STRUCTURE AND DERIVED LENGTH OF FINITE p-GROUPS POSSESSING AN AUTOMORPHISM OF p-POWER ORDER HAVING EXACTLY p FIXPOINTS

IAN KIMING

Introduction.

Everywhere in this paper p denotes a prime number.

In [1] Alperin showed that the derived length of a finite p-group possessing an automorphism of order p having exactly p^n fixpoints is bounded above by a function of the parameters p and n.

The purpose of this paper is to prove the same type of theorem for the derived length of a finite p-group possessing an automorphism of order p^n having exactly p fixpoints. However, we will restrict ourselves to the case where p is odd.

A strong motivation for the consideration of this class of finite p-groups is induced by the fact that the theory of these groups is strongly similar to certain aspects of the theory of finite p-groups of maximal class. For the theory of finite p-groups of maximal class the reader may consult [2] or [4, pp. 361-377].

In section 1 we derive a more useful description of the groups in question and we show that the theory of these objects is naturally connected to the theory of finite p-groups of maximal class. We illustrate the ideas in abelian p-groups.

In section 2 we study p-power- and commutators-structure.

Based on the results of section 2 we prove the main theorems in section 3. The method leading to the proof of our main theorems does not resemble Alperin's method. The former method may be described as a detailed analysis of commutator- and p-power-structure of the groups in question. The central method is a development of a method mentioned by Leedham-Green and McKay in [5] and is of "combinatorial" nature.

154 ian kiming

Notation.

The letter E always denotes the neutral element of a given group. If X and Y are elements of a group we write

$$X^{Y} = Y^{-1}XY$$
 and $[X, Y] = X^{-1}Y^{-1}XY$.

Then we have the formulas

$$[X, YZ] = [X, Z][X, Y][X, Y, Z]$$
 and $[XY, Z] = [X, Z][X, Z, Y][Y, Z]$
 $([X_1, ..., X_{n+1}] = [[X_1, ..., X_n], X_{n+1}]).$

If α is an automorphism of a group we write X^{α} for the image of X under α .

If α is an automorphism of a group \mathfrak{G} , and \mathfrak{N} is an α -invariant, normal subgroup of \mathfrak{G} , then we write α also for the automorphism induced by α on $\mathfrak{G}/\mathfrak{N}$.

For a given group, \mathfrak{G} , the terms of the lower central series of \mathfrak{G} are written $\gamma_i(\mathfrak{G})$ for $i \in \mathbb{N}$.

If \mathfrak{G} is a finite p-group, then $\omega(\mathfrak{G}) = k$ means that $|\mathfrak{G}/\mathfrak{G}^p| = p^k$.

1.

We now define a certain class of finite p-groups which turns out to be precisely the objects in which we are interested, that is the finite p-groups possessing an automorphism of p-power order having exactly p fixpoints.

DEFINITION. Suppose that G is a finite p-group. We say that G is concatenated if and only if G has

i) a strongly central series

$$\mathfrak{G} = \mathfrak{G}_1 \ge \mathfrak{G}_2 \ge \ldots \ge \mathfrak{G}_n = \{E\}$$

(putting $\mathfrak{G}_k = \{E\}$ for $k \ge n$, "strongly central" means that $[\mathfrak{G}_i, \mathfrak{G}_j] \le \mathfrak{G}_{i+j}$ for all i, j,

- ii) elements $G_i \in \mathfrak{G}_i$, i = 1, ..., n, and
- iii) an automorphism, α,

such that

- 1) $|\mathfrak{G}_i/\mathfrak{G}_{i+1}| = p, i = 1,...,n-1,$
- 2) $\mathfrak{G}_i/\mathfrak{G}_{i+1}$ is generated by $G_i\mathfrak{G}_{i+1}$, i=1,...,n,
- 3) $[G_i, \alpha] = G_i^{-1} G_i^{\alpha} \equiv G_{i+1} \mod \mathfrak{G}_{i+2}, i = 1, ..., n-1.$

In this situation we shall also say that \mathfrak{G} is α -concatenated. It is easy to see that α has p-power order whenever α is an automorphism of the finite p-group \mathfrak{G} such that \mathfrak{G} is α -concatenated.

If \mathfrak{G} is a finite p-group, then the statement " \mathfrak{G} is α -concatenated" means that \mathfrak{G} possesses an automorphism, α , such that \mathfrak{G} is α -concatenated.

Whenever \mathfrak{G} is given as an α -concatenated p-group, we shall assume that a strongly central series $\mathfrak{G} = \mathfrak{G}_1 \geq \mathfrak{G}_2 \geq \ldots$ and elements $G_i \in \mathfrak{G}_i$ have been chosen so that conditions 1), 2) and 3) in the definition above are fulfilled; the symbols \mathfrak{G}_i and G_i always refer to this choice.

THEOREM 1. Suppose \mathfrak{G} is an α -concatenated p-group. For all $i \in \mathbb{N}$, \mathfrak{G}_{i+1} is the image of \mathfrak{G}_i under the mapping

$$X \mapsto X^{-1}X^{\alpha} = [X, \alpha]$$

and if $\mathfrak{G}_i/\mathfrak{G}_{i+1}$ is generated by $X\mathfrak{G}_{i+1}$, then $\mathfrak{G}_{i+1}/\mathfrak{G}_{i+2}$ is generated by $[X,\alpha]\mathfrak{G}_{i+2}$.

PROOF. Suppose that \mathfrak{G} has order p^{n-1} . Then $[G_{n-1}, \alpha] = E$ and so $[G_{n-1}^a, \alpha] = E$ for all a. Assume that the enunciations have been proved for $i \ge k+1$, where $1 \le k < n-1$. If $X \in \mathfrak{G}_k - \mathfrak{G}_{k+1}$, we write $X = G_k^a Y$, where $a \in \{1, ..., p-1\}$ and $Y \in \mathfrak{G}_{k+1}$. Then,

 $[X, \alpha] = [G_k^a, \alpha][G_k^a, \alpha, Y][Y, \alpha]$ whence $[X, \alpha] \equiv [G_k, \alpha]^a \mod \mathfrak{G}_{k+2}$ sinde it is easy to see that $[G_k^r, \alpha] \equiv [G_k, \alpha]^r \mod \mathfrak{G}_{k+2}$ fot all r. Thus we deduce $[X, \alpha] \equiv G_{k+1}^a \mod \mathfrak{G}_{k+2}$.

As a consequence we have demonstrated the last enunciation (for i = k) and that the image of \mathfrak{G}_k under the mapping $X \mapsto [X, \alpha]$ is contained in \mathfrak{G}_{k+1} . It follows that the group of fixpoints of α on \mathfrak{G} is \mathfrak{G}_{n-1} .

Now, for $X, Y \in \mathfrak{G}_k$,

$$[X, \alpha] = [Y, \alpha] \Leftrightarrow YX^{-1} = (YX^{-1})^{\alpha} \Leftrightarrow YX^{-1} \in \mathfrak{G}_{n-1},$$

and since $\mathfrak{G}_{n-1} \leq \mathfrak{G}_k$, we see that the image of the mapping $X \mapsto [X, \alpha]$ restricted to \mathfrak{G}_k has order

$$|\mathfrak{G}_k : \mathfrak{G}_{n-1}| = \frac{1}{p} |\mathfrak{G}_k| = |\mathfrak{G}_{k+1}|.$$

Thus this image must be all of \mathfrak{G}_{k+1} .

THEOREM 2. Let \mathfrak{G} be a finite p-group and let α be an automorphism of p-power order in \mathfrak{G} . Then the following statements are equivalent:

156 ian kiming

- 1) \mathfrak{G} is α -concatenated.
- 2) α has exactly p fixpoints on \mathfrak{G} .

PROOF. 1) implies 2): If \mathfrak{G} has order p^{n-1} then Theorem 1 implies that α 's fixpoint group on \mathfrak{G} is \mathfrak{G}_{n-1} ; but $|\mathfrak{G}_{n-1}| = p$.

