MATH. SCAND. 62 (1988), 75-152

RESIDUES, CURRENTS, AND THEIR RELATION
TO IDEALS OF HOLOMORPHIC FUNCTIONS

MIKAEL PASSARE

CONTENTS
l. INTRODUCTION. . . . . . . . . .. o e 76
2. RESULTS . . . o it e e e e e e e e e e e e 78
3. SOME GENERALITIES ON RESIDUES.
1. The cohomological residue . . . . ... ... ............ 81
2. The Dolbeault isomorphism . . . . . ... ... .......... 83
4. PRINCIPAL VALUE CURRENTS, RESIDUE CURRENTS AND THOSE IN BETWEEN.
1. Definitions and notation . . . .. ... ... ............ 86
2. Existence in the case of normal crossings. . . . . .. ... .... 88
3. Thegeneralcase. . . . . .. ... ... ... .. .......... 103
4. Further properties in the case of complete intersections. . . . . . 105

S. WEIGHTED INTEGRAL REPRESENTATION FORMULAS AND THEIR LIMITS.

1. Representation of holomorphic functions as integrals . . . . . . . 114
2. Currents of integration obtained as limits of smooth forms. . . . 120
3. Representation of holomorphic functions by currents . . . . . . . 123

6. DIVISION IN RINGS OF HOLOMORPHIC FUNCTIONS.
1. Ideals in the ring of holomorphic functions on a strictly pseudo-

convexdomain. . . . .. .. ... .. 128
2. Ideals in rings of entire functions . . . . ... ... ........ 133
3. Thelocal version . . . . .. ... ... ... .. ... ...... 139

7. SOME EXAMPLES AND FINAL REMARKS.

1. Illustrations in two dimensions. . . . .. ... ........... 145
2. Concludingcomments. . . . ... .................. 149
REFERENCES . « « t o v o ot e e e e e e e e e e e e e e e e e e e e e 151

Received March 13, 1985; in revised form September 15, 1986.



76 MIKAEL PASSARE
1. Introduction.

If a function f is holomorphic in a domain D < C and has a simple zero
at a, € D, then a necessary and sufficient condition on a holomorphic function
h to be of the formi h = gf (with g holomorphic) near a, is that h(a;) =0
or, equivalently, that the residue of h/f at a; be equal to zero. More generally,
we shall see that, by generalizing the notion of residue somewhat, one may
characterize those holomorphic functions h which belong to the ideal (of holo-
morphic functions on D) generated by any f, holomorphic in D < C, by the
vanishing of the residue of h/f. Let us sketch briefly how this can be done.
Assume first that

V={zeD;f(z) =0} = {a,,a,,...}

and that g is holomorphic on D\V. For we D we denote by res,(g) the
ordinary residue of g at w. That is,

1
resu(9) = 5~ J‘g(Z)dz,

aD,,

oD,, being the oriented (and reasonably smooth) boundary of a neighborhood
D,, of w such that (D, \{w}) NV = @. We know that g may be expanded in
a convergent Laurent series around w:

+ 0

gi2)= Y az-wy,

k=-o
and we have

res,(g) = a¥,.

One way of extracting more information from the residue is to let it act
on test functions ¥ € Cg (D), and one is then led to consider expressions of
the form

1
) L 5= fg(z)w(z)dz.

aeV
aD,

ay

A problem with (1) is that it depends on the paths dD,, and there are two
ways in which one can go about in order to recover the independence of the
choice of D,,.

The first way is to make a restriction on the test functions and to consider
only such y which are holomorphic near V. (This will be our viewpoint in
Chapter 3.)
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The expression

1
Res(g)y) = =— Y. | 92 (z)dz
2ni

D,

1

is then well defined as long as the D, are contained in the neighborhood
of V in which y is holomorphic. Writing , °(D) for the sheaf of germs
at V of holomorphic (1,0)-forms y = y(z)dz, we thus get a mapping

Res(g): 21°(D) - C.
If, in particular, (z) = 1 near w and y(z) = 0 near V> {wj}, one has

Res(g)(w) = res,.(g).

But in general y(z) is of the form
Yi) = ) B—wh
k=0
near w and we get
Res(g)(y) = Z By k.
k=0
The second way of dealing with (1) is to make a restriction on g by

demanding that it be meromorphic on D, say g = g,/g, with g, and g,
holomorphic. One then considers the expression

2mi

{lgal = ¢}

1
2) 5 J 92 (2)dz,

which for ¢ small enough is of the form (1). Using a partition of unity we can
write Y = Z‘/’i with ¥;(z) = 0 near V' \{q4;;. One may then show that

lim J g(2)Wj(z)dz = lim J g(z)y;(z)dz,

§—0 e—0
{lgal = &} {lz—ajl =¢}
see e.g. Herrera and Lieberman [19, Proposition 6.6.], and the latter limit is
easily computed explicitly by expanding y; in a Taylor series around a;.
This yields an expression involving derivatives at a; of y; up to the order
m;— 1, where m; is the order of the pole a; of g. In other words, the limit of (2)
as ¢ tends to zero (which we will denote by dg(y)) defines the action of a
(0, 1)-current on D. This residue current dg will be of order m;—1 at a,,
j=1,2,.... (We will pursue this in Chapter 4.)
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Returning to our original function f, we ask whether or not a given holo-
morphic function h is in the ideal I, generated by f. The answer is of course
simple: h belongs to I, precisely if it is zero at g; to at least the same order
as is f. The point is that this condition can be reformulated as

(i) Res(h/f) =0
or
(i) o(h/f) = hd(1/f) = 0.

In this thesis we give a meaning to the conditions (i) and (ii) for several
complex variables and we show that they characterize certain ideals of
holomorphic functions. One of our main tools will be the weighted integral
formulas of Berndtsson and Andersson [3]. This method will enable us to
obtain similar results in analytic rings with certain growth conditions. The
residue currents which we use are those given in Coleff and Herrera [7] but
we will also need more general currents, the existence and adequate properties
of which are proved in Chapter 4.

ACKNOWLEDGEMENT. | wish to express my sincere gratitude to:

My advisor Christer O. Kiselman, who has taken an immense interest in my
work and with whom I have had innumerable enlightening and encouraging
discussions.

Bo Berndtsson, who suggested the problem of relating residues and ideals
by using integral formulas and has devoted considerable attention to the
progress of the thesis.

2. Results.

In Chapter 3 we start by defining a rather general residue homomorphism
Res, which to any o-closed (p, q)-current (modulo exact ones) assigns an
element in Hom(H?3”""%"!(D),C), where H},(D) means Dolbeault co-
homology of germs at V of test forms on D. We observe that in the one-
dimensional case Res becomes the residue defined in the introduction
(modulo a multiplicative constant). For slightly different points of view we
refer to Gordon [11] and the survey in Dolbeault [8].

The second section of Chapter 3 deals with a more specific situation.
Given a holomorphic mapping C" > D L¢P we define a (0,p—1)-form Q,
on the complement of the common zero set V' of the components f; by

Q= (filP+ ...+ PL (= dfy Ao A A,

J
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We then show that, in a sense made precise in Proposition 3.2.1, integration
of the (n,n—p)-form y/f, ...f, over a certain tube is equivalent to integration
of y A Q. over a much larger set. See Harvey [13] and Griffiths and
Harris [12].

Chapter 4 begins with a collection of definitions and notation which will
be used in the sequel. The main result is the existence of limits of the form

lim Ay,
40
Dl f)

where D, is the oriented tubular domain

{zeD:1fi2) = &), iel, |fi(z)] > &;0), jeJ},

f = (fi,..4f,) is a holomorphic map, ¢ = (¢,...,&,) is an admissible path
(i.e. a mapping [0,1] — RZ such that ¢; tends to zero much quicker than
€j+1 as 0 — 0; see Definition 4.1.1), 4 is a semimeromorphic function (Defini-
tion 4.1.2) whose poles are contained in | J,c;, {fi =0} and y is a test
form of bidegree (n,n—|I|). In fact, the above limit is independent of the
path ¢ and defines a (0, |I|)-current supported on ()¢, {fx = 0} and denoted
by R},.

The proof is in two major steps: In Section 4.2 we assume that we have
normal crossings, i.e. the functions f; behave locally as monomials (Theorem
4.2.1), and in Section 4.3 we use a result on the resolution of singularities
given in Hironaka [20] in order to reduce the general case to the one
already treated (Theorem 4.3.1). The two special cases

(i) I={1,...,p}, J=9,
and
(i) I={1,...p—-1}, J={p},

have been proved in Coleff and Herrera [7] and the general idea of our proof
resembles the one used in their paper.

In the last section of Chapter 4 we restrict our attention to the case when
fis a complete intersection (Definition 4.4.1). We show that if 4 is smooth
outside | Jie; oy {/fk =0} then for i,je{l,..,p}\I U J,

RIAJ i} = R?,J
and

R} 0= 0.
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(Propositions 4.4.2 and 4.4.3). Once again the corresponding statements in the
special cases (i) and (ii) are contained in Coleff and Herrera [7].

The first section of Chapter 5 presents those results from Berndtsson and
Andersson [3] and Berndtsson [2] on weighted integral representation
formulas which will be needed later. To clarify how these formulas work
and how they are connected to well-known ones, we include some examples.

A related application of these formulas to the ideal of all holomorphic
functions, vanishing on a variety and belonging to certain Lipschitz classes,
is made in Bonneau, Cumenge, and Zériahi [5]. More general facts about
integral formulas can be found in Qvrelid [24] and Henkin [17].

Section 5.2 features a result (Proposition 5.2.2 and, in greater generality,
Proposition 5.2.3), which shows how the (0, |I|)-current acting on (n,n—|I|)-
forms as integration over D}, may be realized as a limit of smooth forms.
In the final part of the chapter we combine some of the results we have
obtained so far into a formula representing a holomorphic function as certain
currents acting on some test forms (Theorem 5.3.2). More precisely, we choose
particular weights in the integral formulas of Section 5.1 and after a
limiting process we arrive at the residue currents which were treated in
Chapter 4. We also prove a related result for entire mappings (Proposition
5.3.5).

In Chapter 6 we introduce the ideal I, generated by functions fi,..., f,.
which are holomorphic in a neighborhood of a strictly pseudoconvex domain
D and which form a complete intersection. We show that, by choosing the
weights of our integral formulas in a particular way, the results of Section 5.3
may be sharpened so as to have representation formulas of the following type
for a holomorphic function h:

1 1
(D h(w) = ng(w)j;‘(w)'*’hai: A AD=(Y),
p

J
where g, are given as currents acting on certain test forms (which are holo-
morphically parametrized by w),

51/\.../\5—1—

f 1 f ) 4
denotes the residue current R}, with I = {1,...,p} and A = (f;...f,) ' and ¢
is a test form of bidegree (n,n— p). This is Theorem 6.1.1. As a corollary we
get that h belongs to I, precisely if the residue current vanishes when
multiplied by h. Similar division problems have been studied by e.g. Skoda
[27], Berenstein and Taylor [1] and Berndtsson [2]. We consider entire
functions in Section 6.2 and define, for certain convex functions ¢, the rings
A,, consisting of entire functions which are bounded by CeC? for some
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constant C. Assuming that the f, are polynomials and introducing the corre-
sponding ideals I, ; = 4,, we find a representation similar to (1) where the
functions g, belong to A, if h does. A similar division problem is solved
with [?-estimates in Hormander [22, Theorem 7.6.11].

In Section 6.3 we give an alternative proof of the fact that, locally,
hel; is equivalent to

1 1
hd - A...A0—=0.
jl jp
It follows from this new proof that we also have: hel, is equivalent to

Res[hQ,] = 0. In other words, we have generalized to several complex
variables the argument we gave in the introduction.

The last chapter of the thesis consists of some, hopefully clarifying, examples
and remarks. We describe for instance the relation between residue currents
and ordinary currents of integration and we show (Example 7.1.3) that the
condition of complete intersections is necessary.

3. Some generalities on residues.

3.1. THE COHOMOLOGICAL RESIDUE.

Let D be a domain in C" and let V be a closed subset of D. We use
the following notation:

2P9(D) = {smooth and compactly supported forms on D of bidegree (p, q)},
2P9D\V) = {y €e2”9D); suppy < D\V},
284D) = 279D)/27 4D \V) = {germs at V of test forms on D}.

We clearly have an exact sequence
1) 0 - 27YD\V) L@"'“(D) 5 9p4D) -0,

where i and = denote the natural injection and projection respectively.
Define 0: 2§{4(D) —» 2§** (D) by

Jn(w) = n(y), for ye2YD).
(Note that n(y) = n(y’') implies y = ¢’ + ¢, where ¢ € 274D \V'), and hence
n(dy) = n(0y’) so the mapping is well defined and J% = 0.)

We thus have the short exact sequence of complexes

() 0 - 27 (D\V) 5 97(D) % 9§(D) - 0.
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Writing
HP YD) = {y e 274D);dy = 0}/d271 (D), q >0,
H2:°(D) = {y € 27°(D); Jy = 0}

and similarly for H?4(D\V) and H?J(D), we obtain Dolbeault cohomology
groups for compact supports.

By a standard diagram chase, (2) gives rise to a long exact sequence in
cohomology:

<> HPD\V) 5 HP (D) 55 HZ3(D) &5 HP4* (D \V) -
Next, we write
PP 4D\V) = {currents of bidegree (p,q) on D\V},

that is 979D\ V) is the dual space to 2" »"~9D\V) equipped with its
usual topology.
For T e 974D \V) we define the (p, g+ 1)-current T by

oT(y) = (= 1P IT(0y), weP" P 1" Y(D\V).

Also, any smooth (p, q)-form w on D\V is identified in the usual manner
with the (p, q)-current defined by

Ve I w AY.
D™V
We then put
APYD\V) = {TeD»YD\V);dT = 0}/d9**"(D\V), ¢ >0,
A?°(D\V) = {T e 97°(D\V);JT = 0}.

(We have in fact an isomorphism H?4(D \V) = A? 4D \V), where H%(D \V)
denotes the ordinary Dolbeault group, see Griffiths and Harris [12, p. 382].)
For each [T]e A?94D\V) one obtains a natural homomorphism

[T]*:H: »""9D\V) > C
by defining
v] » T).

(Note that (T+0T')(y +0y’') = T(y)if T and y are d-closed.) In other words,
Ar4D\V)is a subgroup of Hom(H?~ 7"~ 4D \V),C).
We will denote by Res the homomorphism

Hom(H?**'(D\V),C) —» Hom(H?¥(D),C)
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which is induced by 6* and we will call it the cohomological residue homo-
morphism. In particular, it assigns to any ¢-closed (p, g)-current on D .V an
element in Hom(H!}”" "4~ '(D),C).

Let us now interpret this residue mapping in a more concrete manner.
We start by considering the homomorphism J*.

Pick [w]eH!,»" 97! and assume that w = n(y) for y e 2" 7" 9 1(D).
The fact that w is O-closed implies that y is d-closed near V. Hence
Cy e2" " YD\V) and since ¢* = 0 we get a class [(y] e H' 7" 4D \V).
This then defines 6* by

*([w]) = [dv].
(The definition makes sense because n(y) = n(y’') implies
y—y' €e2" 7" YD\V) and therefore [d(y—y')] =0 in H! """ 4D \V).)
It follows that if [T]e H”%D\V), q < n, we have

Res[T]([w]) = [T]@*([«]) = [TI([w]) = T(@).

