Y? mod Gy 344,
SO
Gitiv1 = Gy = [G,,0]? = G (Gi[G,,a])” = [GF.a] =G yry mod Gy yes,

and since G, 4, # E, we deduce b;,, = b;(p).
Then if i+j+d+t+1 < n we get

Gifjtiv = [G.G)] = G7*G[G. 6] =[G, G)]” = Gisjid,
mod ®;+j4asi+1
and a;4y; = a; ().
For straight, concatenated p-groups we have a stronger version of Theorem 9.

THEOREM 11. Let G be a straight, a-concatenated p-group of order p"~!
and with w(®) = p*(p—1). Suppose that ® has degree of commutativity t and
let a; ; be the associated invariants. Suppose that s €N is such that s+t = 0 (p*)
and define a, for r =0,...,u and i,j € Z such that s+ip",s+jp’ 2 1 by

afy = s+ ipf,s+jp'
Put t(r) = (s+t)p~"forr =0,...,u.
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Then for r = 0,...,u, we have the following congruences:
1) allallsjrin+afkal) i +alaflsivin = 0(p)
SJor 3s+2t+(i+j+k)p +1 = n.
2) alu—rpoy=all(p) for +t+@i+j)p +p(p—1)+1=n.
3) aly=all, j+alii(p) for Bs+t+(+j+Dp +L=n
4) IfigeN then for i,j 2 iy and 2s+t+(i+j)p"+1 =n

") — & n(i—io Q)
a;; = Z (—1) h alo_,+h(p)
S) ForveNand 2s+ (Qi+v)p"+t+1=n
[(v+1)/2) —h
a(,'2+v = Z (- l)h ! ( 1)a$+h Li+n(P)

h=1

Proor 1): Using Theorem 9 this follows immediately from the definitions.
2): Using Theorem 10 this follows immediately from the definitions.
3): Let r€{0,...,u} and let i e N. We state that

[Gha"] =G,y mod Gy, .
To see this we write, in accordance with Lemma 2,
o[, G;] = (a[a, G]Y = o [a, G Cpr...C,C
- where, with U = {a, [a, G;]) (a subgroup of the semidirect product G{a)),
Cep,(UWY, Cpeyp(UV™", p=1,..,r,

and

Cy = [Gi,q, = «] ' =Gy mod G, .

Furthermore, since r < u, we have
(5’.-,;1 =6y, and Yw(u)p’_“ = G- S Oy

foru=1,..,r—1.
Now suppose that i,jeZ such that s+ip’, s+jp" 21 and v = 2s+t+
+(i+j+1)p"+1 = n. Then considering Witt’s Identity

[4,B~!,C]*[B,C ", A][C,A"",B]* =E
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modulo ®, with
A = Gs+ip" B = a_p’, and C = Gs+jp’
and noting that G,_; # E the result follows.

4),5): Using 3) these statements follows by easy inductions.

3.

We are now ready to prove the main theorems. First a simple lemma.

LEmMMA 3. Let n, t, and d be natural numbers. Suppose that we are given
integers modulo p, a; ;, defined for i+j+t+1 = n. Suppose further that these
integers satisfies the relations

a.j= —a;;(p) for i+j+t+1<n,

a;; = 0(p) for 2i+t+1 < n,

a;; = @ip1,;+a;j41(p) for i+j+t+2=n and
Aiva; = a;;(p) for i+j+d+t+1 = n.

Then the existence of a natural number s such that 2s+d+t = n and
Ayyus4v+1 = 0(p) for v =0,...,[3d]—1 implies a; ; = O(p) for all i,j.

ProoF. As in the proof of Theorem 9 we see that
r+1)2) r—p ’
(+) QGive = X (_l)v—l<v 1>ai+u—l,i+v(p) if 2itr+t+1=n
v=1 -

and
"_"‘] ._-

(++) a,= Y (—1)v<' v'°)a,.o,,.+,,(p) if itj4t+1Sn and ij2 i
v=0

a) a,,+; = 0(p) for j 2 0 and 25+j+t+1 = n: This is clear from (+).

b) a;;=0(p) for i,j=s and i+j+t+1 < n: This is clear from (+ +)
and a).

c) Suppose that geN and a;; =0(p) if i+j+t+1=n and i,j >s—oa.
Then 2(s—0)+d+t+2 < n and so

As—g,s—0+1 = —As-g+1,5-0+d = O(p)
whence
a,;=0(p) if i+j+t+1=n and ijZs—o.