2) implies 1: We show by induction on $|\mathfrak{G}|$ that \mathfrak{G} is α -concatenated. Of course we may assume that $|\mathfrak{G}| > p$.

If \mathfrak{N} is an α -invariant, normal subgroup of \mathfrak{G} , it is well-known that α has at the most p fixpoints on $\mathfrak{G}/\mathfrak{N}$ ($X\mathfrak{N}$ is a fixpoint if and only if $X^{-1}X^{\alpha} \in \mathfrak{N}$; $X^{-1}X^{\alpha} = Y^{-1}Y^{\alpha}$ if and only if YX^{-1} is a fixpoint of α on \mathfrak{G}). Since the order of α is a power of p, α must have exactly p fixpoints on $\mathfrak{G}/\mathfrak{N}$.

Let \mathscr{F} be the group of fixpoints for α on \mathfrak{G} . Since α has p-power order, \mathscr{F} is contained in the center of \mathfrak{G} . From the inductional hypothesis we conclude that \mathfrak{G}/\mathscr{F} is α -concatenated. Therefore there exists a strongly central series

$$\mathfrak{G}/\mathscr{F} = \mathfrak{G}_1/\mathscr{F} \ge \ldots \ge \mathfrak{G}_n/\mathscr{F} = \{E\}$$

and elements $G_i \in \mathfrak{G}_i$ such that $\mathfrak{G}_i/\mathfrak{G}_{i+1}$ has order p,

$$\mathfrak{G}_i/\mathfrak{G}_{i+1}$$
 is generated by $G_i\mathfrak{G}_{i+1}$ for $i=1,\ldots,n-1$ and $[G_i\mathscr{F},\alpha]\equiv G_{i+1}\mathscr{F} \mod \mathfrak{G}_{i+2}/\mathscr{F},\ i=1,\ldots,n-2.$

Then

$$[G_i, \alpha] \equiv G_{i+1} \mod \mathfrak{G}_{i+2}$$
 for $i = 1, ..., n-2$ and $E \neq [G_{n-1}, \alpha] \in \mathscr{F}$.

Putting $G_n = [G_{n-1}, \alpha]$, G_n generates \mathscr{F} . Put $\mathfrak{G}_{n+i} = \{E\}$ for $i \in \mathbb{N}$. Then we only have to show that the series

$$\mathfrak{G} = \mathfrak{G}_1 \ge \mathfrak{G}_2 \ge \dots \ge \mathfrak{G}_n = \mathscr{F} \ge \mathfrak{G}_{n+1} = \{E\}$$

is strongly central. Consider the semidirect product $\mathfrak{H} = \mathfrak{G}(\alpha)$. Since the terms of the series are all α -invariant we get $\gamma_i(\mathfrak{H}) \leq \mathfrak{G}_i$ for $i \geq 2$. Since $[G_1, \alpha, ..., \alpha] \in \mathfrak{G}_i - \mathfrak{G}_{i+1}$ if $\mathfrak{G}_i \neq \{E\}$, we see that $\gamma_i(\mathfrak{H}) = \mathfrak{G}_i$ for $i \geq 2$. Then

$$[\mathfrak{G}_i,\mathfrak{G}_j] \leq [\gamma_i(\mathfrak{H}),\gamma_j(\mathfrak{H})] \leq \gamma_{i+j}(\mathfrak{H}) = \mathfrak{G}_{i+j}$$

for all $i, j \in \mathbb{N}$.

Corollary 1. If \mathfrak{G} is a finite, α -concatenated p-group, then the only α -invariant, normal subgroups of \mathfrak{G} are the \mathfrak{G}_i for $i \in \mathbb{N}$.

PROOF. Suppose that \mathfrak{N} is an α -invariant, normal subgroup of \mathfrak{G} . Since α has p-power order, α has exactly p fixpoints on \mathfrak{N} . Thus α 's fixpoint group on \mathfrak{G} is contained in \mathfrak{N} . By induction on $|\mathfrak{G}|$ the statement follows immediately.

The next theorem shows that the theory of finite, concatenated p-groups is connected to certain aspects of the theory of finite p-groups of maximal class.

THEOREM 3. Let 6 be a finite p-group.

Then \mathfrak{G} is α -concatenated for an automorphism, α , of order p if and only if \mathfrak{G} can be imbedded as a maximal subgroup of a finite p-group of maximal class.

PROOF. Suppose that \mathfrak{G} is α -concatenated, where $O(\alpha) = p$. Then \mathfrak{G} is imbedded as a maximal subgroup of the semidirect product $\mathfrak{H} = \mathfrak{G}(\alpha)$. From Theorem 1 we see that \mathfrak{H} has class n-1 if \mathfrak{G} has order p^{n-1} . Thus \mathfrak{H} is a finite p-group of maximal class.

Suppose \mathfrak{H} is a finite p-group of maximal class and order p^n . Let \mathfrak{U} be a maximal subgroup of \mathfrak{H} . We have to show that \mathfrak{U} is α -concatenated for some automorphism, α , of order p and may assume that $n \geq 4$.

Put $\mathfrak{H}_i = \gamma_i(\mathfrak{H})$ for $i \geq 2$ and $\mathfrak{H}_1 = C_{\mathfrak{H}}(\mathfrak{H}_2/\mathfrak{H}_4)$. It is well-known that

$$\mathfrak{H}_1 = C_{\mathfrak{H}}(\mathfrak{H}_i/\mathfrak{H}_{i+2})$$
 for $i = 2, ..., n-3$;

this is also true for i = n-2 if p = 2 (see [4, p. 362]). Since \mathfrak{H} has p+1 maximal subgroups we deduce the existence of a maximal subgroup, \mathfrak{U}_1 , of \mathfrak{H} such that \mathfrak{U}_1 is different from \mathfrak{U} and from

$$C_{\mathfrak{H}}(\mathfrak{H}_i/\mathfrak{H}_{i+2})$$
 for $i=2,...,n-2$.

If $\mathfrak{U}=\langle U,\mathfrak{H}_2\rangle$ and $\mathfrak{U}_1=\langle U_1,\mathfrak{H}_2\rangle$, then \mathfrak{H} is generated by U and U_1 . Suppose that $S\in C_{\mathfrak{H}}(U_1)\cap \mathfrak{U}$ and write $S=U_1^aU^bX$ with $X\in \mathfrak{H}_2$. Then U_1 commutes with U^bX . Since \mathfrak{H} is not abelian, we must have $b\equiv 0$ (p). Then $S=U_1^aY$, where $Y\in \mathfrak{H}_2$. Since $S\in \mathfrak{U}\neq \mathfrak{U}_1$ we must have $a\equiv 0$ (p). Then $S\in \mathfrak{H}_2$. Since

$$U_1 \notin C_{\mathfrak{H}}(\mathfrak{H}_i/\mathfrak{H}_{i+2})$$
 for $i = 2, ..., n-2$

we deduce $S \in \mathfrak{H}_{n-1} = Z(\mathfrak{H})$.

If α denotes the restriction to $\mathfrak U$ of the inner automorphism induced by U_1 , then, consequently, α has exactly p fixpoints on $\mathfrak U$. Then $\mathfrak U$ is α -concatenated according to Theorem 2. Furthermore,

$$U_1^p \in C_{\mathfrak{H}}(U_1) \cap \mathfrak{H}_2 \leqq C_{\mathfrak{H}}(U_1) \cap \mathfrak{U} = Z(\mathfrak{H})$$

so α has order p.

Now we compute the structure of finite, abelian, concatenated p-groups. The purpose is to provide some simple examples that will display certain phenomena occurring quite generally.