In other words, for any 0O-closed current T, of bidegree (p,q) on DV,
the action of Res[T] on the class of a d-closed germ w at V of bidegree
(n—p,n—q—1)is given as follows:

(i) Extend o to a test form ¥ on D which is d-closed near V.
(i) Let T act on Oy.

A J-closed (p,q+ 1)-current on D with support on V can be considered as an
element in Hom(H_ 7"~ (D), C) and we shall see further on that, for certain
d-closed T € 274D \V), Res|[T] may be identified with such a current.

Finally notice that, if n = 1, V = {a,,a,,...} and y = y(z)dz is O-closed
near V, then supp dy is contained in @ = D\|J, v D,, for small neighbor-
hoods D, of a;. It follows that, if g is holomorphic on D\V (hence a
J-closed (0, 0)-current), we get

Res[g]([=(v)]) = 9(0y) = jy(zw = j gz = -y, jy(Z)V/(Z)dz,

Q o oD,

so (up to a multiplicative constant) we get the residue of Chapter 1.

3.2. THE DOLBEAULT ISOMORPHISM.

Let D be a domain in C" and f = (fj,....f,): D = C? a holomorphic
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mapping such that, if we put
V={zeD:fi(z)=...=f,(z) = 0},

then dimgV = n—p, that is f is a complete intersection (Definition 4.4.1).
Then take y € 2™" ?(D) such that dy = 0 in some open neighborhood of V
and choose ¢ = (¢,...,&,) € R? with ¢; > 0 and so small that if we put

D*={zeD;|fjx) <& j=1,...p}
then y is J-closed on D® (Note that we need the fact that y has compact
support.) We also define
c={zeD;|fj2)l = ¢, j=1,...p}
and orient it by requiring that
d@argfi) A ... nd@rgf,) A B P20

where B is the usual Kédhler form.

We will show in Section 4.4 that ¢ can be chosen so that Df is a regular
real-analytic manifold of dimension 2n—p, and hence integration on D5 is
an elementary operation. We will be interested in integrals of the form

J‘
fl fp
DY

and, since the integrand is closed and equal to zero near dD, it follows that
the particular choice of ¢ does not affect the value of the integral.
Next, we define the (0, p—1)-form 2, on D\V by

P

3) Q,(2) = ( Y (- 1Y fi2)dfi(2) A ... ;\ A\d];(z))/(jil lfj(z)lz)

ji=1

p
’

where A means that df] is omitted. It is a straightforward calculation to verify
that Q/is d-closed on D\V.
We have the following result.

ProposiTiON 3.2.1. Let f, D* and D% be given as above. Let y be a test
form of bidegree (n,n— p) such that 0y = 0 on D*. Then there exists a constant
c,, depending solely on p, such that

v
ff,...f,, = f“’ A
D

oD*

Q, being given by (3).



RESIDUES, CURRENTS, AND ... 85

ProoF. Put V; = {z:fi(z) = 0}, U; = D*\V; and observe that {U;};_, _,
is a covering of D*\V. We then notice that y/f;....f, is a section over
U, n... nU, of the sheaf #™"~?, consisting of germs of d-closed (n,n— p)-
forms. It may therefore be considered as a Cech (p—1)-cochain for the
covering {U,};- ., Since the covering consists of just p open sets there are
no nontrivial p-cochains and we get a class in Cech cohomology

[W/fi...f,] € AP~ Y (DE\V, 2~ P).

By (the proof of) the Dolbeault theorem, see Griffiths and Harris [12, p. 45],
we have an isomorphism

A:HP~ (DN, 27" P) o Hr " L(DENV).

Keeping in mind that y vanishes on JD, we can use precisely the same
argument as in Griffiths and Harris [12,p. 651-653] (i.e. tracing y/f;...f,
through the long exact sequence which arises in the proof of the Dolbeault
theorem) to show that

for any ned([y/f,...f,]) with n =0 near 0D. Continuing to follow
the argument of Griffiths and Harris one introduces the functions
Lfi12/0f1]* +...+1f,*), which may be thought of as a partition of unity for
the covering {U;};-, .., of D*\V, and, once more scrutinizing the proof
of the Dolbeault theorem, one constructs a canonical representative for the
class A([/f ...f,]). This representative turns out to be
¥ A Q.
The proposition follows.

Remark 3.2.2. Notice that since ¢ = 0 on dD and dy = 0 on D° we have
—Jl//AQ,= J‘ Y AQ = j‘a'l//AQf=J.5|[/AQ,.
aD* a(D\D*) D\D* D

Hence, if we put w = n(y), where = is the projection in (1), and consider
[w] e HMp~?(D), [2,] € A*?~*(D\V), we have found that

v
Hofy

c,Res[Q/]([w]) = I

We will use this identity in Section 6.3.
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4. Principal value currents, residue currents and those in between.

4.1. DEFINITIONS AND NOTATION.

We introduce here most of the notation which will be used in this and the
following chapters. We also give some definitions.

B is the open unit polydisk in C", i.e. the unit ball for the norm
lz| = max;|z;|. We will write |z;] = g, for z;eC.

RT = {xeR™;x; 2 0, Vj},
R? = {xeR™;x; > 0, Vj}.

If Cc{l,..,n}, we put |C| for the cardinality of C and define the
following projections

ne:C" - C'Yl. which forgets all coordinates z,,c ¢ C
n(C):C" —» C" !!_ which forgets z,,ceC.
If +,:C™— R7% is given by +,(z) = (¢4,... 0m) = 0, then
& = 4 ° e
and
T(C) = 4, ic0n(C).
Using this we may now introduce
z¢ = me(2)
z(C) = =n(C)(2)
oc = ¢ (2)
o(C) = n"(C)(2).
For a multi-index a = (a4, ..., a,) € N, we put as usual
z*=2z9...z» and @°=9{...00,
but also, for C = {c,,....¢;} = {1,...,n},
28 =z ... zpn, 2(C)* = z°z¢ etc.

We use an analogous notation for differentials

dze = A dz,, dz(C)= A dz,, and so on.
ceC c¢C

For any I,J < {1,...,n}, the differential dz; ~ dz, will sometimes be written
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in the following canonical way
dz; Ndz; = tdzy A dzig A (dz A d2)e,

where A, B, and C are mutually disjoint, in fact 4 = I\J, B = J\I and
C=I1nlJ.
If g is a holomorphic function in some domain D < C", we write

V(g) = {zeD;g(z) = 0}.
Similarly, if f: D +~ C? is a holomorphic mapping given by =z & (f,(z). .. wfp(2)),

we write V; = V(f;) and also

P
V=V, Vua=V forany A c{l,..p},

i=1 jeA

v, = Q V= V(fi...f).

DeriniTiON 4.1.1. An admissible path in R? is an analytic map
€= (e(6)...£,(8)):10.1] » R
such that
lim £,(0) =0 and,if p > 1,

-0

lim €;()/e;+,(0)* =0, 1=j=p—1, forallgeN.
50

Once again, let f:D — CP be a holomorphic mapping defined in
some domain D < C" and ¢:]0,1] - RZ an admissible path. Then, for
I,J = {l1,..., p}, consider the tubular set

Di, = Dis(e.f) = {zeD;|fi2)l = &(d), ieI;|fi(2)] > ¢;(d), jeJ}.

Clearly, D%, is an open subset of the analytic variety D}sq, and it is shown
in Coleff and Herrera [7, Sections 1.5 and 1.6] how one can give this latter
set an orientation and define a current of integration on it. We shall assume
that this has been done once and for all. It is thus meaningful to talk about
integrals like

¥, V¥ being a continuous test form.
DY,

DeFINITION 4.1.2. Let D < C" be a domain and V = D a complex analytic
subvariety. A smooth function A: DV — C will be called semimeromorphic
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with poles contained in V if, for any z, €D, one can find a neighborhood
U,, of z, such that A(z) = a(z)/g(z), ze U,,, with a smooth on U,, ¢
holomorphic on U,, and V(@) nU, cV nU,. A semimeromorphic
(g,r)-form on D is a differential form of bidegree (g, r) whose coefficients are
semimeromorphic functions. If all the coefficients have their poles contained in
V, the form will clearly be smooth outside V.

Finally we define a family of seminorms on the space of differential forms
on D with coefficients in CV. Let

Y= Y V1y(2)dz; A dzy.

1LJ<{l,..,n}

Then, for K c< D and a,feN", ja|+|f| < N,

Prs(w) = Y, lim |(8/02)(0/02)y,,(2)\.

1,J zeK

4.2. EXISTENCE IN THE CASE OF NORMAL CROSSINGS.

This section is devoted to the proof of the following theorem, which will
be generalized in Section 4.3.

THEOREM 4.2.1. Let D be a domain in C" and f a holomorphic mapping
D — C” defined by z v (f1(2),....f,(z)) and such that, for any point z, €D,
there is a neighborhood of z, on which f is of the form

i) = uj(z)(z —z0)¥, where a; = (aj;,...,a;)eN"

and the ujs are holomorphic and never vanishing. Suppose that I and J are
disjoint subsets of {1,...,p} with |I| =s. Let A be a semimeromorphic function
on D which is smooth outside V;_; and let €:]0,1] > R% be an
admissible path. Then, for any (2n—s)-form y with coefficients in C3(D), the
following limit exists and does not depend on the choice of ¢

R}:{W) =R} ,¥) = "linr; J Ay,
D’J(syf)

For every compact K = D one can furthermore find an integer q* and positive
real numbers c%, « and P being multi-indices satisfying |a|+|B| < q*, such that

IR}, = Z;Cfpl’fp(lll)

for all y with suppy < K. In fact, R} , is a current of bidegree (0, s).

Proor. First we notice that the statements are local. It is enough to prove
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them for test forms y with support in some small neighborhood U, of an
arbitrary point z,eD. After translating and dilating the coordinates, if
necessary, we can of course assume that z, = 0 and that U, = B.

Also there is no loss of generality in assuming that A may be represented
on all of B by a quotient a(z)/z* where ae C*(B) and V(z*) < V(z*...z%).

We now need a lemma concerning the relationship between the (p x n)-
matrix « (having a; as its rows) and the tubular domain D ;.

LemMma 4.2.2. If rank a < p, then, for small 5 > 0, D ; ~ B is either empty
or it can be defined by fewer than p relations, i.e. at least one of the
(inJequalities | f;(z)| = |u;(z)z™] = €(8) (> €;(0)) is superfluous.

Proor. If I U J ¢ {l1,...p} there is nothing to prove. Suppose therefore
[I|+|J] = p. Suppose also rank a < p. Then the vectors a;...., a, are linearly
dependent so that we can find r, 1 < r < p, such that

4

a, = Y mu;, for some integers m,,,,...,m
j=r+1

-
(This is true for p = 1 as well with the convention Y 4 = 0.)
Take my 2 m;, Vje{r+1,..., p}. Then we have

Uy S Mo+ 4+ ... +op), Vke{l,... n}.

Now, put

M = sup lu, 1 (2)...u,@)™, m = inf |u,(2)],
zeB zeB

and notice that M < oo, m > 0.
For ze B we then get

TR S &
Ifr(z)l = lu,(Z)Za'| 2 m|za'| = mlzmo(a 1 a,)l

2 Tl 1 (@)@l = @) S

Now, assume

(1) If;2) 2 g0), Vje{r+1,..,p}.

It follows that

o Z 3 (6ot

But for small enough 6 > 0 we have
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5(8) < 17 (6 +1(0)..5,(0O))™,

since ¢ is an admissible path. But this means that the inequality |f,| > ¢, is
implied by (1) and we have two cases:

(1) rel. Since the condition |f,| = ¢, contradicts (1), D}, is empty.
(i)  reJ. Since the condition |f,| > ¢, is implied by (1), it is superfluous.

The lemma is proved.

PrOOF OF THEOREM 4.2.1, CONTINUED. From now on we assume that D¢, # @
when 6 > 0 is small and that all of the relations |f;| = ¢; (> ¢;) are needed
to define D3,. There is clearly no loss of generality in making these
assumptions and the above lemma ensures that we have rank a = p.

Our next step concerns the invertible functions u;. We shall see that a
local biholomorphic coordinate change reduces them all to the constant 1.

Choose ky,...,k,e{l,...,n] such that, if we put

o = (ap)i—1. .p
k=K. ok,

and 4 = deto’, we have 4 # 0. For simplicity we re-label the coordinates so
that k; = i. Next, for (j,k)e{l,...,p}? write

Al',k = (_— 1 )j+kdet a,(j’ k)’
where o'(j, k) is obtained from o' by excluding the jth row and the kth column.

Cramer’s rule allows us to calculate (¢')™' = (a3)”' = (Bj) by putting
By = 4yj/4. From this it follows that

(2) A_l(a” Akl + -..+aijkp) = 6‘,

d{ being the Kronecker symbol (6] = 1, j = k; 8] = 0, j # k).
We want to find a local biholomorphic coordinate transformation u such
that in the new coordinates w = u(z) we will have

wh =uyz)z%, j=1,..,p.
We therefore, for each je{l,..., p}, pick a branch of u}/ 4 on B and define
A

V; = Uy

Using the nonvanishing functions v;, we then construct our coordinate trans-
formation u as follows

w=u2) = (21012).. s Zp0p(2), Zp+ 15+ Zn)-
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Notice that
det(w;/dz;(0)) = v4(0)...v,(0) # 0,

so u is invertible in some neighborhood U of the origin. By making a change
of scale ein the z coordinates we can assume that U > B and by modifying
the w coordinates in the same way (that is, by putting wj = t;w; for large
enough real numbers t; > 0) we obtain that u(B) > B, where B is used to
denote the unit polydisk in either set of coordinates. Observe that these
operations are harmless since we are dealing with local problems.

It is then easy to see that the inverse of u will be of the form

-1 y oy r~ y f}
z=u (W)= (W W) Wl (W) Wpi gy Wy),

where #; are nonvanishing, holomorphic functions on B.
By (2) we have

@) ) =), j=1,...p
and hence
wh = wit wpt =0 (2) Lo (2) 0 2N = uy(z)ZY,
in other words, u(D?,- N B) is set-theoretically equal to
{weuB);w™ = &(d), iel;w” > ¢d), jelJ}.

We now observe that

le= f = J (n™")*(Aw)

Dy, Dj, nB u(D}; N B)

so we just have to show that the pull-back (1~ ')*(Ay) is of the same
form as Ay in order to eliminate the u;’s, i, we will be able to assume
that they are all = 1.

Recall that A(z) = a(z)/z?, ae C*(B), yeN" and that y is a (2n—s)-form
with C&” coefficients. We have

(™) = (1 H*A) (" hH*W)
and

acu”'(w) _ acu”'(w) _aw)
piwy B (W)L, W)W W

(™ ADw) =

)

if we put
aop!

a=— —
o}...0}

e C®(B),
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whereas (u™!')*(y) clearly is a form of the same type as y. It follows that
it is enough to prove Theorem 4.2.1 in the case when fj(z) =z* and
rank a = p.