THEOREM 12. Let p be an odd prime number and let ® be a straight,
concatenated p-group of order p"~ ! and with o(®) = p“(p—1).
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1) Ifn24p**'—2p“+ 1, then ® has degree of commutativity
B(n—4p** ' +2p“+1)].

2) Ifn2Z4p"*' —2p"+1, then ¢(®) < 2p*+! —p“.
3) c(®) = 4prtt—2pt-2.
4) Ifn 2 12p**!' —6p*—10, then c(®) < 3.

u+1

Proor. 1): Assume n = 4p**' —2p“+ 1. Suppose that ® has degree of
commutativity t, where t < $(n—4p“*' +2p“—1). Let a;; be the associated
invariants. We must show that q; ; = 0(p) for all i, .

Letioe{1,..., p“(p—1)} be determined by the condition iy +t = 0(p“(p —1)).
For r =0,...,u and i,jeZ such that iy +ip",io+jp" 2 1, we let a\"} be the
integers (modulo p) introduced in Theorem 11 (with iy = s).

We show by induction on u—r that if re{0,...,u} then a{’} = 0(p) for
all i,j. So we suppose that re{0,...,u} is given and that a{¢) = 0(p) for
all i,j whenever g€ {0,...,u} and ¢ >r. Write a'? for a\?,,, for brevity.
In what follows we shall make use of Theorem 11 and Lemma 3 without
explicit reference.

We have the congruence

(+) afja),j+afkalj i +aliafk.; = 0(p)

when 3ip+2t+(i+j+k)p"+1 = n.

So, we may substitute (i,j,k) = (1,2,2s—1) for 2<s<4(p—1) in (+).
Given se{l,...,3(p—1)} and having proved a¥’ = 0(p) for 2 S ¢ < s this
gives us the congruence s(a?’)?* = 0(p).

So, a” = 0(p) for s = 2,...,3(p—1). This gives us

ag), = af’+2a{ (p),

since 2ig+t+p**t'+1 = n.

If r = u, then a’, = a¥’(p) and we deduce a?’ = 0(p) for s = 1,...,3(p—1)
and so a{) = 0(p) for all i,j.

So we assume that r < u. Then a§’, = af 1V = 0(p). Now, the substitution
(i,j,k) = (0,1,3) in (+) gives

af(a? +af’) = 0(p).

So, if af’ = 0(p) we would deduce a{’ = 0(p). Hence, a{’ = 0(p) and so
af’ = 0(p).

Now we substitute (i, j, k) = (0,1,2s) in (+) for s=1,...,4p* "(p—1)—1.
Given se{l,...,4p* "(p—1)—1} and having a¥ =0(p) for 1 £° < this
gives us the congruence
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25—1)— 1)—(¢s+1
(—l)‘”](( SS_: S>(_1)s<(29+ )S s+ ))(agr))z =0(p).

Hence, a!’ = 0(p) for s = 0,..., 3p* "(p—1)— 1. Note that
2ig+t+p(p "(p—1)-1)+1 = n.

2) Put f(u) =4p**' —2p*—1. If n 2 4p**' —2p*+1 and n is odd, then G
has degree of commutativity 3(n —f (u)). Then

3n— =2
However,
3_”:[_(—11)—:‘_2 1 — u+l __ u
")+ 2 S 1+3(f@)+1) = 1+2p*" —pY),

when n 2 f(u)+2. )
If n24p**!'—2p“+2 and n is even, then we see in a similar way that
(®) = {E} with k = 2p**! —p*+ 1.

3) If n < 4p**!' —2p¥, then c(®) < 4p** ' —2p“—2. Since
4pitt—2ph—2 = 2prtt —p
the statement follows from 2).
4)If n 2 4p**' —2p*+1 and
> 3n—f(u)-3
T on—fu)+1

then ¢(®) < 3. But the second inequality holds for n = 12p**! —6p*—10 and
it is clear that

with f(u) = 4p**' —2p"—1,

12p"* 1 —6p*— 10 = 4p** 1 —2p"+ 1.

CoroOLLARY 3. There exist functions of two variables, u(x, y) and v(x, y), such
that whenever p is an odd prime number, k is a natural number and ® is a
finite p-group possessing an automorphism of order p* having exactly p
fixpoints, then ® possesses a normal subgroup of index less than u(p, k) having
class less than v(p, k).

Thus there exists a function of two variables, f(x,y), such that whenever p
is an odd prime number, k is a natural number and ® is a finite p-group
possessing an automorphism of order p* having exactly p fixpoints, then the
derived length of ® is less than f(p, k).
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Proor. The first statement follows immediately from Theorem 6, Theorem 7,
Theorem 8, and Theorem 12. The second statement follows trivially from
the first.
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