Theorem 4. Let $\mathfrak U$ be a finite, abelian, concatenated p-group. Then $\mathfrak U$ has type

$$(p^{\mu+1}, \dots, p^{\mu+1}, p^{\mu}, \dots, p^{\mu})$$
 for some $\mu \in \mathbb{N}, s \ge 0, d > s$.

PROOF. Suppose that $\mathfrak U$ is α -concatenated. Let $\omega(\mathfrak U)=p^d$. Now, $\mathfrak U/\mathfrak U^p$ is α -concatenated so we deduce the existence of elements $A_1,\ldots,A_d\in\mathfrak U$ and $A\in\mathfrak U^p$ such that

$$A_i^{\alpha} = A_i A_{i+1}$$
 for $i = 1, ..., d-1$, $A_d^{\alpha} = A_d A$ and $\mathfrak{U} = \langle A_1, ..., A_d \rangle$.

If we put $p^{\mu_i} = O(A_i)$ we deduce $\mu_1 \ge ... \ge \mu_d$. Let $s \ge 0$ and $\mu \in \mathbb{N}$ be determined by the conditions $\mu_1 = ... = \mu_s = \mu + 1$ and $\mu_s > \mu_{s+1}$; if $\mu_1 = ... = \mu_d$ we put s = 0 and $\mu = \mu_1$.

If s > 0, then

$$(A_s^{p^{\mu_{s+1}}})^{\alpha} = A_s^{p^{\mu_{s+1}}} A_{s+1}^{p^{\mu_{s+1}}} = A_s^{p^{\mu_{s+1}}}$$

and so $\mu_s - \mu_{s+1} = 1$, since α has exactly p fixpoints on \mathfrak{U} . Then $\mu_{s+1} = \ldots = \mu_d$, since A_1, \ldots, A_d are independent generators.

THEOREM 5. For integers μ , s, d with μ , $d \in \mathbb{N}$ and $d > s \ge 0$, we consider the finite, abelian p-group

$$\mathfrak{U}(p, \mu, s, d) = (Z/Zp^{\mu+1})^s \times (Z/Zp^{\mu})^{d-s}$$

with canonical basis $(A_1, ..., A_d)$ (so $O(A_i) = p^{\mu+1}$ for i = 1, ..., s and $O(A_i) = p^{\mu}$ for i > s).

For any integers $b_1, ..., b_d$ with $b_1 \not\equiv 0$ (p) we define the endomorphism α in $\mathfrak{U}(p, \mu, s, d)$ by

$$A_i^{\alpha} = A_i A_{i+1}$$
 for $i = 1, ..., d-1$ and $A_d^{\alpha} = A_d A_i$

where $A = A_1^{pb_1} \dots A_d^{pb_d}$.

Then α is an automorphism of $\mathfrak U$ and $\mathfrak U$ is α -concatenated.

Put
$$A_i = [A_1, \alpha, \dots, \alpha]$$
 and $\mathfrak{U}_i = \langle A_j | j \ge i \rangle$ for $i \in \mathbb{N}$.

Then the order of α is determined as follows:

Let $u \ge 0$ be least possible such that $d \le p^{u}(p-1)$, $(u \in \mathbb{Z})$.

1°. $d < p^{\mu}(p-1)$: If $d\mu + s \le p^{\mu}$, then $O(\alpha)$ is p^{σ} , where σ is least possible such that $p^{\sigma} \ge d\mu + s$.

Otherwise, $O(\alpha) = p^{u+k}$, where $k \ge 1$ is least possible such that

$$k \ge \frac{d\mu + s - p^{\mu}}{d}$$
.

2°. $d = p^{\mu}(p-1)$: Let $r \in \{p^{\mu+1}, ..., d\mu + s\}$ be least possible such that

$$X = A_2^{\binom{p^{r+1}}{1}} \dots A_{p^{u+1}-1}^{\binom{p^{r+1}-2}{p^{u+1}-2}} A_{p^{u+1}}^{\binom{p^{r+1}}{p^{u+1}-1}} A_{p^{u+1}+1} \in \mathfrak{U}_{r+1} ;$$

if $d\mu+s < p^{u+1}$, we put $r = d\mu+s$. (Part of the statement is that such an r exists.)

Then $O(\alpha) = p^{u+k+1}$, where $k \ge 0$ is least possible such that

$$k \ge \frac{d\mu + s - r}{d}.$$

PROOF. It is easily verified that α is an automorphisms of $\mathfrak U$, that α has exactly p fixpoints and that α has p-power order. So, $\mathfrak U$ is α -concatenated by Theorem 2.

By an easy inductional argument (on the parameter $d\mu + s$) we see that, for all i,

$$A_i^p \equiv A_{i+d}^a \mod \mathfrak{U}_{i+d+1}$$
 for some $a \not\equiv 0$ (p).

By induction on k we get

$$A_i^{\alpha^k} = A_i A_{i+1}^{\binom{k}{1}} \dots A_{i+k-1}^{\binom{k}{k-1}} A_{i+k} \quad \text{for all } i.$$

From this we see that

$$A_i^{\alpha p^{\sigma}} \equiv A_i A_{i+p^{\sigma}} \mod \mathfrak{U}_{i+p^{\sigma}+1}$$
 for all i and all $\sigma \leq u$,

since $d > p^{\sigma}(p-1)$ for $\sigma < u$.

1°. $d < p^{u}(p-1)$: By an easy induction on $k \ge 0$ we get

$$A_i^{\alpha p^{n+1}} \equiv A_i A_{i+p^n+kd}^{b(k)} \mod \mathfrak{U}_{i+p^n+kd+1}$$

where $b(k) \not\equiv 0$ (p). Here we have used the inequality

$$(1-k(p-1))d < p^{u+1}-p^u$$
.

2°. $d = p^{u}(p-1)$: With the same technique as in 1° we see that

$$X \in \mathfrak{U}_{n^{n+1}+1}$$
.

If $r = d\mu + s$, then the statement is obviously true so we assume that $d\mu + s > p^{u+1}$ and $\mathfrak{U}_{r+1} \neq \{E\}$. Then we may write

$$A_1^{a^{p^{n+1}}} \equiv A_1 A_{n+1}^b \mod \mathfrak{U}_{n+2}$$

where $b \not\equiv 0$ (p). Letting $(\alpha - 1)^{i-1}$ operate on this congruence we obtain

$$A_i^{\alpha p^{n+1}} \equiv A_i A_{i+r}^b \mod \mathfrak{U}_{i+r+1}.$$

Then using the inequality r + kd < p(r + (k-1)d) for $k \ge 1$ we get by induction on $k \ge 1$

$$A_i^{\alpha p^{s+1}} \equiv A_i A_{i+r+(k-1)d}^{b(k)} \mod \mathfrak{U}_{i+r+(k-1)d+1}$$

for all i with some $b(k) \not\equiv 0$ (p).

REMARK. In case 1° of Theorem 5 we see that the order of $\mathfrak U$ is bounded above by a function of p and $O(\alpha)$. This fact is easily seen to imply the existence of functions, s(x, y) and t(x, y), such that whenever $\mathfrak G$ is an α -concatenated p-group where $O(\alpha) = p^k$ then either $\mathfrak G_{s(p,k)}$ has order less than t(p,k) or $\omega(\mathfrak G_{s(p,k)})$ has form $p^u(p-1)$.

It is thus clear that the concatenated p-groups, \mathfrak{G} , with $\omega(\mathfrak{G})$ of form $p^{u}(p-1)$ must play an important role in the study of the derived length of finite, concatenated p-groups. In the sequel we shall get another explanation of this fact.

2.

Definition. Let \mathfrak{G} be an α -concatenated p-group. For $t \ge 0$ we say that \mathfrak{G} has degree of commutativity t if and only if

$$[\mathfrak{G}_i, \mathfrak{G}_i] \leq \mathfrak{G}_{i+j+t}$$
 for all $i, j \in \mathbb{N}$.