We are considering limits of the following form

lim ~[ﬂ.lll,
o0

Y]
by,

where y is a (2n—s)-form and in order to prove the existence and continuity
of such limits there is of course no restriction in assuming Y to consist of
just one term

Y =y()dzy Adig A (dz A d2).
LemmA 4.2.3. Let f be a holomorphic mapping D — CP, where D is a domain
in C". Suppose that f is given by fi(z)=z% a;eN", j=1,...,p. Let
I={i,...iij={l,...,p} and J = {1,..,p}, I nJ =@®. Let A be a semi-

meromorphic function on D which is smooth outside V; ;. Then, for any
smooth (2n—s)-form

Vv =y()z, AdZg A (dz A dZ;

which is such that either |C| > n—s or |C| = n—s and deta; , ,g = 0, one has

Ay =0, 126>0.
b},

Proor. If we just observe that J' = J implies that D¢, is an open subset of
D?,., it becomes clear that the proof of Lemma 2.7 in Coleff and Herrera
[7, p. 71] works in our case as well.

ProOF OF THEOREM 4.2.1, CONTINUED. It follows from Lemma 4.2.3 that we
may assume that we can reorder the coordinates so that 4 UB = {1,...,s} =§
and that a; g is invertible.

Let us also show that we can assume that none of the columns of «
consists of only zeros. Indeed, suppose that there is a k such that a;, =0,
j=1,...,p. Since we have deta, s # 0 it is clear that k¢ S and hence ke C.
Therefore ¥ may be written as ¥ A dz, A dZ,. It is also immediate that

3 ]
Dy, = ﬁu x C,
where

b3y = nk)(D})-
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We then have (by Fubini’s theorem)

J‘lll/ = J\[J‘A‘.l/;dzk A dz_k:| N
D, by ¢

where the inner integration is with respect to z,. Since furthermore
A(z) = a(z)/z? and y, = 0 it follows that

L~ - 1 ~ .
wadzk Adz, = k) ja(z)w(z)dzk A dz,
c c
is of the form

daiz(k)) =
o Vet

where deC* and l; is a test form of degree 2(n—1)—s which depends
continuously on y in the seminorms pX;. That is, we have effectively
eliminated the coordinate z,. This procedure can then be continued until all
zero columns of a are disposed of.

Before we proceed any further, let us indicate that we intend to do.
Roughly, the idea is to parametrize the tubes D¢, by using polar coordinates.
In this way we obtain a kind of fibration of D}, with fibers [0,2n]". We
then integrate along the fibers and it is precisely at this point that we get
rid of the singularities of A.

To construct the parametrization, then, we recall the notation ¢; = |z;| and
consider the system of equations occurring in the definition of D¢, :

a,.
{e =g,
% ’
0" =g,

‘ 5 = /elSY"

or equivalently
3)

o5 = §/0(S)*

Since deta; s # 0 we can solve for g, ..., g, (in terms of ¢; = (&;,, ..., &,) and
0(S) = (@s+1,--- 0,)) by taking logarithms of (3) and using Cramer’s rule.
We get

01 = &' /oS
@) :

0. = &r/0S),
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for some exponents
(5j=(5j1,...,5js)EQs and ﬂj=(Bj.l,...,ﬂj_,,_s)eQ"_s.

Calculating these exponents explicitly, one sees also that deta, ¢ # 0 implies
that none of the d;'s, | = j s, is the zero-vector.
Now put

Ws = n"(S)(Dy nB), B*(S)=n"(S)(B).

Clearly W; = B*(S). It is in fact easy to see that W; is an open subset of
B*(S). Indeed, a point z € B belongs to D¢, precisely if it satisfies (3) and the
following system of inequalities:

o >,
{ o >y,
or inserting the values (4) for g,,..., o;:

oSy > ¢, -
() : )

oSy > g &
for some B,eQ""5, 5,eQ, r = 1,...,t. The fact that ze B can, in view of (4),
be expressed by the following:
oSy > &
(6) :

LasP > &
Thus
D}, n B = {z e B; satisfies (4) and (5)}
and the inequalities being invariant under n*(S) we conclude that
W5 = {0(S)e B*(S);o(S) satisfies (5) and (6)};

hence it is an open subset.
If we now use (4) to define a mapping

vs: [0,2n]" x W; — D3,
by prescribing
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(7) (01, 0,5 0(5)) & (2, (£0), 2(S))e™, ... 0,(e(6). 2(S))e™,

i0, ., i0,
Qs+le 9-”9Qne )

we find that it is smooth and one-to-one. That is, up to a sign depending
on the orientations we have obtained a parametrization of D},. Notice that
in order to conclude that v; is injective, we need the fact that none of the
columns of « vanishes so that, on D}, ¢; # 0, j = 1,...,n.
It follows that we can define a push-forward v; (turning a form on
[0,27]" x Wj into a form on DY) by
- - 1)\%
V‘;. = (V‘) ) .
In particular
vse(dOy A ... AdO, Adogy A ... Adg,) = vs(dO A do(S))
is well defined on D¢, and since it never vanishes it follows that the

restriction to D¢, of any smooth (2n—s)-form on D equals some smooth
function times this form.

We now recall that our test form y can be assumed to be of the form
Vv = y(2)dz, A dZg 4 A dz(S) A dz(S),
and we find that
Vlp:, = Ba2)W(2)vse(dO A do(8)),
where
@®) Bu(z) = kovpe(er - 0" " )

= kA l_l Z, l—[ Er'gs+l <o Cns

reA reA\S
with 04 =Yy ¢ 404 05.4 = Yaes 4 0aand k, being a nonzero complex constant.
(Note that B, is continuous on B and smooth on B n Dj, for each
4€]0,1].) Next, put

©) ¥'(z) = alz)y(2),

where a(z) is the smooth function that occurs in the expression for
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A = a(z)/z*. It is clear that

PasW) S Y chpSw)
Il < lal
o] < 18|

for some constants cX which are independent of y. It follows that in order
to prove the continuity part of Theorem 4.2.1 it suffices to show that

RLw)s Y Cprfﬂ(‘I//)
lal +18l < ¢*

for some (other) constants cX;.
In other words, we shall prove that

lim J‘Z’W'(Z)BA(Z)V‘;.(dB A do(S))
-0
D},

exists and that it depends continuously on ¥’ in the seminorms p%;.
We now rewrite our integrals as follows

j“” - fz-vu/(z)BA(z)va'(do A de(S)) = 'f Fsle(S))de(S),
Dy,

Dy, W,

where

(10) s(e(S)) = '[ V3 (27" (2)B 4(2))d0.
[0,2=]"
In other words, we integrate along the fibers [0, 27]" and it will turn out that

all singularities disappear, i.e. ¥, is bounded. We shall in fact see that
Yo = lim;_, oY, exists pointwise and that one has an estimate

(039) sup sup|Ys(@)l S Y clph) =M.
126>0 geW, lal+ 181 < g

But first we take a look at what happens to W; as é — 0.

LEMMA 4.24. Let D be a domain in C" and let f: D — C? be a holomorphic
mapping of the form fi(z) = z%, a;eN". Let A,B c {1,..,p} with |A| = s and
assume deta, s # 0, where a is the (p x n)-matrix having a; as its rows and
S ={1,...,s}. Also, let ¢ = &(8) be an admissible path and put, for 1 2 6 >0,

W, = n*(5)(D%s N B),
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where n* (s) and D%y are defined as before. Then

(12) lim m(W;) = 0 or 1, independently of «.
30

Here m denotes Lebesque measure on R% %,

Proor. Suppose that 4 = {a,,...,a,} and B = {b,,....b,]. We have seen
before that W; is an open subset of B*(S) = n*(S)(B) and that one can
in fact find exponents f;,f,€Q""* and 0,0,eQ’, 1Sj<s, 1Sk=t
(6; # (0,...,0)) such that

W, = {o(S)eB*(S); 08y > ¢%, 1 < j < s and
Q(S)ﬁ;‘ > e,,k-a‘i‘, 1=k £},

(cf. (5) and (6)).
Since ¢ is an admissible path it follows that

lim ai = lim 5'5". .ei: =0 or 4o forallj
5

0 -0

and, similarly,

. 5
limeg, e =0 or +o0 forallk.
-0

Suppose that at least one of these limits, say lim e‘;', is infinite. Let us see
that this implies that lim;_, ,m(W;) = 0. Indeed, since

it is enough to have

lim m(W;\ U {g,=0})=0
-0

But this follows from the observation that if ¢(S)e B*(S)\ U {Qk = 0}, then
2(5)» < 4+ oo and thus, for small enough 4§, the inequality Q(S) > s‘; is not
satisfied and g(S)¢ W;.

Now we suppose, on the contrary, that all the limits hm(;_,oe‘; and
lim,_, o8, eA equal zero. It is then clear that if ¢(S)e B*(S)\ U {g, = 0}, then
o(S) € W, for small enough J, and since m(B*(S)\ U {gx = 0}) =1 we get

lim m(W,) = 1.
d—~0
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To finish the proof we merely have to observe that the limits limdq()s‘}
and lim‘;_,(,a,na‘,’; do not depend on our particular choice of admissible
path ¢.

PrOOF OF THEOREM 4.2.1, cONTINUED. In Coleff and Herrera [7, Lemma 2.4]
there is given a kind of partial Taylor formula which says that a smooth
function ¥’ may be decomposed as

'I/'(Z)=_i< ) Z}’Z‘}yi(z(j)))+‘l"(2); V@)= Y '7Y¥,0)

ji=1 \o+t1<y;—1 utv=y-1
(?—1 = (YI —1"""},'!_1)),

where all functions are smooth and ¥,, depend continuously on ¢’ in the
seminorms p};. We need yet another lemma.

LemMA 4.2.5. Let ge C*(B), g(z) = g(z(j)), that is, g does not depend on z;.
Let a,be Z" with b; # 0. Finally, for 1 2 6 > 0, let v; be the mapping defined
by (7). Then

0°e™**v¥(g(z))do = 0.
[0.2x]"

Proor. By Fubini’s theorem we have

Q"e"’ov:(g)do =+ Qaei(b.0,+... # "'+b'0')v3‘(g) x
[0,22]" [0,22]*-
2n
X [I eib'o’dﬂj]d(), AL ? ... AdB,.
0
But
2n
b; # 0= Je"’"’d()i =0
0

and the lemma is proved.

Proor oF THEOREM 4.2.1, coNTINUED. Using the decomposition of y’ which
precedes Lemma 4.2.5 and recalling (10) we have
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Uslo(S) = Y [ ) f v¥ z‘":75}yf(z(_i))BA(z))d()] +

ji=llo+tr<y,—1
[0. 2]

+ J VT (2)B4(2))d0 = le,,,+1'.

[0.2n]

Each I;,, can be written

ei(oA —0s 4)

I, = e e, ... 0, 07" yx(g9)d0

[0,2x]"

= J o“expli(—y0+0,—05. 4+00,—10,)}v¥(g')do.

[0.2n]"

If jeA, we get [, = 0 by Lemma 4.2.5, since —y;+1+0—1 # 0.
If jeS™~A. wegetl;, =0, since —y;—14+0—1+0.

If j¢Ss, we get I, =0, since —y;+a—1 # 0.

It follows that

(13) vs(e(S)) = f vi(z7 "Y' (2) B4(2))dO
[0.2x]"
= ¥ k™ V(¥ (2))d0, for some b,, € Z"

utv=y-1
[0, 2=]"

and hence
Wsl < Rn)yky Y sup|¥,.(2).
u+v=y—1 z€B

Since the right-hand side is independent of 6 and ¢ but depends continuously
on Y/, the estimate (11) follows.

As for the pointwise convergence of /; as & — 0 we observe that by (13),
it is enough to show that each

60 -0

exists and does not depend on the choice of admissible path &. Since ¥,
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is smooth and compactly supported in B it suffices to have either

. . . . i0,,
(i) limy_, v, exists (in fact equals (0,...,0, 0., ¢ """

0 and ¢(S) fixed

e Q,,ew" )) for

or
(i)  if o is small enough, then v, ¢ B.
To see this, merely recall the definition of v
N 3,

& e & e i0,., i0
0, 0(S)) = L, —a €%, 0 L, 0ae ),
vs(0, 0(S)) (Q(S),,,e oML 0ne )

and notice that, for 1 £ j<s, ¢# >0 or 0 as -0, since ¢ is an
admissible path and no é; = (0,...,0). Observe also that limed (and hence
lim ;) does not depend on the choice of admissible path.

We recall that
‘['W’ = J“pa
Dy, W,

and by (12) we have two cases:

A) m(W;) - 0:

U‘”"
W,

We get

< fw?,,l < Mm(Wy)  (by (11))
W,
and hence

R,(w) = lim jxw =0.
00
Dy,

(B) m(W;) - 1:
Then m(B*(S)\W;) = 0, and since
f‘i"a = J ';o— I V70
W, B*(S) B*(S)\W,;

we conclude by (A) and the pointwise convergence /5 — /, that
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Ri(y) = j&m
B*(S)

Since

Wol S Y cKpapy)

2l + 181 < ¥

the existence and continuity parts of the theorem follow.

To see that R},(y) is independent of the particular choice of admissible &,
we just observe that ¥, and lim(W;) are independent.

Finally we wish to show that the current R}, is of bidegree (0,s), where
s = |I|. To this end, and for future use, we give a lemma.

LeMMA 4.2.6. For every 6€]0,1], let W;=n*(S)(B nD},), and let
Ys:W; > C, y':B—C, and B,: B — C be the mappings defined by (10), (9),
and (8) respectively. If, for some j €S, either y' or B, contains the factor z;, i.e.
if By =Z¥" 0541 ...0n for some y" € Cg(B), then

lim fu?,, ~ 0.
-0

W

Proor. In view of (11), we may assume that lim;_ o m(W;) # 0, m being
Lebesgue measure on B*(S). Let us see that this implies that ¢; = g;(e(),
0(S)) = 0 as 6 — 0 for o(S) fixed. From (4) we have

&

%= s

and just as when we proved Lemma 4.2.4, we see that if ¢ tends to infinity
we have lim;_ om(W;) = 0 contrary to our assumption. We must therefore
have &}’ — 0 and hence ¢; — 0.

The decomposition which precedes Lemma 4.2.5 gives

G+T <Y

where

= Y Y,

utv=y

and hence
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n
s = TpTive —-i0 ia0, —i
Vs= ) ( 2 0 e g 0T rgrei M gt ""*Qm.--Q,.v:(.a‘)dv)+
o+

+ f 0 e o gy o (WNO = Y L + 17

[0.2x]"
Now,
Lige = 0%™%v¥(g*)d0, for some a,be Z"
[0.2z]"
with
b= —yw+o—1 if j #k
and

hk="yk_l+0'—t lf_]::k‘

Since in either case b, < 0 and since g* is independent of z,, Lemma 4.2.5
implies that I,,, = 0. Considering the remaining term I” we see that it can
be written

I" =Yl

where

I, = 0 Te” 090 Ugreile ™Mo . 0 vE(W,,)dO

[0,2n]"
= g 0"V TT0 41 ... 0,€"VE (W), )dO, for some be 2",
[0,2a]"

and since u+v = y and sup|¥},| = M,, < w0, we get

"I £ YL S oi2r) Y M,

It follows that lim;_,(|I”| = 0. Since furthermore
[
W,

To prove that R}, is of bidegree (0,s) we assume once again that y is

s f Wl < 117]
B(s)

the lemma is proved.
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of the form
vz, A dzig A (dz A dZ),

where B = S\ A4.
It suffices to prove that Rf,(w) =0, if B # 0. Suppose therefore that

jeB < S. Recalling (8) we find that the conditions in Lemma 4.2.6 are
fulfilled and hence

lim jnﬂé =0.
30

W,

Finally we remember that

Ri;(y) = lim j‘;o-
=0
W,

The proof of Theorem 4.2.1 is complete.

4.3. THE GENERAL CASE.

In this section we prove a result analogous to Theorem 4.2.1, but
without the assumption of normal crossings. The idea is to resolve the
singularities of

V= {l_ﬂ[ fiz) = O}

so as to obtain normal crossings and then apply Theorem 4.2.1. Notice that we
make no assumptions about the dimension of V = {f,(z) = ... = f,(z) = 0}.
This would be pointless, since even if we knew, say, that dimgV =n—p,
we still would not be able to say anything about the dimension of the
desingularization of V. In other words: we cannot in general have both
complete intersection and normal crossings so we settle for the latter.

Let us state the general result:

THEOREM 4.3.1. Let D be a domain in C" and f a holomorphic mapping
D — C? defined by z » (f1(2),...,f,(z)). Suppose that I and J are disjoint
subsets of {1,...,p} with |I| =s. Let A be a semimeromorphic function on D
which is smooth on the set D\V; ,; and let £:]0,1] - RZ be an admissible
path. Then, for any (2n—s)-form Y with coefficients in C§ (D), the following
limit exists and does not depend on the choice of €
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Ri)’(ll/)=R?J(lll)=61iﬂ:) j Ay
Dise.f)

In fact, R}, defines a current of bidegree (0,s).

ProoF. The statements in the theorem are of a local nature and it is
therefore enough to consider test forms y with support in some small neigh-
borhood U of the origin. If U is small enough (which we may assume) one
can find a complex manifold U of dimension n and a proper holomorphic
mapping n: U — U such that

) n induces an isomorphism U \n~!(V;) » U\V,
and
(i)  n~'(V;) has normal crossings in U (Hironaka [20]).

The latter property means precisely that for any point xe U there is a
neighborhood ¥ ', of x and a system of coordinates (w,,...,w,) on ¥,
centered at x such that

(14) fion(w) = uj(w)w”

for some vectors a; = (aj;, ..., ®;,) € N" and holomorphic functions uj, invertible
in some neighborhood of the origin. For simplicity we assume that this
neighborhood (where the uj’s never vanish) contains B,, B, being the unit
ball around x in the coordinates w. (This can easily be brought about by a
change of scale if necessary.) Since suppy is a compact subset of U and =
is a proper map it follows that =~ '(supp y) is a compact subset of U. Hence
it is covered by a finite number of balls B,,...,B, as above. Let
{n;}j=1,...~ be a partition of unity subordinate to the covering {B, };-, .~
Now, n;(w)iom(w) is a semimeromorphic function on B, , whose singular
set is contained in

B, nn'(V;) = {we B, ;w*...w* = O}.
It is clear that we can find y;€ N" such that
wi=0=>w". .. wr=0

and
whn(w)don(w) e C§(B,,)).

Hence n;-(Aom) is of the form ayw)/w? on B,, where a;w)e Cg(By,)).
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We now observe that
D},(f) nsuppy = U NV,

and use the fact that n: U \n~'(V;) - U \V, is an isomorphism to conclude

that
j Ay = f T iy) = j (o m): T*().

Dy, n N(D}(f) N suppy) Di,(f om) "™ (suppy)

Then, employing the covering {B, | and the corresponding functions n;, we
deduce that

N
(15) lim jw=1i'm y J “—’{:”f)n*(w)
-0 60 j=1 w’
D, (f) Diy(fon) N B,,

and it obviously suffices to consider each term separately. But on B, the
functions f;jon are given by (14) so we can infer from Theorem 4.2.1 that
the above limit exists and depends continuously on a;n*(y) in the seminorms
P&, K < B, . All that remains, is to observe that a;n*(y) itself depends
continuously on y in the seminorms p¥;, K = U and that it is of the same
bidegree as y. The theorem follows.

Theorem 4.3.1 can be generalized in an obvious fashion by allowing A to
be a semimeromorphic form. One obtains the following result:

CoRroOLLARY 4.3.2. Let D be a domain in C" and f a holomorphic mapping
D — CP. Let A be a semimeromorphic form of bidegree (q,r) which is smooth
on the set D\V;, and let £:]0,1] > R% be an admissible path. Then,
for any (2n—s—q—r)-form y with coefficients in C§ (D), the following limit
exists

R/ (W) = Ri(w) = ;irr:) j ANy,
D’J(G,f)

In fact, R}, defines a current of bidegree (q,r+s).

4.4. FURTHER PROPERTIES IN THE CASE OF COMPLETE INTERSECTIONS.

We prove there a few more results concerning the currents Rj;’. None of
them are however true for general holomorphic maps f: D — C? (cf. Example
7.1.3), so we have to impose a condition on f. To do this we need a
definition.
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DeFiniTION 4.4.1. A holomorphic map f: D — CP? is said to be a complete
intersection if V = f~1(0) is of codimension p in D.

We shall demand that f be a complete intersection.

Our first result concerns the case, when the semimeromorphic form 4 is
such that one of the conditions |fj| > ¢; is unnecessary in order to avoid
the polar set of 4.

ProposiTioN 4.4.2. Let D be a domain in C" and f a complete intersection
D—CP. Let LJ<{l,...p},  nJ =@ and take jeJ. Let i be a semi-
meromorphic form of bidegree (q,r) on D which is smooth outside V; , ., where
J' = J\{j}. Then the two currents R}, and R}, are equal.

Proor. First we note that, if y is a test form of bidegree (n—gq,n—r—s),
(and both currents give zero on all other test forms), then A A ¢y may be
rewritten as A A i, where 4 is a semimeromorphic function and ¥ a test
form of bidegree (n,n—s). Since

R:,(w) = RE (D),

we can confine ourselves to the case, when A is a function, i.e. the given
currents both have bidegree (0,s). By exactly the same reasonings as in the
proof of Theorem 4.3.1 we find that, for a given (n,n—s)-form y, R} ,(y)
can be decomposed into a finite sum of terms of the form

lim J' a_(u;) n*(y)
50 w
D} ,(fom)

(cf. (15)), where n: U —» U > suppy is a local desingularization of ¥, and a(w)
is a smooth function with compact support near the origin in the local
coordinates w on U. Furthermore, on suppa the holomorphic mapping
fom:U — C”is of the form

(f °7'[)k(W) = uk(w)w¢k9 = 1; ---,P

for some invertible, holomorphic functions u, and vectors a,eN". The
corresponding decomposition for R},.(¥) is of course identical except that the
integration is carried out on D ,.(f o n) instead. (Note that since A is smooth
outside ¥}, it follows that a(w)/w? is bounded on D} ,.) It is therefore
sufficient to prove that

(16) lim j An*(y) = lim J In*(y),
-0 60
D} ,(fom) D} ;(fen)
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where we have put

kd

A(w)

_a(w)
=)

Now, since the functions (f o ), (w) are of the same form as those considered
in section 4.2 we can adopt the same way of reasoning once again. First we
see that we may assume that the (p x n)-matrix a (obtained by using the
a,’s as rows) is of maximal rank (cf. Lemma 4.2.2). Then we use this fact to
construct a coordinate transformation such that the u,’s become =1,
fork=1,...,p.

n*(y) is a smooth (n,n—s)-form on B (note that we write B for the unit
polycylinder in both the coordinates w and z) so it is of the form

mHY) = ), Yawldw, A dw(A) A dW(A),

|4l =s

where y , are C* -functions on B. This of course gives a decomposition of both
sides of (16) and it suffices to prove the equality termwise. That is, if we
reorder the coordinates so as to have 4 = § and put yg5 = y, what we shall
prove is

-0
D} ,(fom) D} y(fom)

(17) lim j Ay(w)dw A dw(S) = lim f Zy(w)dw A dw(S).
50

We then use Lemma 4.2.3 to conclude that both sides of (17) are equal to

zero, if deta; ¢ = 0, where

as = (@)jer-
keS

Using the notation g; = |w;|, we see that the system (3) must be satisfied by
a point w in order for it to belong to either of the sets D?,(fon) or
D ;(f o m). Since we may assume deta, g # 0, we obtain (4).

We can of course also assume supp 4 = B, by changing the scale if necessary,
so that, in fact, the integration in (17) is only over D! ; "B and D, < B
respectively. Then define n*(S) as before and put

W, = n*(S)(D], nB), W;=n*(S)D}, nB), B*(S)=rn"*(S)B)

W; will then be the open subset of B*(S) defined by the inequalities (5) and
(6). If we assume that j = j,, where {j,,..., j,} = J, then Wj is seen to be the
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open subset of B*(S) defined by (5') and (6), where (5') is the system of
inequalities obtained from (5) by neglecting the rth inequality. In other words

(18) W, = {o(S)e W55 05V > ¢, &7},

so W; is an open subset of Wj.
Next, we define a map

vs:[0,2n]" x Wy — D? ;.

by (7). It will then be a parametrization of D}, and its restriction to
[0,2n]" x W; (which we also denote by v;) is a parametrization of D} ;.

Continuing to follow the argument from Section 4.2 we define the function
¥; on W, (and hence on W;) by (10) and rewrite (17) as

(19) lim ju?ﬁ lim J./?,,.
-0 -0
W, w;

Recalling the estimate (11) we see that these two limits are equal if

lim m(W;) = lim m(Wj}),
50 50

where m denotes Lebesgue measure on B*(S). So the proposition follows in
that case. We may therefore assume that

(20) lim m(W,) < lim m(W;)
60 6-0

(remember that W; c Wj, so m(W;) < m(W;)). We shall show that in this
case both sides of (19) equal zero and thereby finish the proof of the
proposition.

Lemma 4.24 shows that both lim;_om(W;) and lim;_,m(W;) equal
either zero or one. The inequality (20) then implies that lim;_,om(W;) = 0
and hence

lim J};,, =0.
-0
W,

Consequently, it remains to show that
lim Jlgo = 0.

-0
w;
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To do this we start by proving that (20) implies that aj # O for some ke S
(here j = j, is the same index which occurs in the formulation of the
proposition and in (18)). Suppose therefore, on the contrary, that ay =0
for all ke S and observe that the inequality o™ > ¢; may then be rewritten
0(S) > ¢; and (18) becomes

j
W; = {e(S)e Ws;0(8) > ¢ }.
Letting § — 0 we obtain

lim m(W; \W;) = lim m(B*(S) n {o(S)* <¢;}) =0
50 50

(recall that rank « = p so a; # (0,...,0)). Hence

lim m(Wj) = lim m(Wj)
-0 -0

contradicting our assumption (20).
We will use the following notation

P,={weB;w,=0,keAd}, for Ac{l,..,n}.

The fact that deta; s + 0 implies of course that none of the rows of a; g
consists of only zeros. Hence

Ps < {uil(w)wah =...= ui’(W)Wa" = 0}

= (U emum) == (fom,w) =0} = 2~ ().

Since furthermore a; > 0 for some k € S we also have
Pscn™'(V).

It follows that

nwgc{ﬂﬂ}n%

iel

and, finally making use of the assumption that f is a complete intersection,
we see that

dimc{ﬂ Vi} NV, <n-s.
iel

We are going to end the proof of the proposition by showing that n(Ps)
being contained in an analytic variety of dimension < n—s implies that
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lim f\/?,, = lim j Zy(w)dw A dw(S) = 0.
6-0 60
w; D?.r(/"")

First we return to our original test form ¥ and observe that it may be
written as a finite sum

¥ =% A a,
;

where &; are (n,0)forms with Cg-coefficients and wj are (n—s,0)-forms
with holomorphic coefficients. Since n(Pg) is contained in an analytic variety
of complex dimension < n—s it follows that the holomorphic (n —s, 0)-forms
wg become zero when restricted to n(Ps). This then implies that

n*(wg)lp, = 0.
But sine n*(wy) is of the form

n*(wﬁ”n = z wﬁ,(w)dw(M),
M| =s

with @4, holomorphic on B, we have
n*(wp)lp, = @§(W)dw(S)
so we conclude that ¢f = 0 on Pg. From this it now follows that we have

(21) @§(w) = Y wipf ;(w) for some ¢§ ;, holomorphic on B.
ieS

We also have

n*(y) = Zn*(fp A @g) = Zn*(ép) A "*(@p) = Zp:n‘(fp) A ﬂ*(wp)
B B

and hence we see that the term of n*(y) which we are considering, namely
Y(w)dw A dw(S), can be written

y(w)dw A dw(S) = ;1!‘(53) A @§(w)dw(S).

Recalling (21) we see that the function y(w) is of the form

(22) yw) = Y yiw),

ieS
where y;(w) = w;¥;(w) for some smooth functions ;.

Applying Lemma 4.2.6 to each term of (22) and observing that

60
w; 7

lim f Vsi= "lim f Tydw A dw(S),
-0
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where ¥, ; is defined as before via (9) and (10) (except that y is replaced by
¥;), we conclude that

lim szidw A dw(S) = 0.
-0
Di,

Finally, this implies, by (22), that

lim J Tydw A dw(S) =0
60
D,

and the proposition follows.
We now formulate another, very similar result.

ProrosiTION 4.4.3. Let D be a domain in C" and f a complete intersection
D—CP. Let I,J<{l,...p}, 1 nJ =9, and take i€l. Let i be a semimero-
morphic form on D which is smooth outside V;. , ;, where I' = I \{i}. Then

R;.J = 0.
Before we prove the proposition we need some definitions and a lemma.

DerFiNiTiON 4.44. Let f: D — C? be a holomorphic mapping and define
|f]:D — RE as before. We say that xeR2 is a good value for f if there
does not exist C < {1,..., p} such that nc(x) is a critical value for nce|f].

It follows from Sard’s theorem that the set of points which are not good
is of Lebesque measure zero in R, and hence in RA.

DeFInITION 4.4.5. Let f: D — CP be a holomorphic mapping. An asmissible
path £:]0,1] — R is said to be regular for f, if €(d) is a good value for f
for almost all 6€]0,1].

It is easy to see that for any f there are admissible paths which are regular
for f. Indeed, it is enough to prove that if X < RP has Lebesgue measure
zero then we can find an admissible path ¢ such that ¢~ '(X) has measure
zero on 0, 1].