In the proof of our main theorem, we shall show that if \mathfrak{G} is a finite, concatenated p-group, then for sufficiently large s, \mathfrak{G}_s has high degree of commutativity (in comparison with n if $|\mathfrak{G}_s| = p^n$).

In this connection it will be useful to single out a certain class of finite, concatenated p-groups having "straight" p-power structure.

Definition. Suppose that \mathfrak{G} is a finite, α -concatenated p-group with $\omega(\mathfrak{G}) = d$. We say that \mathfrak{G} is *straight*, if and only if the following conditions are fulfilled:

- 1) $\mathfrak{G}_i^p = \mathfrak{G}_{i+d}$ for all $i \in \mathbb{N}$.
- 2) $X \in \mathfrak{G}_r$ and $C \in \mathfrak{G}_s$ implies $X^{-p}(XC)^p \equiv C^p \mod \mathfrak{G}_{r+s+d}$ for all $r,s \in \mathbb{N}$.
- 3) If $G\mathfrak{G}_{i+1}$ is a generator of $\mathfrak{G}_i/\mathfrak{G}_{i+1}$, then $G^p\mathfrak{G}_{i+d+1}$ generates $\mathfrak{G}_{i+d}/\mathfrak{G}_{i+d+1}$.

We now give a criterion for straightness.

THEOREM 6. Let \cdot 6 be a finite, α -concatenated p-group with ω (6) = d. If 6 is regular or has degree of commutativity $\geq (d+1)/(p-1)-1$, then 6 is straight.

PROOF. For the theory of finite, regular p-groups the reader is referred to [3] or [4], pp. 321-335].

Let $|\mathfrak{G}| = p^{n-1}$. We prove the theorem by induction on n. Thus we may assume

that \mathfrak{G}_2 is straight. Put $\omega(\mathfrak{G}_2) = d_1$. We may assume that \mathfrak{G} does not have exponent p.

a) If $X \in \mathfrak{G}_r$, and $C \in \mathfrak{G}_s$, $r \leq s$, then

$$X^{-p}(XC)^p \equiv C^p \mod \mathfrak{G}_{r+s}^p \mathfrak{G}_{r+s+d}$$

If 6 is regular then

$$X^{-p}(XC)^p \equiv C^p \mod \gamma_2(\langle X, C \rangle)^p$$

and generally we get, using the Hall-Petrescu formula (see [4, pp. 317-318]),

$$X^{-p}(XC)^p \equiv C^p \mod \gamma_2(\langle X, C \rangle)^p \gamma_p(\langle X, C \rangle).$$

Now, $\gamma_2(\langle X, C \rangle) \leq \mathfrak{G}_{r+s}$ and if \mathfrak{G} has degree of commutativity

$$t \ge \frac{d+1}{p-1} - 1$$
, then $\gamma_p(\langle X, C \rangle) \le \mathfrak{G}_{s+(p-1)r+(p-1)t} \le \mathfrak{G}_{r+s+d}$.

b) $d_1 \ge d$: We may assume $\mathfrak{G}_{d+2} = \{E\}$ and have to prove $\mathfrak{G}_2^r = \{E\}$. Let $Y \in \mathfrak{G}_i$ for some $i \ge 2$. According to Theorem 1 there exists $X \in \mathfrak{G}_{i-1}$ such that $[X, \alpha] = Y$. Since $X^p \in \mathfrak{G}_{d+1}$ (from now on we will use Corollary 1 without explicit reference) we have according to a)

$$E = [X^{p}, \alpha] = X^{-p}(X^{\alpha})^{p} = X^{-p}(X[X, \alpha])^{p} \equiv [X, \alpha]^{p} = Y^{p} \mod \mathfrak{G}_{2i-1}^{p} \mathfrak{G}_{2i-1+d}.$$

Now, $\mathfrak{G}_{2i-1+d} = \{E\}$ and since certainly $d_1 \ge d-1$, $\mathfrak{G}_{2i-1}^p = \{E\}$.

- c) $\mathfrak{G}_i^p \leq \mathfrak{G}_{i+d}$ for all $i \in \mathbb{N}$: This is clear from b) and the inductional hypothesis.
 - d) If $X \in \mathfrak{G}_r$ and $C \in \mathfrak{G}_s$, $r \leq s$, then

$$X^{-p}(XC)^p \equiv C^p \mod \mathfrak{G}_{r+s+d}.$$

This is clear from a) and c).

e) $d_1 = d$: We may assume $\mathfrak{G}_{d+2} > \{E\}$. Choose $G \in \mathfrak{G}$ such that $G^p \notin \mathfrak{G}_{d+2}$. Then

$$[G^p, \alpha] = G^{-p}(G[G, \alpha])^p \equiv [G, \alpha]^p \mod \mathfrak{G}_{d+3}$$

because of d). Since $[G^p, \alpha] \notin \mathfrak{G}_{d+3}$, $[G, \alpha]^p \notin \mathfrak{G}_{d+3}$. Since $[G, \alpha] \in \mathfrak{G}_2$, this proves $d_1 \leq d$.

f) If $G\mathfrak{G}_2$ generates $\mathfrak{G}_1/\mathfrak{G}_2$ and $X \in \mathfrak{G}$ we may write $X = G^a Y$ with $Y \in \mathfrak{G}_2$. Then

$$G^{-pa}X^p \equiv Y^p \equiv E \mod \mathfrak{G}_{d+2}$$
.

Since $\mathfrak{G}^p = \mathfrak{G}_{d+1}$ we must have $G^p \notin \mathfrak{G}_{d+2}$. Then $G^p \mathfrak{G}_{d+2}$ generates $\mathfrak{G}_{d+1}/\mathfrak{G}_{d+2}$.

We shall be needing some information about $\omega(\mathfrak{G})$ in case \mathfrak{G} is a concatenated p-group and in particular in case \mathfrak{G} is a straight, concatenated p-group. First we need some lemmas.

LEMMA 1. Let $i \in \mathbb{N}$. Suppose that $\sigma \in \{0, ..., 2^i - 1\}$. For $s \in \{1, ..., 2^i - 1\}$, we let $\mu_{\sigma,s}$ be the integer determined by the conditions

$$\mu_{\sigma,s}+s \equiv \sigma(2^i)$$
 and $\mu_{\sigma,s} \in \{0,\ldots,2^i-1\}.$

Then the integer

$$2\binom{2^{i}-1}{\sigma} + \sum_{s=1}^{2^{i}-1} \binom{2^{i}}{s} \binom{2^{i}-1}{\mu_{\sigma,s}}$$

is divisible by 4.

PROOF. We may clearly assume $i \ge 2$. Suppose that $s \in \{1, ..., 2^i - 1\}$ and that $(2^i/s)$ is not divisible by 4. Now,

$$\binom{2^{i}}{s} = \binom{2^{i}-1}{s} + \binom{2^{i}-1}{s-1} = \binom{2^{i}-1}{s-1} \binom{1+\frac{2^{i}-s}{s}}{s} = \binom{2^{i}-1}{s-1} \frac{2^{i}}{s},$$

so $2^{i-1}|s$ whence $s=2^{i-1}$. Furthermore, the integer

$$\binom{2^{i}-1}{\sigma} + \binom{2^{i}-1}{2^{i-1}-1} \binom{2^{i}-1}{\mu_{\sigma,2^{i-1}}}$$

is even for the following reasons: We have

$$\binom{2^{i}-1}{\mu_{\sigma,2^{i-1}}} = \begin{cases} \binom{2^{i}-1}{\sigma-2^{i-1}} & \text{for } \sigma \geq 2^{i-1} \\ \binom{2^{i}-1}{\sigma+2^{i-1}} & \text{for } \sigma < 2^{i-1} \end{cases}$$

and from the well-known facts concerning the 2-powers dividing n! for $n \in \mathbb{N}$, we see that