To do this, choose a path & such that ¢, is strictly increasing with 4.
Solve for 6 to obtain & = d(¢,) and hence ¢; = g(e,), j = 1,...,p—1. Then,
fort = (ty,...,t,-,)€]0,1]7" ", define

&= (1€, nty 1Ep_1,Ep)
and

E = U €(0,c]),
te]o, 177!
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where ¢ = ¢,(1). Since E has nonempty interior and we have a natural fibration
of it with the admissible paths &' as fibers it follows from the Fubini theorem
that X intersects almost all fibers in sets whose pull-back to ]0,1] via ¢
and ¢, is of Lebesgue measure zero.

LEMMA 4.4.6. Let D be a domain in C" and f: D — C? a holomorphic mapping.
Let €(8)eRE be a good value for f. Let A,B < {l,...,p}, A# 9. Choose
acAand put A = A\{a}, B = B u {a}. Then the following holds

(23) 1D%s = D% p— D% s N {Ifl > £,0)}-

Proor. Since ¢(0) is a good value we know that D% and D%, are
either empty or analytic manifolds of real codimension |4'| and |A|, respect-
ively. Let us first consider the case D% .5 = @. Then the right-hand side of (23)
is zero. Assume that D%y # @ and pick x € D%p. There is a neighborhood
U, of x such that (after a change of coordinates)

U, nDis=U,n{Rez;=0,ieA;Rez; >0, je B}.
Since this set is not empty, neither is
U,n{Rez;=0,iecA;Rez;>0,jeB} =U, nD%p.

But we assumed D%.p = @. It follows that (23) holds in this case. If on
the other hand D% # @ we observe that it has the same orientation as
D% g and we get

0Dy = D% N {Ifal > &} + Y,
where of course set-theoretically
Y =Diyp n{lfdl = &}
Hence, taking into account orientation, we conclude that
Y = £D%,.
The lemma is proved.

ProoF oF ProprosiTION 4.4.3. Just as in the proof of Proposition 4.4.2, we
see that we may restrict our attention to the case when A is a function. We
have to prove that

lim J Ay =0
-0

Di(e, 8)
and since by Theorem 4.3.1, the limit exists independently of ¢ we may assume
€ to be regular for f and consider only those 6 for which ¢(d) is a good value
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for f. By Lemma 4.4.6 we have

(24) + I,hp = J Ay — f Ay, I'=1\{i},J' =J u{i}.
Dy, oD}, oDy, N {ifil > &)
Since
(25) oD}, = ) oD} yjunijy» O being E1,
jelJ

the last term of (24) can be written as

jed

rovuld i
We are performing the integrations on real-analytic manifolds so we may
freely use the Stokes theorem. The middle term of (24) then becomes
507,1,/1&// and letting 6 — O (in such a way that ¢(d) is always a good value)
we get

tRi; =R}y — Y 0RE gy
jedJ

If we apply Proposition 4.4.2 this becomes
(26) Rl = 0Rty = ) 0;RE Ly -
jedJ

When the last term acts on y it becomes

~ lim 'f v = — lim jaw
-0 -0

LoDt s D}y

in view of (25). Making use of the Stokes theorem again we see that the
right-hand side of (26) equals zero and the proposition follows.

ReEMARK 4.4.7. One of the reasons for considering only good values &(d)
is that we can then use the elementary manifold version of the Stokes
theorem. There exist however more sophisticated Stokes formulas which are
valid for analytic varieties with singularities. See e.g. Bungart [6, Part II],
Herrera [18, Theorem 2.1] or Poly [25].

The following result is a special case of Theorem 1.7.6 (1) in Coleff and
Herrera [7].
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ProrosiTioN 4.4.8. Let D be a domain in C" and f:D — C? a complete
intersection. Let o be a permutation of {1,...,p} and i,:C? — CP given by
i5(2) = (Zo1ys -+ Zotp)-
Then
R}y = sgn oRL""’f
When I = {1,...,p} and 1 = (f,...f,)”", we write
27) ‘f=5--—/\ ./\5_—
R = 7, Iy
Note that

— 5—=—5— (’/’— tc.,
ﬁAh A

by Proposition 4.4.8.

5. Weighted integral representation formulas and their limits.

5.1. REPRESENTATION OF HOLOMORPHIC FUNCTIONS AS INTEGRALS.

This section is devoted to the presentation of some of the main results of
Berndtsson and Andersson [3] and Berndtsson [2]. We will not go into any
details about the proofs.

D will always be a domain in C" with D of class C2, and h a holomorphic
function on D, belonging to C*(D). We are going to construct a wide variety
of formulas representing h as integrals over D and 0D. To start we let
S:D x D — C" be a C! mapping defined by

(Z, W) nd (Sl (29 W), ceey Sn(z9 W))
and satisfying
ISz, w)| = CYlz—w|

and

Y Sizw)z;—w))| = KS,z—w)| Z Cilz—w/?,

for all ze D, we K cc D and some positive constants Cf and C%. Then we
pick M eN and make a number of choices:
For j = 1,..., M, choose C' functions

Q':DxD—C" (z,w) »(Qi(z,wW),....Qiz W),
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such that, for z fixed in D, Q/(z,-) is holomorphic in D.

For j=1,..., M, let U; be a simply connected domain in C, containing the
image of D x D under the map

(z,w) Qi w—2>+1 = i Qf(z, w)(w,—z,)+ 1.
k=1

Finally choose, for j = 1,..., M, holomorphic functions G;: U; — C satisfying
G;(1) = 1 and let G denote the kth derivative of G;.
To the mappings Q',..., Q™ and S we associate the (1,0)-forms

¢z, w) = Zx Q,{(z,w)dz,,
k=

and

s(z,w) = i Sz, w)dz,
k=1

respectively.

Using these more or less arbitrarily chosen mappings and forms we shall
now define certain integral kernels which at first sight may seem somewhat
awkward but which are really natural generalizations of classical ones. We
need some multi-indices a = (x,..., %y )eNM*1 B = (B,,..., Bpy)eNM and
write as usual |a| for the length oy +... +a,, of a.

Put
(1) K[Q',...0™;G,,...,Gy](z,w) = K(z,w)
-3 a(" VG w2y +1)... GEFCQM w2+ 1) x
laj=n-1 “1
_sw) A @) A @ W) A A @ w)™
Sz, w),z— w>’°“
and
(2) P[Q',...0M;G,,...,Gpl(z, W) = P(z,w)
=y D oot wezy 1), GEOKQM, w—z3+1) x
S Bl B

x 0g' @z, w)f* A ... A (Jq"(z,w))ﬁ“.

Here 0 operates on the variable z only. One can then prove the following
representation theorem for C' functions on D.

THEOREM 5.1.1. Let K and P be as above. Let ¢ be a function in C'(D).
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Then, for we D

o(w) = C.(J(P(Z)K(z, w)— J‘%(Z) A K(z,w)— J(P(Z)P(Z,W)),
D D

oD

where C,, is a constant depending on the dimension n alone.

Proor. For M =1, the theorem is contained as a special case in
Theorem 1 of Berndtsson and Andersson [3] and we will assume that to be
known. For M = 2 a proof is outlined in Berndtsson [2,p.409], and the
argument for general M is completely analogous.

CoroLLARY 5.1.2. Let K and P be given by (1) and (2). Let h be a holo-
morphic function on D such that he C*(D). Then for we D

3 h(w) = C, fh(Z)K(Z,W)—C, fh(Z)P(Z,W),

oD D

where C, is a constant depending on the dimension n alone.

Proor. This is an immediate consequence of the preceding theorem, since
0h =0o0n D.

Since the above formulas remain valid for any choice of S, ¢/, and G ;» they
are very flexible and useful. They also include some classical formulas as
particular cases and may in fact be viewed as weighted versions of these
well-known ones. We give a few examples (cf. Berndtsson and Andersson [3]
and Berndtsson [2]).

ExaMpLE 5.1.3. Let n = 1 and @/ holomorphic in both the variables z and w.
Then (3) becomes

d
hw)=—c J'h(z)Gl((Q,,w—z)+1)...GM((QM,W—Z)+ 1) —zw .

oD

z

That is, we get a weighted Cauchy formula. Of course G; =1 gives the
ordinary Cauchy formula.

ExampLE 5.1.4: Let G; = 1 (or, equivalently, @’ = 0). Then P vanishes and
K becomes
s A (0s)y ! _SA dsy—? _ (_1)“,._“("_1)! @'(S) A w(z:w) ,
S,z—w)"  (§S,z—w)" {S,z—w)

where the first equality follows by bidegree reasons (remember that the
operators 0 and d act on the z variables only) and we have used the
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usual notation

w(a) =da; A ... Ada,, o'(@)=)(-1Y"'ada, A... A ... A da,
J

a(z, w) being any smooth map D x D — C" and the symbol j\ indicating that
the differential da; is omitted. If D is such that S can be chosen to
be independent of w one thus obtains the Leray formula. More generally,
if D is strictly pseudoconvex, it is known that S can be taken to be
holomorphic in w and the corresponding formula is that of Henkin [16] and
Ramirez [26].

ExampLE 5.1.5. Let D be convex and assume that g is a defining function
for D. That is, D = {zeC"; g(z) < 0}, with g convex and of class C? on a
neighborhood of dD. Using just one weight (M = 1) given by

de

o—¢’
G =¢("N N>0,

and letting ¢ — 0, we get that K = 0 on 0D and

q= e > 0;

P(z,w) = —%(—N)...(—N——n+1) X

y Q(Z)N+n
e(2),w—z>+0@@)"*"

(@71og(—1/e(2))"

and hence

h(w) =c, J‘h(z)P(z, w).
D

Note that the convexity of ¢ implies that the denominator never vanishes.
In particular, if D is the unit ball B, we can take

@)= Y lz* =1 =|z* -1
i=1
and calculate

(22 -1

Plz,w) = c(=N)...(=N=n+1) o

(X dz; A dz)).
If we then choose N = 1 we get

. | hZ)w(@) A oz)
B CEX A
D

the usual Bergman formula.
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Let us see what happens if we instead let N — 0. First note that
1=z A @'(2) A 0(z) = —|z)P0(Z) A w(z),
so if we put
c¥N=(N+1)...(N+n—1)c,
we can write

w'(Z) A w(z)
(1 =<z, wH)¥

h(w) = ¢ jh(Z)Nﬂ*IZIZ)""‘a(I —lzl*) A

D

' (Z) A w(2)
221 =z, WV *

o fmz)a[u CEPPT A

D

Since

(1=l 5 = xolp;
the characteristic function of D, we conclude that

o(1—|z*)¥ Oipl5.

(1=1zPPl5 =, ol

which acts on (n,n— 1)-forms as integration over 0D (cf. Section 5.2.).
We therefore end up with

'(Z) A w(z)

h(w) = ¢? fh(z) =Gy

oD

that is, the Leray formula again.

Finally we make a similar construction for the case, when D is a strictly
pseudoconvex domain with C boundary, N = 2. Let ¢ be a strictly pluri-
subharmonic defining function for D. It is shown in Fornass [10] that one
can find CV~! functions h;: D x D = C, j = 1,...,n, such that

(i)  h(z,) is holomorphic on D for z e D fixed;
(i)  if one defines

H(Z,W)= Z hj(Z,W)(Zj"Wj),
i=1

then Re H(z, w) < o(w)— g(z)—6)z—w|? for some & > 0.
We then choose
g' = 2 hydz;

0—¢&

, €>0,
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and

G()=¢(",

and, as before, let ¢ = 0 to obtain

hw) = ¢, jh(z)P(z, w), for weD,
n
with

C ( Zh~dz~>”‘ B b
PZ,W = C,, 5- J 7 A G Gl
( ) |mz=:n o (H(z,w)+ Q(Z))N+Bl 0 2 M

x (02 A ... A (@gM)Pe.
If we, for 0 < k < n, define the (k,k)-form AV-*(z,w) on C" x D by
N+k (z \k B
e(2) - (Ezh’( ,W)d2,>’ e D
@) ANz w) = { (HEzw)+e(@) (z)
0, zeCV\D

its coefficients will belong to C¥~2(C" x D).
This follows from the fact that the form

()

has coefficients which are bounded by (—g(z))"*~! on D. We have thus
obtained the following result.

PROPOSITION 5.1.6. Let D < C" be a strictly pseudoconvex domain with CN
boundary, N = 2. Let 1| < MeN and, for j =2,...M, let Q:D x D — C" be
C' mappings such that for all zeD, Q¥(z,*) is holomorphic in D. Let, for
j=2,...M, G; be holomorphic functions of one variable such that G{(1) =1
and G;({Q’,w—2z)+1) is defined on D x D. Also put

¢=13 0l (z, w)dz,.
k=1
Then, if h is holomorphic on D and C* on D, we have

hw)= Y C,4 fh(z)A"""(z,w) A G GGV A ... A FgM)P,
1Bl=n

where AN-P1 are given by (4) and w € D.
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5.2. CURRENTS OF INTEGRATION OBTAINED AS LIMITS OF SMOOTH FORMS.

In order to establish a link between the currents of Chapter 4 and the
integral formulas from the preceding section we want to regard integration
over the tubes D}, as limits of C* forms.

First we define certain characteristic functions and show how to approxi-
mate them.

DerINITION 5.2.1. Let D be a domain in C". Let f: D — C” be a holomorphic
map and let ¢:]0,1] - RZ be an admissible path. Then, for j = 1,...,p, we
define the mappings xi(e, f) = x;: D - [0,1] by

(2) = L 1fi@)] > &(9)
v 0, 1fj(2)l < &(5).

Furthermore, for r;eR., j = 1,...,p, we choose C® mappings

x>, f) = x7:D - [0,1],

such that we have pointwise convergence

x’J—» xj-

r;—=0
Let us now see how to approximate integration over tubes.

ProrosiTION 5.2.2. Let D be a domain in C" and let f be a holomorphic
mapping D - CP, p<n. Let 1,J < {l,...,p} be disjoint and given by
I ={iy,....is}, J = {ji,.. i} Let €:]0,1] > RL be an admissible path and
6€]0,1] such that €(8) is a good valued for f. Then, for any compactly
supported (n,n—s)-form y of class C! on D, we have

) . lim JWX, A OLE AL AOE =1 Jlll,

r,—0
Dy
independently of the particular choice of approximating functions yi.
Proor. We may of course assume that I U J = {1,..., p}, since limits of the

form lim, oA are trivial if A does not depend on r; The first limit will
then be of one of the following two forms:

(@) lim fx'n‘w A @, (f leJ),
r,—0

or

(ii) im |0ft Ay ~ @, (f 1€l),

ry -0
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where ¢, are smooth forms of bidegree (0, k) defined in an obvious manner.
In the first case we simply get

limo IXQ'W N Qs = JXN/’ N Qs = j ‘ll A @s,
" b D} ;

whereas in the second case one obtains

lim jax'l‘ AY A Qs = lim jd(xrllw A @s—1)— lim fx’l‘ oW A @s-1)
D

ry—0 r,—0 r,—0

jlll/’ ANQs—1— JXla-(W A Qs 1)

D D
= J‘ WA(ps—l_ j ‘/’A(Ps—l
oD N {lfil > &} D n{Ifil >&})
= i j w A Ps—1,
Dfs

by using the Stokes formula and the fact that

oD N {lfil > &1}) = 0D N {lfil > &}ED n {Ifil = &}.

We have thus eliminated x'.
Turning to the kth limit we have, similarly, two cases:

(l) lim J Xf"“/’ A QPs—g (lf kGJ),
r,—0
D}y
(i) lim Iax;g« AV A @eyt (f kel),
r,—0

3
ry

where ' = |I'l. Once more we get

lim f XV A Qg = J WY A Qs_y = J‘ VA Qs

r,—0
Di.y D}, Dfy )

and
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lim JJX?‘ A W AN QPs—s—1
r,—0
Dy,

= ]lm fd(X;kW A (ps—s’—l)—— hm \[X;ka-(‘// A (ps—s’-l)

r,—0 r—0
D?.,. 8,
= j VAQ_y_y— J. YV AQs_g_y.
DLy I > & D}y NIl > &})

By Lemma 4.4.6 we have
0DYy gy = 0Dy N A{IAl > &} D} gy

and it follows that

hm '[EX;" A W ANQPs_g—1 = i J W AN QPs—s~1-

r,—0
D}, Dy, (k1o

Going through all the p steps and thereby eliminating all yi~ we end up with
f ps,¥ and, since all we ever needed to know about xi* was that it converges
toward y,, the proposition is proved.

Let us now look at a more general situation. Let I' = (i,);-, and
J' =(j.).-, be arbitrary sequences of elements in {l,...,p} and write
I = {i,...isy and J = {ji,...,j,}. We then consider once again the limit

(6) lim ... lim JWX};' L XPONE A N TLE

r,—0 ry,—0

We have three cases which are not included in the preceding proposition:
(i) Two of the indices i,,..., i are equal: It follows that
i A AOX=0

so (6) is zero.
(i) iy, ..., i, are all different, I nJ =@ but two of the indices ji,..., j, are
equal: Since

&P’ —= a7 =1

Proposition 5.2.2 implies that (6) equals % (5 y.
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(iii) iy, ..., i are all different, but I ~J # @ : Since

1
(ymoxy = ml Lot

and since, as in (ii), we can replace x7 by (x7)"*' (they both tend to x;),
Proposition 5.2.2 implies that (6) equals

+ ! jw,
M.,

X
Dl.l

where M. = [|ves ns(1+m), m, = the number of j,’s which equal k.

The above argument shows that the following generalization ef Proposition
5.2.2 holds.

ProPOSITION 5.2.3. Let D be a domain in C" and f a holomorphic mapping
D-CP,p=n LetI' =)<, and J = (j,).-, be sequences of elements in
{L...p}and put I = {i,;; 1 Sr<s},J={j,; 1 Sr=<t} Let £:]0,1] > RZ
be an admissible path and €10, 1] such that &(8) is good value for f. Then,
for any compactly supported (n,n—|I{)-form ¢ of class C' on D, one has

lim ... lim jw)(;{'...x:" AT A A DG =Cry jw,
r,—~0 r, -0 5 5

where Cp; =0, if |I| <s and C,;, = £1/M,,., My, being the integer given

above, if |I| = s.

5.3. REPRESENTATION OF HOLOMORPHIC FUNCTIONS BY CURRENTS.

In this section we modify the integral formulas of Section 5.1 and obtain
formulas, where a holomorphic function is represented as a sum of currents
acting on certain test forms. The currents in question are the R},’s from
Chapter 4.

Our first theorem deals with respresentation on a strictly pseudoconvex
domain. Recall that if T is a current and ¢ a smooth form, then ¢ A T is
the current defined by ¢ A T(y) = T(¢ A ).

RemMark 5.3.1. In Chapter 4 we considered smooth test forms only. It is,
however, clear that, if we use g}, to denote the (finite) order of the current
R}, on the relatively compact open set D, then R}, can be extended to test
forms y of class CM, with suppy = D and M 2 q?,.

THEOREM 5.3.2. Let D be a strictly pseudoconvex domain in C" with smooth
voundary. Let D be a domain such that D >> D and f: D — CP a holomorphic
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mapping. One can then find functions A;,, meromorphic on D, smooth outside
Vy o and independent of w, such that, if h is holomorphic on D and C*
on D, we have, for each N 2 max; ,q7,+2 and we D

hw)= Y hRE N, w)),

I.Jc{l....p

for some CN~?% forms ¥, on D, supported on D, of bidegree (n,n—|I|) and
depending holomorphically on the parameter w.

Before we prove the theorem we need a definition.

DerFiNiTION 5.3.3. Let D be a domain in C" and f: D — C a holomorphic
function. A mapping B: D x D — C" which is holomorphic in all variables is
then called a Hefer map for f if

S~ = ¥ Bz, ww,—z)

for all (z,w)e D x D. (Cf. Hefer [14]).

ProOF OF THEOREM 5.3.2. We may assume that D is pseudoconvex and
hence, by Hefer's Lemma, we can find Hefer maps B* for f,, k = 1,...,p. Then
pick an admissible path ¢ which is regular for f and define, for d€]0, 1]
and r eRZ, smooth maps Q%": D x D — C" by

1 "(2)By(z, W)

l P
7 ar Ll
(7 07'(z,w) = ’ ; e )

where the smooth functions y{'™ are chosen so that
w0
just as in Section 5.2, and also so that for all r,
w @) =0 on {z;li@) = $ald)}.
With Q%" we associate the (1,0)-form g* given by

A e
q*(z, w)=j=z1 0% (z,w)dz; = . ; ——————————(;k)(z)(z L ;

where

b*(z,w) = Y Bi(z, w)dz,.
j=1

Finally we let G be a polynomial of degree p in one complex variable such
that G(1) = 1. If we now apply Proposition 5.1.6 with M = 2, G, = G, and
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0, = Q*" we obtain for weD and N Z 2,
how) = ¥ Cos fh(z)A"’""(z,w) A GO, w—2) + 1)),
s=0
D

where AV'""# are of class C¥~2 in z, holomorphic in w and of bidegree
(n—s,n—s). Since the (1, 1)-form dq®" can be written

it follows that
@ y"=0 for m>p

and we conclude that

8) hw)= i Ch.s Ih(z)A"'"_’(z,w) A GOKQ*, w—2)>+1)(dq*'Y, weD.
)

s=
D

Recalling that G is a polynomial of degree p—s and observing that the
argument may be written

1 2 (<B"\w-2) )
3T w— 1=— A ) |
Q¥ w—z)+ P k); < 7 +
1 2 (xe™@2)fuw) )
= — 4 et Z 1 — 3Tk
p Ic;l < fil2) * Xi @)

we find that each term of (8) is of the form

©9) L=Y jHA,,W}'A-,w) A X AFONE A A DY
LJ
D

Where I = {il"“’ i!}’ J’ = (jr)’r=la t é n-—s, J = J(J’) = {jl,.--,j'}, AIJ' al'f
monomials in 1/f;,...,1/f, and ¥}, are (n,n—s)-forms of class C"~* on D
and holomorphic in w.
Put
Fx= [l fe—=*t.

kel UK

One checks that F;gA;;, has no poles when J(J') = K. Next, for J < {1, ..., p}
such that I nJ =@, define

111( = 1/F
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and

Yik(.w) = Fig Z Cry (W) Ay,

J
JJ')=K

where C;; = t 1/M/;. are the coefficients occurring in Proposition 5.2.3.

We see that the y) are (n,n—s)-forms of class C¥"2 on D and the
A;x are meromorphic on D. After re-grouping the terms in (9) and taking
iterated limits we get (by the same Proposition 5.2.3)

lim..lmL= Y ha s, w).
=0 =0 =s
I1nJ=¢ Dis

Now we recall that (9) is a typical term of the right-hand side of (8) and
since the left-hand side of the same equation does not depend on ry,....r
we conclude that, for we D

h(w) = Z fh(z)l”(z)l//’,v,(z,w).

ric{l,...p}

14

']
Dy,

Finally, letting 6 — O (avoiding points such that &(d) is not good for ), we
obtain, for we D and N = max, ,qp,+2

hw)= Y REGUNCw)= Y BRI WNC,w)).

1LJ<{1,...,p} LJc{1,..,p}
The theorem follows.

Remark 5.3.4. Note that the 4,,’s and the y},’s depend on our choice
of the polynomial G in the proof. However, when I = {1,..., p}, so thats = p
and J = @, we have

Ay=Fp) = )
and, since G = const., the corresponding term in (8) is

CopG JhAN'"_”(',W) AbC,W) A DX Ao A DY,

D
where
b=>b'A... ADbP
It follows that, up to a multiplicative constant, we have

WI’VJ = AN’"_p A b.
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That is, the term with |I| = p is independent of G. In Chapter 6 we will
choose G in a particular way and we will then be able to draw further

conclusions about the remaining terms (JI| < p) in the representation of
Theorem 5.3.2.

Next we are going to consider entire functions. The result which we obtain
will be used in Section 6.2.

Choose a smooth, real-valued function ¢ on C" such that

(z)=1, |z71£2
(10) {{(z) =0, |z23

and define, for R > 0,

¢r(z) = £(z/R).
We then have the following result.

ProposiTION 5.3.5. Let f:C" — CP and h:C" — C be entire maps. For R > 0,

let (g be given as above. Then, for |w| < R, one has a representation formula
as follows:

hw)= Y RRE@&R A GnCow)+ Y hRE(Erwi,w)),

LJ < {1,....p} 1J<{1,..,p}

where the R}, are the currents defined in Chapter 4; X,, and A;; are monomials
in 1/fy,...,1/f,; W1; and y,; are smooth forms of bidegree (n,n—|I|—1) and
(n,n—|I}), respectively, and y; is holomorphic in w.

Proor. Applying Theorem 5.1.1 to the compactly supported function £gzh
we get, for jw| < 2R

(11)  hw)=C, Jh(z)ﬁfx(z) A K" (z,w)+C, jh(Z)CR(Z)P"'(Z,W),
c cr
where K% and P*" are given by (1) and (2) with M =2, G, =G a

polynomial of degree p, Q> = Q*" (as in the proof of Theorem 5.3.1) and
S = Z—w. That is, we have

- = o
(12) Kor = z c,_,,Gﬁ“"(a'ql)" A (z(zf_wj)dzf) A (Zdzi A de) A

|z — wp%+2

A G(ﬂz)(a'qa.r a2
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and

(13) Pér = Z c,,,,,G(fl‘)(a'q‘)”‘ AG(ﬂz)(a'qa,r)ﬂz’
1Bl =n

where

¢ = T,

and Q%" as in (7). If we restrict our attention to w for which |w| = R it
follows that |z—w| = R for z e suppdég. Hence the only singularities which
occur in (11) are those coming from Q%"

We can therefore let 7y, ...,r, and 6 tend to zero precisely as when proving
Theorem 5.3.2 and the proposition follows.

6. Division in rings of holomorphic functions.

6.1. IDEALS IN THE RING OF HOLOMORPHIC FUNCTIONS ON A STRICTLY PSEUDO-
CONVEX DOMAIN.

Recall from Section 4.4 that if the holomorphic mapping f:D — C? is a
complete intersection then we write d(1/f;) A ... A 9(1/f,) for the current
Ry, I={1,..,p},J =%, 2= (f;...f,)"'. We have the following theorem.

THEOREM 6.1.1. Let D < C" be a strictly pseudoconvex domain with smooth
boundary and let D be a domain such that D >> D. Let f:D — CP be a
complete intersection. Then, if h is holomorphic on D and belongs to C*(D),
we have for we D,

1 1
(M) hw)y= Y  BREWNCW)HhT — A . AT @ W)),
LJ < {1,...,p} fl fp
H<p

where each (n,n—|I|)-form y%, can be written

@) Yt w) = YAWWIEC,w),
with yY;* depending holomorphically on w.

That is, one can find functions g,, 1 < k < p, holomorphic in D and belonging
to C*(D) such that

h(w) = i g,,(w)f,‘(w)-f-ha'—l- Aol A al WNC,w)).
k=1 h S

We shall use the following notation: Let f:D — C? be a holomorphic
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mapping and put
I, = {Y g:fi;9x are holomorphic on D, 1 <k < p},

i.e. the ideal in the ring of holomorphic functions on D generated by

fisooofp

CoRrOLLARY 6.1.2. Under the assumptions given in the theorem the following
two statements are equivalent :

a) hel, 1
b) the current h0— A ... A 0— is zero.
f 1 f P
Proor. It follows immediately from Theorem 6.1.1 that b) implies a). In

order to prove the opposite implication we assume that hel,, that is
h = Y g, fi- We then have

l
(7—— A — = R},
i fk ngfk 19
where A = 1/f, ... fy and I = {1,..., p}. But since
fiRfs = RU’

and A-f, is smooth outside V;, where I' =1\{k}, we conclude by
Proposition 4.4.3 that each f,Rf, vanishes and the corollary follows.

Proor oF THEOREM 6.1.1. In view of Theorem 5.3.2 and Remark 5.3.4 we
only have to prove that each y¥,, |I| < p, is of the form (2). We start by
recalling that we obtained Theorem 5.3.2 by taking limits

h(w) = lim lim...lim (right-hand side of Chapter 5 (8)).

60 r,»0 r,—0

Now, the right-hand side of Chapter 5 (8) is a sum of terms of the form

j.G(s)(<Q6,r’ w— Z> + 1)(0:' '(Z, W),

D

where G® is the sth derivative of the polynomial G, G is of degree p, G(1) = 1,
w’" is a smooth (n, n)-form and

i ( ™(2)fiw)

3,7 _ =_1_
@w=o+l Pi=1\ K@)

+(1 —x‘i""(Z))) = x4+,
with
@) fW)
Z A(2)
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and
y = }15 (1 - ().

For s = p we obtain the last term of (1) as limit (Remark 5.3.4). For s < p
we can write

G(x+y) = G9(y)+xG(x,y),

where G, is a polynomial of degree p—s— 1. Since

S, ri
G , S,r , = Xk (Z)G S, r
jx S, )0t (2, w) ;Jfk(w) e O

D

it follows that

lim lim ... lim J‘ G®w?" = terms of the desired kind +
6—-+0r,-0 r, -0
D

+lim lim ... lim IG“’(y)w‘,’"
60 r,—0 ry,—0
D

so we will be done if we show that, for an appropriate choice of G, this latter
limit becomes zero. Examining Chapter 5 (8) again we find that w?" is of
the form

W'=Y off,
1 =s
with ] s
a’x ril a’xA,n
3) b =AY AE A A
! Ji J;

AY being an (n,n—s)-form of class C¥~2 on D. It will of course be enough
to prove that

jG"’(y)w‘}" -0, for each I < {1,...,p} with |I| =s.

D

To simplify the notation we assume that I = S = {1,...,s}. We also put

1
y =;(yl+'“+yp)9 yj= 1'1}'"’-

Let us first see that every term of G*(y) which contains some y,, j¢S, say
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yiM(yi,..., yp,), where M is a monomial, satisfies

J‘ij(yl,...,y,,)w‘;"—vo, as ry,..,r, and 6-0.