$$\binom{2^i-1}{2^{i-1}-1}$$

is odd and that

$$\binom{2^{i}-1}{\mu_{\sigma,2^{i-1}}}$$

is divisible by exactly the same powers of 2 as is $(2^i - 1/\sigma)$ (use $\sigma \le 2^i - 1$). Lemma 2. Let \mathscr{F} be the free group on free generators X and Y. Let p be a prime number and let n be a natural number. Then,

$$X^{p^n}Y^{p^n}=(XY)^{p^n}CC_p\ldots C_{p^n},$$

where $C \in \gamma_2(\mathcal{F})^{p^n}$ and $C_{p^i} \in \gamma_{p^i}(\mathcal{F})^{p^{n-i}}$ for i = 1, ..., n. Each C_{p^i} has the form

$$C_{p^i} \equiv [Y, X, ..., X]^{a_i p^{n-i}} \prod V_{\mu}^{b_{\mu} p^{n-i}}$$

$$\operatorname{mod} \gamma_{p^{i}+1}(\mathscr{F})^{p^{n-i}}\gamma_{p^{i+1}}(\mathscr{F})^{p^{n-i-1}}\ldots\gamma_{p^{n}}(\mathscr{F}),$$

where each V_{μ} has the form $V_{\mu} = [Y, S_1, ..., S_{p^i-1}]$ with $S_k \in \{X, Y\}$ and $S_k = Y$ for at least one k (in each V_{μ}). Furthermore, $a_i \equiv -1$ (p) for i = 1, ..., n.

PROOF. Let $i \in \{1, ..., n\}$. If $U, V \in \gamma_{p^i}(\mathscr{F})$, then the Hall-Petrescu formula implies

$$(UV)^{p^{n-i}} \equiv U^{p^{n-i}}V^{p^{n-i}} \bmod \gamma_2(\langle U, V \rangle)^{p^{n-i}} \prod_{\mu=1}^{n-i} \gamma_{p^{\mu}}(\langle U, V \rangle)^{p^{n-i-\mu}}.$$

From this and from the standard, elementary facts concerning commutators the result follows immediately from the Hall-Petrescu formula, except for the fact that $a_i \equiv -1$ (p) for i = 1, ..., n.

Consider the abelian p-group

$$\mathfrak{U}$$
 of type $(p^{n-i+1}, ..., p^{n-i+1})$

with basis $A_1, ..., A_{p'}$ and let \mathfrak{G} be the semidirect product $\mathfrak{G} = \mathfrak{U}(\alpha)$, where α is the automorphism in \mathfrak{U} given by

$$A_i^{\alpha} = A_{i+1}, j = 1, ..., p^i - 1, \text{ and } A_{p^i}^{\alpha} = A_1.$$

Then α has order p^i . If $r,s \in \mathbb{N}$, $r \in \{1,...,p^i\}$, and $r \equiv s(p^i)$ we put $A_s = A_r$. Then for $r = 1,...,p^i$ we have

(+)
$$[A_r, \alpha, \ldots, \alpha] = A_r^{(-1)^{p'-1}} A_{r+1}^{(-1)^{p'-2}} {r \choose 1}^{p'-1} \ldots A_{r+p'-1}$$

and

$$[A_r, \alpha, ..., \alpha] = A_r^{1+(-1)p'} A_{r+1}^{(-1)p'-1} {p' \choose 1} ... A_{r+p'-1}^{(-1)} {p' \choose r'-1}.$$

Thus, $\gamma_{p^i+1}(\mathfrak{G}) \leq \mathfrak{U}^p$. Using the same argument with A_r replaced by $A_r^{p^{i-1}}$ we deduce

$$\gamma_{sp^i+1}(\mathfrak{G}) \leq \mathfrak{U}^{p^s}$$
 for $s \in \mathbb{N}$.

Since $sp^i+1 \le p^{i+s-1}$ for $s \ge 2$ except when p=2 and s=2, we conclude

that

$$(+++) \gamma_{n^{i+s-1}}(\mathfrak{G})^{p^{n-(i+s-1)}} = \{E\} \text{for } s \ge 2$$

except possibly when p = 2 and s = 2.

If p = 2, we use (+) and (++) to conclude that

$$[A_r, \alpha, \dots, \alpha] = \prod_{\tau=0}^{2^{i-1}} A_{r+\tau}^{b(r,\tau)}$$

where

$$b(r,\tau) = (-1)^{\tau+1} \left(2 \binom{2^{i}-1}{\tau} + \prod_{s=1}^{2^{i}-1} \binom{2^{i}}{s} \binom{2^{i}-1}{\mu_{\tau,s}} \right)$$

where

$$\mu_{\tau,s} \in \{0, ..., 2^i - 1\}$$
 and $\mu_{\tau,s} + s \equiv \tau(2^i)$.

Using Lemma 1, we then see that (+++) is true also in the case p=2 and s=2.

Now we compute

$$X = (\alpha A_1)^{p^n} = (\alpha A_1 \alpha^{-1}) \dots (\alpha^{p^n} A_1 \alpha^{-p^n}) \alpha^{p^n} = (A_1 \dots A_{p^i})^{p^{n-i}}.$$

Using the results obtained this far we get

$$E = \alpha^{p^{n}} A_{1}^{p^{n}} = X C_{p^{i}} = X [A_{1}, \alpha, ..., \alpha]^{a_{i}p^{n-i}}$$

$$= ((A_{1} ... A_{p^{i}})(A_{1}^{(-1)p^{i-1}} A_{2}^{(-1)p^{i-2}} {p^{i-1} \choose 1} ... A_{p^{i}})^{a_{i}})^{p^{n-i}},$$

which gives $a_i \equiv -1$ (p).

Theorem 7. Suppose that \mathfrak{G} is an α -concatenated p-group of order p^{n-1} , where $O(\alpha) = p^k$.

If \mathfrak{G} centralizes $\mathfrak{G}_i/\mathfrak{G}_{i+2}$ for $i=1,...,p^k$ and $n \ge p^k+2$, then $\omega(\mathfrak{G})=d \le p^k-1$.

PROOF. The element αG_1 belonging to the semidirect product $\mathfrak{H} = \mathfrak{G}\langle \alpha \rangle$ has the property that $\alpha G_1 \notin C_{\mathfrak{H}}(\mathfrak{G}_i/\mathfrak{G}_{i+2})$ for $i=2,...,p^k$. Since $(\alpha G_1)^{p^k} \in \mathfrak{G}_2$, we must have

$$(\alpha G_1)^{p^k} \in \mathfrak{G}_{p^k+1}.$$

Now assume that $d \ge p^k$. Then $\mathfrak{G}_1^p \le \mathfrak{G}_{p^k+1}$. From Lemma 2 we deduce (note that $\gamma_i(\mathfrak{H}) = \mathfrak{G}_i$ for $i \ge 2$)

$$E \equiv \alpha^{p^k} G_1^{p^k} \equiv (\alpha G_1)^{p^k} C \equiv C \mod \mathfrak{G}_{p^k+1},$$

where C has the form

$$C \equiv [G_1, \alpha, \dots, \alpha]^{-1} \prod_{\mu} V_{\mu}^{b_{\mu}} \mod \mathfrak{G}_{p^k+1},$$

where each V_{μ} has the form $[G_1, X_1, ..., X_{p^k-1}]$, where $X_s \in \{\alpha, G_1\}$ and $X_s = G_1$ for at least one s (in each V_{μ}). Since $G_1 \in C_{\mathfrak{H}}(\mathfrak{G}_i/\mathfrak{G}_{i+2})$ for $i = 2, ..., p^k$, we deduce $V_{\mu} \in \mathfrak{G}_{p^k+1}$ for all μ . But then

$$C \equiv [G_1, \alpha, \dots, \alpha]^{-1} \not\equiv E \mod \mathfrak{G}_{p^k+1}$$

a contradiction.

COROLLARY 2. Let \mathfrak{G} be an α -concatenated p-group where $O(\alpha) = p^k$. Then $\mathfrak{G}_{1+(1+\ldots+p^{k-1})}$ is a straight, α -concatenated p-group.

PROOF. Put $s = 1 + (1 + ... + p^{k-1})$. According to Theorem 7, either \mathfrak{G}_s has exponent p or $\omega(\mathfrak{G}_s) \leq p^k - 1$. Using Theorem 6 and noting that \mathfrak{G}_s has degree of commutativity s - 1, the statement follows.

THEOREM 8. Let \mathfrak{G} be an α -concatenated p-group of order p^{n-1} , where $O(\alpha) = p^k$. Suppose further that \mathfrak{G} is straight, that $n \ge p^k + 2$ and that \mathfrak{G} centralizes $\mathfrak{G}_i/\mathfrak{G}_{i+2}$ for $i = 2, ..., p^k$.

Then
$$\omega(\mathfrak{G}) = p^{u}(p-1)$$
 for some $u \in \{0, ..., k-1\}$.

PROOF. We wish to perform certain calculations in the semidirect product $\mathfrak{G}(\alpha)$. By the same argument as in the proof of Theorem 7 we see that the element αG_1 satisfies

$$(\alpha G_1)^{p^k} \in \mathfrak{G}_{p^k+1}$$
.

Put $\omega(\mathfrak{G}) = d$. Assume that the minimum $\min\{p^i + (k-i)d | i = 0, ..., k\}$ is attained for exactly one value of i, say for $i = i_0 \in \{0, ..., k\}$. Put $s = p^{i_0} + (k-i_0)d$. Let

$$\alpha^{p^k}G_1^{p^k}=(\alpha G_1)^{p^k}CC_p\ldots C_{p^k},$$

where the C's have the form given in Lemma 2.

1°. $i_0 = 0$: Here we get $G_1^{p^k} \equiv E \mod \mathfrak{G}_{s+1}$ contradiction.

2°. $i_0 > 0$: Here we get $E \equiv G_1^{p^k} \equiv C_{n^{i_0}} \mod \mathfrak{G}_{s+1}$ and

$$C_{p^{i_0}} \equiv [G_1, \alpha, \dots, \alpha]^{-p^{k-i_0}} \equiv G_{p^{i_0}}^{-p^{k-i_0}} \mod \mathfrak{G}_{s+1}$$

and

$$G_{p^{k}}^{-p^{k-k}} \notin \mathfrak{G}_{s+1}$$

contradiction.

Consequently the minimum $\min\{p^i + (k-i)d|i = 0, ..., k\}$ is attained for two different values of i, say for $i = i_1$ and for $i = i_2$. Analysing the function $p^x + (k-x)d$ for $0 \le x \le k$ we deduce $|i_1 - i_2| = 1$ whence, assuming $i_2 > i_1$, $d = p^{i_1}(p-1)$.

Our further investigations will concentrate on the analysis of certain invariants that will now be introduced.

DEFINITION. Suppose that \mathfrak{G} is an α -concatanated p-group and that \mathfrak{G} has degree of commutativity t. Then we define the integers $a_{i,j}$ modulo p for $i,j \in \mathbb{N}$ thus:

$$[G_i, G_i] \equiv G_{i+j+t}^{a_{i,j}} \mod \mathfrak{G}_{i+j+t+1}.$$

If $G_{i+j+t} = E$, we put $a_{i,j} = 0$.

We refer to the $a_{i,j}$ as the invariants of \mathfrak{G} with respect to degree of commutativity t. (The $a_{i,j}$ depend on the choice of the G_i but choosing a different system of \mathfrak{G}_i 's merely multiplies all the invariants with a certain constant incongruent to 0 modulo p.)

THEOREM 9. Let \mathfrak{G} be a finite, α -concatenated p-group of order p^{n-1} . Suppose that \mathfrak{G} has degree of commutativity t and let $a_{i,j}$ be the associated invariants.

- 1) $a_{i,i}a_{k,i+j+t} + a_{i,k}a_{i,i+k+t} + a_{k,i}a_{i,k+j+t} \equiv 0(p)$ for $i+j+k+2t+1 \le n$.
- 2) $a_{i,j} \equiv a_{i+1,j} + a_{i,j+1}(p)$ for $i+j+t+2 \le n$.
- 3) If $i_0 \in \mathbb{N}$ then for $i, j \ge i_0$

$$a_{i,j} \equiv \sum_{s=0}^{i-i_0} (-1)^s {i-i_0 \choose s} a_{i_0,j+s}(p)$$
 for $i+j+t+1 \le n$.

4) For $r \in \mathbb{N}$ we have

$$a_{i,i+r} \equiv \sum_{s=1}^{\lfloor (r+1)/2 \rfloor} (-1)^{s-1} {r-s \choose s-1} a_{i+s-1,i+s}(p) \quad \text{for } 2i+r+t+1 \le n.$$

PROOF. We shall make use of Witt's Identity:

$$[A, B^{-1}, C]^{B}[B, C^{-1}, A]^{C}[C, A^{-1}, B]^{A} = E$$

for elements A, B, and C in a group.

1) Considering (+) modulo $\mathfrak{G}_{i+j+k+2i+1}$ with $A = G_i$, $B = G_j$, and $C = G_k$ gives us the congruence

$$G_{i+j+k+2t}^{-a_{i,l}a_{j+i+t,k}-a_{j,k}a_{j+k+t,i}-a_{k,i}a_{k+i+t,j}} \equiv E \text{ modulo } \mathfrak{G}_{i+j+k+2t+1}.$$

But if $i+j+k+2t+1 \le n$, then $G_{i+j+k+2t} \ne E$.

2) Considering (+) modulo $\mathfrak{G}_{i+j+t+2}$ with $A = G_i$, $B = \alpha^{-1}$, and $C = G_j$ gives us the congruence

$$G_{i+j+t+1}^{-a_{i,j}+a_{i+1,j}+a_{i,j+1}} \equiv E \mod \mathfrak{G}_{i+j+t+2}.$$

But if $i+j+t+2 \le n$, then $G_{i+j+t+1} \ne E$.

- 3) Using 2) this follows easily by induction on $i-i_0$.
- 4) Using 2) this follows easily by induction on r.

The purpose of the introduction of the idea of straight, concatenated p-groups will be clear from the next theorem.

THEOREM 10. Let \mathfrak{G} be an α -concatenated p-group of order p^{n-1} . Suppose that \mathfrak{G} is straight with $\omega(\mathfrak{G}) = d$. Let $a_{i,j}$ be \mathfrak{G} 's invariants with respect to a given degree of commutativity t. Then for all i,j

$$i+j+d+t+1 \le n \Rightarrow (a_{i,j} \equiv a_{i+d,j}(p)).$$

PROOF. If $\mathfrak{G}_{i+d} > \{E\}$, we have

$$G_i^p \equiv G_{i+d}^{b_i} \mod \mathfrak{G}_{i+d+1}$$

where $b_i \not\equiv 0(p)$.

Suppose that $i \in \mathbb{N}$ and $\mathfrak{G}_{i+d+1} > \{E\}$. Then $G_{i+1}^p = ([G_i, \alpha]Y)^p$ with $Y \in \mathfrak{G}_{i+2}$. Then

$$[G_i, \alpha]^{-p} G_{i+1}^p \equiv Y^p \mod \mathfrak{G}_{2i+3+d},$$

so

$$G_{i+d+1}^{b_{i+1}} \equiv G_{i+1}^p \equiv [G_i, \alpha]^p \equiv G_i^{-p} (G_i[G_i, \alpha])^p \equiv [G_i^p, \alpha] \equiv G_{i+d+1}^{b_i} \mod \mathfrak{G}_{i+d+2},$$

and since $G_{i+d+1} \neq E$, we deduce $b_{i+1} \equiv b_i(p)$.