D
Since
Y= T1-x™
we have
M(y1,....¥,) = PO, .. 1),
where P is a polynomial a typical term of which is of the form
const. Yori  yAni je(1,...,p}

and we shall show that

or;, or; 5
inxi-' - Xj s =0,
D

or what amounts to the same thing

. o,r;, or, dr _ 1 o,r; o,r;, or &,
4) lim | x;;”...x;, "ws" = lim ij e a raes T
o,r—»0 o6,r—-0
D D

If we recall (3) and apply Proposition 5.2.3, (4) becomes

lim C IAAQ =lim C J AAY,
60 60
D;J' Dg.lu(])

where 4 = (f;...£,) ' and J' = {j;,...ji}-
After dividing by the constant C, this can be rewritten as

®) R§y(AF) = R§ ;  ,(45).

But, since 4 is smooth outside V5 (and hence outside V5 ,), (5) is a
consequence of Proposition 4.4.2. We may thus neglect all the terms of G¥(y)
containing some y;, j¢S and it remains to be shown that G can be picked
so that

. 1

6) lim G"’(—-(y1+...+y,)>w§"=0, 5=0,..,p—1.
5r—0 p

D
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Now,

G® (—II; O +...+y,)) ol = AAY A O,
where

1
O =GY (; (y1+...+y,))3x‘{"' Ao AOEE.

We also have, for k 2 0,

1
yosr = —(1=xro( -y = - ma(l—x?"’)““

and letting r; - 0 we get (since lim 3" = x} = ()" for all m > 0)

|
lim ytoy3m = — 1 lim (1 — y3my+!
== ! limo(1 —x%") = —l——lim T
k+1 J k+1 i

It follows that

lim & = C, lim 3" A ... A Bgd",

r—0 r—-0

where C, is a constant. In fact, since

1

1
e jy}dyj, for k20,
(V]

we get

1
C, = j G"’(;(y,+...+y,))dy,...dy,
[0,1]

1
= p, J 6’/6y1...6y,6(;(y, + ... +y,))dy, ..

[0,1]‘
-7y (—lr-f(s.) GUj/p)-
j=0 J

Hence, if we choose

.dy,
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1 p-1 .
G()=— [ -,
P’ j=o

we get C;=0,s=0,...,p—1, so (6), and hence the theorem, follows. (Note
that G is of degree p and G(1) = 1, as required.)
6.2. IDEALS IN RINGS OF ENTIRE FUNCTIONS.

Let ¢:C" —» R, be a smooth convex function and define a ring 4, by

A, = {h:C" > C; h is holomorphic and |h(z)| = C exp(Co(z2)), for some C}.

If f:C" > CP is an entire mapping such that f;e A4, we denote by I,  the
ideal in A4, generated by the fj’s.

We shall assume that ¢ satisfies the following three conditions:

@) A, contains all polynomials (and hence lim,_, , ¢(z) = o),

(i) A, is closed under differentiation,

@iii) for all a,f €N" one can find constants C,; such that
(6/02)(0/02)P @(2)] £ Cqpexp(Capp(2)).

ReMark 6.2.1. The alternative condition

(iv) |w—z|=1=¢Ww)= Co() (for some constant C independent of z)
implies (i) (cf. Hormander [21, Lemma 2]). Moroever, if we let x be a non-
negative, smooth function on C", whose support is contained in the unit
ball and which is such that

J‘X(Z)dm(z) =1,
i

and we define

0(2) = ¢ * 1(2),

where ¢ satisfies (iv), then
|(6/02(8/0zY 9 (2)l < Co(2)| j(a/az)‘(a/az‘)"x(z)dm(z)L
&
so ¢ satisfies (iii). Since we also have

0= ¢(2)-o() = _[X(z —w)(ew)—e@)dmw) = (C—-1)o(),
c .
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it follows that

?(z) £ 9(z) < Col2)

and hence 4; = A4,.

It is clear from the definition of the current R}, (see Chapter 4) that it is

invariant under biholomorphic coordinate changes. Indeed, if u is such a
coordinate transformation, we have

A u*

R (W) = R (ury).

Hence, if M is a complex manifold, f: M — C? a holomorphic mapping and A
a semimeromorphic form on M with poles contained in V}, there is no problem
in defining the current R} on M.

Suppose now that fi,...,f, are polynomials in the variables (z,,...,z,)€C"
and that they are of degrees my, ..., m,, respectively. Writing

2y =2Zy/Zy, k=1,...,n,
and putting
Fi(Z,,...,Z,) = Z3'f(2),
we obtain a homogeneous polynomial defined on C**!. If we let
U.={ZeCP";Z, #0}, k=0,...,n,

denote the usual coordinate neighborhoods on CP" with local coordinates w*
given by

(W’{, ey W:) = (ZO/ZIu---; Zk—l/Zlu Zk+l/zk’ LR Zn/Zk),

we see that U, =~ €" and w° = z. We denote by V; the algebraic variety on
CP" induced by F; = 0 and V = ()%_, ¥, Then we put

flw*) = Z,™F(Z)

and it follows that on Uy, n U, = C"\{z, = 0} we have two different mappings
f;(z) and ff(w*) = z; ™ f;(z) defining the variety V; n Uy N U,.
Let f:C"\{z, = 0} — C? be the-holomorphic map defined by

fi=z™f@)

and let y be a test form on C"\{z, = 0}. We want to compare R};/(y)
and R’,l’,] (y), where I,J < {1,...,p} and 4 is a rational function with its poles
contained in ¥, ;. After a partition of unity we may assume ¥ to have small
enough support for Hironaka’s theorem to apply on suppy (see Section 4.3),
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i.e. we may assume that

1i@) = uz)z%,
with u; nonvanishing. It follows that

Ji@) = z)z™,
where

iy(z) = uj(z)/z.

Now, we can write 4 = z~%a, where a € C*(supp y), and it is not too hard to
prove that

lim z7%' = lim z Yy
60 -0
D3y(uy 2%, ... upz®) Dy, 25 ... i1z *2)
= lim z7 N,
540
DYz, z%)
where y' = ay.

This is carried out in Coleff and Herrera [7, Proposition 2.15] for the case
when J = @ or {p} and the argument in the general case is similar. (That is,
one uses the coordinate transformation u (see p. 22) to conclude that

z7Y = j W)
Dij(uyz®,..., upz™) DY, (w™, ..., w')
and then one shows that
éliﬂ(l) .[ {(W e W E)-w Y W)} =0)
Di,(w™, ..., wer)
Hence we have
Riw) = R w).

That is, it is immaterial whether we use the functions f; or just their
numerators f; to define our tube. It is therefore meaningful to consider the
current R}, = R};¥ on CP", defined by

RAY = R’,l'f on Uy =C"
= A
R on U, etc.

This is the situation which we will consider in this section.
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THEOREM 6.2.2. Let f:C"—> CP be a complete intersection given by
S (@)= (f1(2),....f,(2z)) with the f]s being polynomials. Let he A,. Then for
weC",

how) = SRR W W) FhT = A A T e w),
“I’.é’ fl fp

p

where each 1, is a rational function (monomial in 1/f,,...,1/f,), ¥;; and y
are C? forms on CP" of bidegree (n,n—|I|) and (n,n—p) respectively
(g 2 the (finite) orders of the R',l',J ). Moreover, each Y, is holomorphically
parametrized by w in such a way that

Yu(,w) = ;fh(w)‘llll(.l(" w)  (for some C* forms yi;)

and

0 IhRY (W, W)l S Crexp(Cp(w)).

That is, one can find functions g, € A,, 1 = k = p, such that

h(w) = zp: gk(w)f,‘(w)+h5-l— A A Ji (y(,w)), weC"
k=1 fl fp

CoROLLARY 6.2.3. Under the assumptions given in the theorem, the following
two statements are equivalent :

a) hel,,,

1 1
b) the current Wb — A ... A 0— = 0.
) fl fp

ProoF. See the proof of Corollary 6.1.2.

Proor oF THEOREM 6.2.2. By Propositions 5.3.5 we have, for |w| < R
@) h(w) = Hg(w)+ Hg(w),
where
Aaw) = 3 hRI@r A 1o, w)
and ’

® Hg(w) = 'zJ hRY} Ex¥is(, W),

with §,,(-,w) being a smooth form on C"\{w} of bidegree (n,n—|I|—-1),
¥1,(,w) a smooth form on C" of bidegree (n,n—|I|), and 1;, A;; being
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monomials in 1/f,,..., 1/f, Recalling that Hy and Hy are obtained as limits

Hyw) = lim C, JhJCR A K%', w)
or—0
CH
and

Hg(w) = lim C, JhéRP"”(',W),
or—0
Cﬂ

where H*" and P%’ are the kernels in Chapter 5 (12, 13), we will make the
following choices
Q'(z,w) = (4(09/0z1)(2), ..., A(09/0z,)(2)),

where A4 is a positive constant to be specified later,

Gi({) = ¢,
1 1

6O =~ [1 wL-J).
P:j=o

The same argument as in the proof of Theorem 6.1.1 shows that each y,,
(with |I| < p), occuring in the expression (9), is of the form

l,’IJ(.9 W) = Zﬁ((w)wll(l(s W)’

where the y%, are smooth forms on C", depending holomorphically on w.
The term in (9) corresponding to |I| = p becomes

1 1
hd—A...AN0= \
7, Ao A 7 (Sr¥)

where

|//=I/ll¢, I={1,...,p}.

We shall show that for each ge N one may extend ¥,;; and ¥, to C? forms
on all of CP" by putting them equal to zero on CP"\C". (In fact, §,, will
have a singularity at w but it will be killed by dfz when R is large
enough.) Since, in particular, the coefficients of ;; tend to zero uniformly
(for w in a compact set) as |z| = oo, it will follow that

Hm J&x A Ypy(,w) =0

R~ ©
and hence (assuming that g is larger than the order of R;,[',’ on CP)
lim Hgz(w)=0.

R—-
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Moreover, we will have (for g larger than the order of R',l',’ on CP")

. 1 1

lim He(w)= Y AMWRRE WS w)+hI— A .. AT (W)

R~ LIk S I
I<p

and, in view of (8), the theorem (except for the estimate (7)) will be proved.
First, we observe that, since f,...,f, are polynomials, the Hefer maps
B',..., BP, which occur in Q%" (Chapter 5 (7)) may be taken to be polynomials
as well.
Examining Chapter 5 (13) more carefully one sees that each y*,(z, w) can
be written as a finite sum of terms of the form

(10) cexp(4{0p, w —2))(hP)(z)z*wbdz A dZ(B)

where &(z) is a product of derivatives of ¢, a and b belong to N”, c is a
complex constant and B < {1,...,n} satisfies |B| = |I|. Writing

¥ = cexp(A{dp, w—z))hdz°w>,
we find that (8/0z)*(0/0z¥W becomes a finite sum of terms of the form
Zexp(A<Op, w—2))(0/0z) (h) Bz WP,

where d,b,é and & are of the same kind as a,b,c, and @ respectively.
We now use what we know about ¢: i

By property (i) there is a constant C such that |¢z°| £ Cexp(Co(2)).

By property (ii) there is a constant C such that

1(6/0z)'(h)] = Cexp(Co(2)).
By property (iii) there is a constant C such that
18(z)] < Cexp(Co(2)).

It follows that one can in fact find constants C,5 (Which are independent of w)
such that

(6/02)(0/02) ¥ (z, w)| = Tap(W)Coplexp(A<Dp, w —2) + Cop(2)),

where 7, is a polynomial.
The convexity of ¢ implies that

o(w)—o(z) = 2Redp,w—2z)
and we obtain
(11) 1(0/02)*(9/02Y ¥ (2, W)| S Tog(W)Capexp(A@(w)/2+ (Cop— A/2)p(2)).

Assuming (which we may) that 4 > 2C,, for all «,f with |¢|+|f| < g, we
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find that
lim |r(z)(8/02)*(0/02)P¥(z, w)| = O,
|z| = ©

where n is any polynomial and, recalling that y%, was decomposed into a
sum of terms of the type (10), we conclude that all derivatives up to order g
of its coeflicients tend to zero quicker than any polynomial as |z| — oo. Since
the different coordinate systems on CP” are related by rational transformations
it follows that y;; becomes a C? form on all of CP" if we let it equal zero
on the hyperplane at infinity, i.e. on CP"\C".

Except for the harmless singularity at w (recall the factor |z—w| 2%~?
in Chapter 5 (12)), the same argument as above shows that y,;; can be
extended to a C? form on CP"\{w} by taking A large enough (independently
of w). Finally, to prove the estimate (7), we just have to observe that the
order of R',I'j on CP" is less than g and that it is continuous in the usual
seminorms. Since the derivatives of the coefficients of y; satisfy estimates like
(11) we get

IR (Whs(, w))| < % p(W)exp(Ap(w)/2) = fi(w)exp(Ap(w)/2),
lal +1Bl = q

for some polynomials #,; and 7. The desired estimate (7) follows and so does
the theorem.

6.3. THE LOCAL VERSION.

In this section we consider the following local question: Let D be a domain
in C", f:D — CP a holomorphic mapping and w, an arbitrary point in D.
Under what conditions may then a holomorphic function h be represented as

(12) hw) = 3. g 000w

where w belongs to a neighborhood D, of w, and g:°:D, —C are
holomorphic? When D,, is strictly pseudoconvex, the question is answered
by Corollary 6.1.2, but we shall see below that the local result may be proved
with less effort than the global formula of Theorem 6.1.1 and we also obtain
a connection to the cohomological residue of Chapter 3.

Letting 7, (h) denote the germ of h at w,, we will write ywo(h)el? when
(12) is satisfied, thereby defining the local ideal I}°.

THEOREM 6.3.1. Let D be a domain in C", f: D — C? a complete intersection
and h:D — C a holomorphic function. Then the following three conditions are
equivalent :
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a) Y, () €I} for all wyeD,

1 1
b h0—A...A0—-=0,
) fl " " fp

c) Res[h2,] = 0,

Q(z) = |f|2”< Y (- 1Y) fi(2) A ... ;\ A df;,(z)).

ji=1

REMARK 6.3.2. By the general theory of coherent analytic sheaves (Theorem A
by Cartan) it follows that if D is pseudoconvex, then condition a) above
implies that hel, so Corollary 6.1.2 is a special case of Theorem 6.3.1.

Proor. c¢) = a). Put as before V = {zeD; fi(z) =... = f,(z) = 0}. We
always have ywo(h)ely" if wo ¢ V so we assume wq € V. After a linear change
of coordinates we obtain the following situation wy, = 0 and

V n{izl =0} n{lz’] < 1} = {0},

wherez’' = (zy,...,25- ), 2" = (Zn—p+1,- .- 2,)- It follows that we can find ' > 0
such that

V n{lz| <r} n{lz’l <1} = {|2| < 1/3}.
Take r = min(’, 1/3) and let D, be a smooth, convex domain such that
{2 <r} n{i' <2/3} < Do < (I <7} n {I2"] < 1.
Then let g, be a smooth convex function such that
Do = {z€eD; go(z) < 0}
and
00(2) = |ZP—r* for zeW =D, n {|"| < 1/3}.
(See Figure 1.) Next, define the (k, k)-form AY'* as in Chapter 5 (4) with
H(z,w) = (000/0z1(2), ..., 000/02,(2))

and notice that its coefficients will be of class C¥~2. Applying Proposition
5.1.6 with M = 2,

G,()={" and Q=0"'=(Q},... Q)

0= T AEBlC w)/(e+ by m(z)P),
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B, being a Hefer map for f,, we obtain for we Dy, (recall that ¢° = Z']'= 1Q5dz;),

hw) = % Co jh(z)Aﬁ'"'*(z, w) A GOKQE w—2)+ 1)

Do

Since 0g* is of the form ) 7 _dfi A a we have (0¢°)* = 0 when p < s and hence

P
hw)= 3 Cp,s Jh(Z)Ag"‘"(z,W) A GOKQ, w—2)+1)(0g°).
s=0 N
Now, on W we know that g, depends on the first n—p coordinates only.