Then if $i+j+d+t+1 \le n$ we get

$$G_{i+j+d+t}^{b,a_{i+d,j}} \equiv [G_i^p, G_j] = G_i^{-p} (G_i[G_i, G_j])^p \equiv [G_i, G_j]^p \equiv G_{i+j+d+t}^{b_{i+j+d,j}}$$

$$\mod \mathfrak{G}_{i+j+d+t+1}$$

and $a_{i+d,j} \equiv a_{i,j}(p)$.

For straight, concatenated p-groups we have a stronger version of Theorem 9.

THEOREM 11. Let $\mathfrak G$ be a straight, α -concatenated p-group of order p^{n-1} and with $\omega(\mathfrak G)=p^u(p-1)$. Suppose that $\mathfrak G$ has degree of commutativity t and let $a_{i,j}$ be the associated invariants. Suppose that $s\in \mathbb N$ is such that $s+t\equiv 0$ (p^u) and define $a_{i,j}^{(r)}$ for $r=0,\ldots,u$ and $i,j\in \mathbb Z$ such that $s+ip^r,s+jp^r\geq 1$ by

$$a_{i,j}^{(r)}=a_{s+ip^r,s+jp^r}.$$

Put
$$t(r) = (s+t)p^{-r}$$
 for $r = 0, ..., u$.

Then for r = 0, ..., u, we have the following congruences:

1)
$$a_{i,j}^{(r)} a_{k,i+j+t(r)}^{(r)} + a_{j,k}^{(r)} a_{i,j+k+t(r)}^{(r)} + a_{k,i}^{(r)} a_{j,k+i+t(r)}^{(r)} \equiv 0(p)$$

for $3s + 2t + (i+j+k)p^r + 1 \le n$.

2)
$$a_{i,j+p}^{(r)}u-r_{(p-1)}\equiv a_{i,j}^{(r)}(p)$$
 for $2s+t+(i+j)p^r+p^u(p-1)+1\leq n$.

3)
$$a_{i,j}^{(r)} \equiv a_{i+1,j}^{(r)} + a_{i,j+1}^{(r)}(p)$$
 for $2s + t + (i+j+1)p^r + 1 \le n$.

4) If $i_0 \in \mathbb{N}$ then for $i, j \ge i_0$ and $2s + t + (i + j)p^r + 1 \le n$

$$a_{i,j}^{(r)} \equiv \sum_{h=0}^{i-i_0} (-1)^h \binom{i-i_0}{h} a_{i_0,j+h}^{(r)}(p).$$

5) For $v \in \mathbb{N}$ and $2s + (2i + v)p^r + t + 1 \le n$

$$a_{i,i+v}^{(r)} \equiv \sum_{h=1}^{[(v+1)/2]} (-1)^{h-1} {v-h \choose h-1} a_{i+h-1,i+h}^{(r)}(p).$$

PROOF 1): Using Theorem 9 this follows immediately from the definitions.

- 2): Using Theorem 10 this follows immediately from the definitions.
- 3): Let $r \in \{0, ..., u\}$ and let $i \in \mathbb{N}$. We state that

$$[G_i, \alpha^{p^r}] \equiv G_{i+p^r} \mod \mathfrak{G}_{i+p^r+1}.$$

To see this we write, in accordance with Lemma 2,

$$\alpha^{p'}[\alpha^{p'}, G_i] = (\alpha[\alpha, G_i])^{p'} = \alpha^{p'}[\alpha, G_i]^{p'}C_{p'}\dots C_pC$$

where, with $\mathfrak{U} = \langle \alpha, [\alpha, G_i] \rangle$ (a subgroup of the semidirect product $\mathfrak{G}(\alpha)$),

$$C \in \gamma_2(\mathfrak{U})^{p^r}, C_{p^\mu} \in \gamma_{p^\mu}(\mathfrak{U})^{p^{r^{-\mu}}}, \mu = 1, ..., r,$$

and

$$C_{p'} \equiv \left[G_i, \alpha, \dots, \alpha\right]^{-1} \equiv G_{i+p'}^{-1} \mod \mathfrak{G}_{i+p'+1}.$$

Furthermore, since $r \leq u$, we have

$$\mathfrak{G}_{i+1}^{p^r} \le \mathfrak{G}_{i+p^r+1}$$
 and $\gamma_{p^{\mu}}(\mathfrak{U})^{p^{r-\mu}} \le \mathfrak{G}_{i+p^{\mu}+(r-\mu)d} \le \mathfrak{G}_{i+p^r+1}$

for $\mu = 1, ..., r-1$.

Now suppose that $i, j \in \mathbb{Z}$ such that $s+ip^r$, $s+jp^r \ge 1$ and $v=2s+t+(i+j+1)p^r+1 \le n$. Then considering Witt's Identity

$$[A, B^{-1}, C]^{B}[B, C^{-1}, A]^{C}[C, A^{-1}, B]^{A} = E$$

modulo & with

$$A = G_{s+ip'}$$
, $B = \alpha^{-p'}$, and $C = G_{s+ip'}$

and noting that $G_{v-1} \neq E$ the result follows.

4), 5): Using 3) these statements follows by easy inductions.

3.

We are now ready to prove the main theorems. First a simple lemma.

LEMMA 3. Let n, t, and d be natural numbers. Suppose that we are given integers modulo p, $a_{i,j}$, defined for $i+j+t+1 \le n$. Suppose further that these integers satisfies the relations

$$a_{i,j} \equiv -a_{j,i}(p) \qquad \qquad \text{for } i+j+t+1 \leq n,$$

$$a_{i,i} \equiv 0(p) \qquad \qquad \text{for } 2i+t+1 \leq n,$$

$$a_{i,j} \equiv a_{i+1,j} + a_{i,j+1}(p) \qquad \text{for } i+j+t+2 \leq n \text{ and}$$

$$a_{i+d,i} \equiv a_{i,i}(p) \qquad \qquad \text{for } i+j+d+t+1 \leq n.$$

Then the existence of a natural number s such that $2s+d+t \le n$ and $a_{s+v,s+v+1} \equiv 0(p)$ for $v=0,..., \left[\frac{1}{2}d\right]-1$ implies $a_{i,j} \equiv 0(p)$ for all i, j.

PROOF. As in the proof of Theorem 9 we see that

$$(+) a_{i,i+r} \equiv \sum_{v=1}^{\lfloor (r+1)/2 \rfloor} (-1)^{v-1} {r-v \choose v-1} a_{i+v-1,i+v}(p) if 2i+r+t+1 \le n$$

and

$$(++)$$
 $a_{i,j} \equiv \sum_{v=0}^{i-i_0} (-1)^v {i-i_0 \choose v} a_{i_0,j+v}(p)$ if $i+j+t+1 \le n$ and $i,j \ge i_0$.

- a) $a_{s,s+j} \equiv 0(p)$ for $j \ge 0$ and $2s+j+t+1 \le n$: This is clear from (+).
- b) $a_{i,j} \equiv 0(p)$ for $i,j \ge s$ and $i+j+t+1 \le n$: This is clear from (++) and a).
- c) Suppose that $\sigma \in \mathbb{N}$ and $a_{i,j} \equiv 0(p)$ if $i+j+t+1 \leq n$ and $i,j>s-\sigma$. Then $2(s-\sigma)+d+t+2 \leq n$ and so

$$a_{s-\sigma,s-\sigma+1} \equiv -a_{s-\sigma+1,s-\sigma+d} \equiv 0(p)$$

whence

$$a_{i,j} \equiv 0(p)$$
 if $i+j+t+1 \le n$ and $i,j \ge s-\sigma$.

THEOREM 12. Let p be an odd prime number and let \mathfrak{G} be a straight, concatenated p-group of order p^{n-1} and with $\omega(\mathfrak{G}) = p^{u}(p-1)$.

- 1) If $n \ge 4p^{u+1} 2p^u + 1$, then \mathfrak{G} has degree of commutativity $\left[\frac{1}{2}(n 4p^{u+1} + 2p^u + 1)\right]$.
- 2) If $n \ge 4p^{u+1} 2p^u + 1$, then $c(\mathfrak{G}) \le 2p^{u+1} p^u$.
- 3) $c(\mathfrak{G}) \leq 4p^{u+1} 2p^u 2$.
- 4) If $n \ge 12p^{u+1} 6p^u 10$, then $c(\mathfrak{G}) \le 3$.

PROOF. 1): Assume $n \ge 4p^{u+1} - 2p^u + 1$. Suppose that \mathfrak{G} has degree of commutativity t, where $t \le \frac{1}{2}(n - 4p^{u+1} + 2p^u - 1)$. Let $a_{i,j}$ be the associated invariants. We must show that $a_{i,j} \equiv 0(p)$ for all i,j.

Let $i_0 \in \{1, ..., p^u(p-1)\}$ be determined by the condition $i_0 + t \equiv 0 (p^u(p-1))$. For r = 0, ..., u and $i, j \in \mathbb{Z}$ such that $i_0 + ip^r, i_0 + jp^r \ge 1$, we let $a_{i,j}^{(r)}$ be the integers (modulo p) introduced in Theorem 11 (with $i_0 = s$).

We show by induction on u-r that if $r \in \{0, ..., u\}$ then $a_{i,j}^{(r)} \equiv 0(p)$ for all i, j. So we suppose that $r \in \{0, ..., u\}$ is given and that $a_{i,j}^{(q)} \equiv 0(p)$ for all i, j whenever $\varrho \in \{0, ..., u\}$ and $\varrho > r$. Write $a_{\mu}^{(q)}$ for $a_{\mu, \mu+1}^{(q)}$ for brevity. In what follows we shall make use of Theorem 11 and Lemma 3 without explicit reference.

We have the congruence

$$(+) a_{i,i}^{(r)} a_{k,i+1}^{(r)} + a_{i,k}^{(r)} a_{i,i+k}^{(r)} + a_{k,i}^{(r)} a_{i,k+i}^{(r)} \equiv 0(p)$$

when $3i_0 + 2t + (i+j+k)p^r + 1 \le n$.

So, we may substitute (i, j, k) = (1, 2, 2s - 1) for $2 \le s \le \frac{1}{2}(p - 1)$ in (+). Given $s \in \{1, ..., \frac{1}{2}(p - 1)\}$ and having proved $a_{\sigma}^{(r)} \equiv 0(p)$ for $2 \le \sigma < s$ this gives us the congruence $s(a_s^{(r)})^2 \equiv 0(p)$.

So, $a_s^{(r)} \equiv 0(p)$ for $s = 2, ..., \frac{1}{2}(p-1)$. This gives us

$$a_0^{(r)} = a_0^{(r)} + 2a_1^{(r)}(p),$$

since $2i_0 + t + p^{u+1} + 1 \le n$.

If r = u, then $a_{0,p}^{(r)} \equiv a_0^{(r)}(p)$ and we deduce $a_s^{(r)} \equiv 0(p)$ for $s = 1, ..., \frac{1}{2}(p-1)$ and so $a_{i,j}^{(r)} \equiv 0(p)$ for all i,j.

So we assume that r < u. Then $a_{0,p}^{(r)} \equiv a_{0,1}^{(r+1)} \equiv 0(p)$. Now, the substitution (i, j, k) = (0, 1, 3) in (+) gives

$$a_1^{(r)}(a_1^{(r)}+a_0^{(r)})\equiv 0(p).$$

So, if $a_1^{(r)} \ge 0(p)$ we would deduce $a_1^{(r)} \equiv 0(p)$. Hence, $a_1^{(r)} \equiv 0(p)$ and so $a_0^{(r)} \equiv 0(p)$.

Now we substitute (i, j, k) = (0, 1, 2s) in (+) for $s = 1, ..., \frac{1}{2}p^{u-r}(p-1)-1$. Given $s \in \{1, ..., \frac{1}{2}p^{u-r}(p-1)-1\}$ and having $a_{\sigma}^{(r)} \equiv 0(p)$ for $1 \le \sigma < s$ this gives us the congruence

$$(-1)^{s+1} \binom{(2s-1)-s}{s-1} (-1)^s \binom{(2s+1)-(s+1)}{s} (a_s^{(r)})^2 \equiv 0(p).$$

Hence, $a_s^{(r)} \equiv 0(p)$ for $s = 0, ..., \frac{1}{2}p^{u-r}(p-1)-1$. Note that

$$2i_0 + t + p^r(p^{u-r}(p-1)-1) + 1 \le n.$$

2) Put $f(u) = 4p^{u+1} - 2p^u - 1$. If $n \ge 4p^{u+1} - 2p^u + 1$ and n is odd, then \mathfrak{G} has degree of commutativity $\frac{1}{2}(n - f(u))$. Then

$$\gamma_k(\mathfrak{G}) = \{E\} \quad \text{if} \quad k \ge \frac{3n - f(u) - 2}{n - f(u) + 2}.$$

However,

$$\frac{3n-f(u)-2}{n-f(u)+2} \le 1 + \frac{1}{2}(f(u)+1) = 1 + (2p^{u+1}-p^u),$$

when $n \ge f(u) + 2$.

If $n \ge 4p^{u+1} - 2p^u + 2$ and n is even, then we see in a similar way that $\gamma_k(\mathfrak{G}) = \{E\}$ with $k = 2p^{u+1} - p^u + 1$.

3) If
$$n \le 4p^{u+1} - 2p^u$$
, then $c(\mathfrak{G}) \le 4p^{u+1} - 2p^u - 2$. Since

$$4p^{u+1} - 2p^u - 2 \ge 2p^{u+1} - p^u$$

the statement follows from 2).

4) If $n \ge 4p^{u+1} - 2p^u + 1$ and

$$4 \ge \frac{3n - f(u) - 3}{n - f(u) + 1} \quad \text{with} \quad f(u) = 4p^{u+1} - 2p^{u} - 1,$$

then $c(\mathfrak{G}) \leq 3$. But the second inequality holds for $n \geq 12p^{u+1} - 6p^u - 10$ and it is clear that

$$12p^{u+1} - 6p^{u} - 10 \ge 4p^{u+1} - 2p^{u} + 1.$$

COROLLARY 3. There exist functions of two variables, u(x, y) and v(x, y), such that whenever p is an odd prime number, k is a natural number and \mathfrak{G} is a finite p-group possessing an automorphism of order p^k having exactly p fixpoints, then \mathfrak{G} possesses a normal subgroup of index less than u(p, k) having class less than v(p, k).

Thus there exists a function of two variables, f(x, y), such that whenever p is an odd prime number, k is a natural number and \mathfrak{G} is a finite p-group possessing an automorphism of order p^k having exactly p fixpoints, then the derived length of \mathfrak{G} is less than f(p, k).

PROOF. The first statement follows immediately from Theorem 6, Theorem 7, Theorem 8, and Theorem 12. The second statement follows trivially from the first.

REFERENCES

- 1. J. L. Alperin, Automorphisms of solvable groups, Proc. Amer. Math. Soc. 13 (1962), 175-180.
- 2. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
- 3. P. Hall, A contribution to the theory of groups of prime power orders, Proc. London Math. Soc. 36 (1933), 29-95.
- B. Huppert, Endliche Gruppen I (Grundlehren Math. Wiss. 134), Springer-Verlag, Berlin -Heidelberg - New York, 1967.
- C. R. Leedham-Green and S. McKay, On p-groups of maximal class I, Quart. J. Math. Oxford Ser. (2) 27 (1976), 297-311.

MATEMATISK INSTITUT KØBENHAVNS UNIVERSITET UNIVERSITETSPARKEN 5 2100 KØBENHAVN Ø DENMARK