Hence so does the (k,k)form A}'* and it follows that AN""* =0 on W
if s < p. Thus we get
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P
h(w) = Z C,.s f hAN-"=s A G"’(a'q‘)‘+C:,‘, JhA”"'” A (Oq)
=0 Do\W w
= I*+1I5.

For the same reason as above A"~ P is d-closed on W and we have

ﬁv - C;,,p thN'"_p A qe A (qu)p—l
ow
=C,, f hAN-"=P A g® A (Og°)P~ 1.
OW\éoD,

On 0W \0D,, we can safely let ¢ » 0 and by a straightforward calculation
one sees that

lim g* A (O~ = const. Q; A b,
e~ 0

b=<23}dz,-)/\.../\< dez,).
j=1 ji=1

Writing ¢V for the (n,n—p)-form A¥""? A b we therefore obtain

where

lim Iy = const. J‘ hQ; A YN = const. j hQ; A oy"
e~0
aW\aD, Do\W
= const. fhﬂf A Oy"N = const. Res[hQ,]([w"]),
Do

where the second equality follows from the Stokes theorem and the fact that
y" =0 on 8D, and we have written @" = n(y"), n being the projection in
Chapter 3 (1). But we are assuming Res[hQ,] = 0 and are thus left with

hw)y=1I¢ forall ¢>0.

Hence, letting ¢ tend to zero, we obtain

h(w) = lim I*
e-0
and all that remains is to verify (by direct computation) that
lim (0g*)” = const.d(22, A b) =0

=0
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outside V and that

lim G®(Q%,w—2z)+1) = lim const.

e—0 £—0

(ﬁz_)f(w)+e>""
If@)P+e

is of the form
14
Y giw)fi(w) for s <p.
k=1

a)=Db). This follows form Proposition 4.4.3 precisely as in the proof of
Corollary 6.1.2.

b)=>c). Pick an arbitrary class [w] e Hy" ?(D) and take y e 2™" ?(D)
such that n(y) = w, where = is the mapping in Chapter 3 (1). By Remark 3.2.2
we have

Res[hQ,]([w]) = const. jf;---f,,’
D

where ¢ R2 and
s ={zeD: i@ =¢ j= 1,...,p}.
Choosing an admissible path ¢:]0,1] - RZ we find that for 6€]0, 1]
D?é) = iD;’¢

with I = {1,...,p}. (The sign depends on how we choose to orient the
tubes D?,.

Since w is d-closed it follows that y is d-closed in some neighborhood of V.

hy . f hy 1 1
= lim =ho— N 0— =09
ffl...f, al-.o fioofy h R fP(Vl)
Dy Dfy

(where the first equality follows by using the Stokes theorem p times, once
for each component of £(4)) and finally

Res[hQ,]([w]) = const.J fli.l?l. A 0.

But [w] was arbitrary and the theorem follows.

ReMARK 6.3.3. When proving the last implication we used the fact that
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Res[w,] is essentially equal to the resdiue current 9(1/fy) A ... A 9(1/f,)
restricted to test forms which are closed near V. This explains why it is much
easier to define the cohomological residue than the resdidue current - the
limiting process becomes trivial. (Compare the amount of work needed in
Chapters 3 and 4.)

CoRrOLLARY 6.3.4. Let D = C" be a pseudoconvex domain, f:D — C?, p > 1,
a complete intersection and h:D — C a holomorphic function. Then if the
equivalent conditions of Theorem 6.3.1 are fulfilled the (0,p—1)-form hQ, is
O-exact on D\V.

That is, [hQ,] = 0.

Proor. By Remark 6.3.2 we know that h = ) ,g, f; for some g,, holomorphic
on D. Define the (0, p—2)-form w} on D\V by

oh = lfl—z(p—n< y (_1)j+k+1(gjﬁ—gk7;)dfl A j\ {‘\ s A d?,).

Isj<ksp

We shall see that
(p—1) 10w} = hQ,.
Writing 0% = |f|72*~ DT we get

and we have to show that the right-hand side equals

(o—1)h __fl(—lyﬂf,df, Ao nd,

First we calculate 0T

0T = Y (—1Y** Y gdfi—gudf}) A dfy A ... A A A df,

i<k J

=Z(—l)‘”(p—j)g,d]i A ? o A df—
— LD e-Dgdfy A pe A d

= (P—l);(—l)’“g,df; A... ;\ N/
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We then obtain

QI AT = T (1Y Yl fedfdGsfe= Tl Ao oo n df,

i<k J

=2i+2,

with

i

Y (=1 gl flPdf =gl fi1Pdf) A dfy A ... ;\ A A df,

i<k
=Y (=1 (Y AN A A A dT,
j k#j J
and
Y, = Zk(_l)j”H(fjgjﬁd];..—-fkgk];dﬁ) Adfy AL ;\ A A df,
]<
- Z(—l)j+1 (k;. —fg)fdfy A ... j\ NY
Hence

IflzaT—(P‘l)(Zi:fidﬁ) AT
= (p—l);(—l)"“(lflzgj— k;j(lfd’gj—fkgkfj))dﬁ A ndf,
= (p—1);(—l}i+1(|fj|2gj-tk§jfkgk]})dﬂ A A nd,
= = DRT 1Y T A

and we are done.

7. Some examples and final remarks.

7.1. ILLUSTRATIONS IN TWO DIMENSIONS.

Confining our attention to holomorphic mappings f:C? — C?, we calculate
explicitly the associated residue currents in a few cases. For simplicity, we
fix an admissible path by putting

(e1,€2) = (e71%,8) for 6€]0,1].

ExampLE 7.1.1. Take f; = z7, f, = 2z and let y = y(z)dz; A dz, be a test
form. By Taylor’s formula we have
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V)= X

Osp+rsm—1
0€s+tsn-1

Aps2§212525 + 0(|24|™|22]"),
where

l ~r s -~
Aprsy = m@” *$¥1102802702502%)(w)(0,0).

Since

J O(z|™z,")dzy A dz,

] < M(2me,)(2ne;), for some constant M,
lz:] = &
lzal = &2

we have

1 1 .
1) 0— A 0— ()= lim Y Aprst ZBmzh 25" 2hdz, A dz,.
f 2 320 0<ptrsm—1
Oss+tsn—1 24| =&
2| = &,
Now, using polar coordinates, we get

J ZBTmzN 25" 2hdz, A dz,

lzyl =&
23] = &,

=2 j gl Prrmglvstimnexp(i(1+p—r—m); +i(l+s—t—n)0,)d0, A do,

0<0,<2n

0s0,s2n

(2ni)*e?Ted, if l+p—r-m=1+s—t-n=0
~ o, otherwise.

But, since we also have p+r S m—1 and s+t < n—1, the only term of (1)
which does not vanish is the one correspondingtop=m—1,r =0,s = n—1,
t = 0, and we conclude that

1 1 — (an)z m+n— m— n-
527 A 527 ) = m(a 2/027 1025~ " )(w)(0,0).

ExampLE 7.1.2. Take f, = z,—z3, f, = z3 and let y = y(z)dz, A dz, be a
test form. Consider the change of coordinates given by

Z) =W
2y = wiw,.
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The mapping w — z is an isomorphism when looked upon as a map
Cz\{wl = 0} b Cz\{zl = 0}

(Using a double blow-up of the origin one obtains a manifold X and a proper
mapping X — C? which looks like the above in certain local coordinates on X.
This is how Hironaka’s theorem applies in this simple case.)

Since z,—z? = wi(w,—1) and z% = wiw3,” we have obtained normal
crossings (cf. Section 4.2). We have ¢, < & = 1, so it follows that the con-
ditions [w?(w, —1)| = ¢; and |w}w3| = ¢, imply that

& = wiw, — 1> < |wiwjl = ¢,
and hence
Iwa — 112 < [w,%.

It follows that Rew, > 1/2 on the tube D? = {|f;| = &, |f3| = ¢,}. We can
therefore choose a branch of ./w, on D? and define new coordinates by

{tx = Wl\/W—z

t, = l—l/WZ.

The residue current becomes

a-_!_ A a'i II/(Z)dZI A dzZ

= li

N fzwl) 61—1:?) f (z2—123)z3
il =&
fal=¢

2
= lim Y(wy, wiwy)dw, A dw,
3-0 wiwi(w,—1)
|W{(Wz =-i=¢
wiwil = &,

- lim J' Wt /1=1;, 8)dty A dty
30 tt,/1—t, ’

AT
Ie$] =&,

where /1—t, is the branch given by \/1—t, = 1//w,.

Writing €, = ¢,/\/¢e; and &, = ¢¢, (note that (g),¢;) is an admissible
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path) we get

51 J Wt/ 1—ty,t3)dt, A dt,

— = lim
fi fz v) al—~o 4t/ 1—t,

ta] = &)
It =&

ey L2 (M ).
60t3 /1—t,

1 03 02
— (2mi)? {8 Fres v(0,0)+ -—— (0,0)},
1

ty=t,=0

]

02,0z,

where the second equality follows from Example 7.1.1.

ExampLe 7.1.3. (Coleff and Herrera [7, p. VII]). Take f, = z,z,, f, = z,
and let y = y(z)dz, A dz, be atest form. Since V = {z, = 0} has codimension
one, this is not a complete intersection. Putting ¢, = ¢,/¢, and ¢, = ¢, we get

R(jlfz (l//) _ llm f Y(z)dz, A dz,

.25 2125
|Z|Zz|=51
Izl = ¢,

z)dz, A dz

lim f ﬂ);z—’ (2n )2 (00)
= s-0 2423

lzi| = €
lzal = &

Since (z,23)~" is smooth outisde V; = {f; = 0}, it follows that the condition
of complete intersections is necessary in Proposition 4.4.3 (and hence in
Proposition 4.4.2 as well). If we now write g, = f, and g, = f; we obtain

W(Z)dzl A d22

- =0
szg ’

R@'g;’¢ W) = hm j

|21| =&
lz25| = ¢,

where the last equality follows from the fact that if
M = sup{|zy|; (zy, z;) e supp ¥},
then 6 < 1/M implies that
g =e < §/M = ¢,/ M
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and hence

supp¥ N {lzo) = &} N {lzyz2) =&} =P

This shows that the conclusion in Proposition 4.4.8 is not true without the
assumption of complete intersections.

7.2. CONCLUDING COMMENTS.

Remark 7.2.1. The condition hd(1/fi) A ... A d(1/f,) =0 which (by
Corollary 6.1.2 and Theorem 6.3.1) is fulfilled precisely when hel, may be
interpreted in a more concrete way:

Example 7.1.1 shows that if f, = z7, f, = z3, then hd(1/f;) A d(1/f,) =0
can be reformulated as

(0m*"=2/0z7~ 1024 ") (hy)(0,0) = 0, for all y.
Hence, by Leibniz’ formula,
(@7**/02{0z%)h(0,0) =0, j=0,...m—1, k=0,.,n—1.
If fy = z,—z}, f, = z3 we get from Example 7.1.2 that
(03/023 +0%/0z,0z2,)(hy)(0,0) = 0, for all y.
That is,

1(0,0) = 8h/z,(0,0) = (62 /822 + 8/32,)h(0,0)
= (40%/0z3 +0%/0z,0z,)h(0,0) = 0.

(See the examples in Ehrenpreis [9, p. 37].)

More generally, from Theorems 1.8.3 and 4.2.2 of Coleff and Herrera [7]
it follows that, if the test form y =Y ;- ,¥;(z)dz A dZ(I) has small enough
support, we have

ha'—l— AL A 5—1— W)= Y lim f D;(hy)dz A dz(I),
i o [{=p o0

Vo {kl > 8}

where the k; are holomorphic functions on V and the D' are differential
operators on V with meromorphic coefficients whose poles are contained in
{k; = 0}. This means that he I, if and only if h satisfies certain differential
equations on V. Notice the resemblance to the Noetherian operators in e.g.
Bjork [4, Section 8.4].

ReMARK 7.2.2. Let D = C" and f: D — CP a complete intersection. There is a
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simple relation between the usual current of integration

Cp(@10g(Ifs* + ... + 111y
(see Lelong [23]) and the residue current d(1/f1) A ... A d(1/f,). Indeed, from
Coleff and Herrera [7, Section 1.9], it follows that
1
5’
where m, denotes the multiplicity of f along the irreducible component ¥, of V.
This relation is also suggested by the following observation: We saw in

Section 6.3 that d(1/f;) A ... A 0(1/f,) is essentially equal to Res[Q,] which
(see Chapter 3) can be viewed as 0€,. A calculation shows that

dlog|f|> A (@01log|f*)P~" = const.df; A ... Adf, A Q

) Y m[Vi] = (ni)~*df, /\.../\dfp/\a'f—l—/\.../\ﬁ
1

and (2) is (in a vague sense) obtained by taking J of this equation. Further-
more, we see that if df; A ... A df, # 0, then the residue current has measure
coefficients and the condition hd(1/f) A .... A 0(1/f,) = O is just h|, = 0.

ExampLE 7.2.3. Consider the ideal I, generated by f; = z,2, and f, = z3.
Since f = (f},f2) is not a complete intersection, we can not use the
theorems of Chapter 6 directly. However, if we write

=112 = (@,23)

and
[ =1z,
we get that
Iy =1, N1,

and, since f’ and f” are complete intersections, it follows that

1 1
helflaha';— A 5? = 0<>h(0,0) = 0h/02,(0,0) = 0
1 2

and 1
heI,.,aha';- =0<h(z;,0)=0 for all z,.
2

We conclude that hel, if and only if
h(z,,0) = 0h/0z,(0,0) = 0 for all z,.

This can clearly be generalized to arbitrary intersections of ideals whose
generators are complete intersections.
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RemARk 7.2.4. The residue current 0(1/f) is in a sense discontinuous in f.
Indeed, we have for r > 0

a'zz 1,2 (¥(z)dz) = lim j ¥ (2)dz

o 22,2
l22—r*=¢
— lim _L( J‘ Y()dz J‘ w(z)dz>
e—0 2r z—r z4r
22—} =¢ 22—r}=¢

= Z W —w(-r).
It follows that

. 1 00g
}l_l};l) 5?—_—'5 = —-Zdez,

where x = Rez and J, is the Dirac measure at the origin. On the other hand,

1 .00 ,_
52—2 = —21"-52—(12,

(cf. Example 7.1.1) and so

1 1
J —
77 tendsto 522

as an analytic functional — but not in terms of currents.
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