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A HOLOMORPHIC REPRODUCING KERNEL FOR
KOHN-NIRENBERG DOMAINS IN C?

JOHN ERIK FORNASS" and JAN WIEGERINCK?

Introduction.

Let D be a smooth domain in C2. Any Leray map ¥ = (¥,,¥,):
Qx0Q — C? gives rise to a Cauchy Fantappié formula which reproduces
holomorphic functions that are continuous up to the boundary of Q. In
general, it will be impossible to find a Leray map which is holomorphic in
the first variable, therefore the Cauchy-Fantappié form will not be holo-
morphic in this variable either.

For smooth strictly pseudoconvex domains it was proved among others
by Henkin [3] that Leray maps and Cauchy-Fantappié forms that are holo-
morphic in the first variable exist. Range and Siu [5] obtained a kind of
Cauchy-Fantappié formula for intersections of smooth strictly pseudoconvex
domains.

In this paper we consider the so-called Kohn-Nirenberg domains in C?:

Q = {weC?:Rew, + P(w,) < 0},

where P is a real valued homogeneous polynomial in w, and w; with 4P > 0
when w; # 0. To avoid problems stemming from the unboundedness of Q
we will mainly be concerned with Qg = Q n {jw| < R}. In general, it is
impossible to find a holomorphic Leray map defined in Q x 0Q. However, it
was shown by the first author [2] that such a map with fairly good properties
exists on Q@ x X, where ~ = 0Q\{({, = 0}.

We modify this map slightly and study the related Cauchy-Fantappié
formula on Q. Formally this looks exactly like what one would expect in
view of the Range-Siu result. Although the kernel we obtain blows up at
¢, =0, we will show that it is integrable over the boundary. It reproduces
functions in 4(Qg) and maps C(0R2g) into H(Q).
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1. Preliminaries.

Let Q = {(w,,w;)eC*;Rew,+P(w,;) <0}, where P is a homogeneous
polynomial of degree 2k, AP > 0 when w, # 0.

Let ¥ = {wedQ,w, # 0}. Let Qg = Q n B(0,R), Xz = £ n B(0,R).

In this section we give an account of results concerning Q. All proofs can
be found in [1] or [2].

Let { = ({1,{;)e 2.0, = arg(;.

LemMMA 1.1. For every (, there exists a unique harmonic polynomial of the
form Reaw?* = P(w,)+O(w, —(,|*). The constant a = a(0,) depends real
analytically on 0.

Write Pl(w’l) = P(Ol,w,) = P(W,)—-Reot(ﬂ, )M'%k.

LemMA 1.2. There exist 3 > 0, ¢ > 0 independent of 0, such that if
1
largw, —0,| < 3, then % largw, — 0,2 |w,|** < P (w) £ Glargw; —0,].

Introduce
Fywy) = F({;,wy) = W%k(Wx _Cl)Ze—i(2k+2)01.

LEMMA 1.3.There exist 0 >0, € > 0 such that if largw, —0,] £ 6, then
Re Fi(wy) 2 3lw,|[*w; = (1> = €lw, |*** *(argw, — 0,)°.

Let P,(w,) = P(w,)—¢/w,|**; & will be chosen ~ery small below, but at least
so small that P,, is strictly subharmonic if w;, # 0. We change coordinates as
follows

=

Wy =w, W, =

Let

2C0,w, M) = wy+a(0, Wik — (e/M)F (wy), M > 0.

Qi(wy) = Q((y,wy, M) = Py(w;)+(e/M)Re Fy(w)).
Then in these coordinates
Q = {ReW2+Q1(W'1) < 0}

LemMMA 1.4. For every R > 0 there exists M > 0 such that if weQ and
Ly, Wy = R, then
weQ, := {Rew, +P,(W,;)—Rea(d, W < 0}.

By continuity we can find arcs I,,... I, which cover the unit circle, are
centered at e ,...e", respectively, and are shorter than & such that if
el j» then
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Q, c Q; := {ReWw, + P,,(W;)—Re(a(0V)W3*) < 0.
Each ©; is contained in the even larger pseudoconvex domain
Q; := {Re W, + P;,(W,)— Re(a(0/)Wwi*) < 0}.
LemMa 1.5. If € > O is small enough, largw, —0,| < 0, |(,|, [W,| = R, then
Q1 (%) ~ (argwy — 0, 1w, |2+ W, 20, — 2.
LEmMA 1.6. If € > O is small enough, |largw, —0,| = J, and & el;, then
P5.(W;)— Re(a(0))W3*) > 0.

We take ¢ so small that the above requirements are satisfied and such that
the sets

Wy Py, (W;)—Re(a(0)wi*) < 0}

are the closures of their interior for j = 1,...,
In the ~ coordinates one has ; = {;, {, = {, +a(0,)(?*. Let ®#:C? - C?
be given by

P(Wy,W,) = (WI’W%‘(+Z’2) = (Wq, W3).

Let Q=97'(Q), Q, = ¢ '(Q), Q= ¢~ '(Q)), and Q) = ¢~ (). Note that
Rel, = 0. Let { = ¢~ '({). One has

Q; = {Rewi*+ P, (w;)—Re(x(0))?*) < 0},
Q, = {Rewi*+ P, (;) — Re(a(@/)w?*) < 0).

Let S{,...S{;J be the connected components of Q; N {W, = 0}. Say S} is the
component of {.

Fix any of the Q). To @ are associated two open Riemann surfaces
R; == R; with the following properties: There is a holomorphic map IT:
R;x C — C? of the form II(p,t) = (x(p)t, B(p)t) where a, B are holomorphic
functions on R; without common zeros; I is nonsingular when t # 0; there is
an open set & in R;x C such that I1|%2; - € is a biholomorphism. Moreover

&= {p} x5,
peR;

where $7 is a nonempty connected open sector in C. For each complex line
L < C? through 0, L n Q; is a union of finitely many disjoint, open, connected
sectors C;...C,y, and there exist g, ... gy, in R, such that IT is a linear
isomorphism between g; x §¢ and C,.

Let p,... p,,jeﬁj be associated to the sectors S§...S) in {W, =0} N @}
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There are also 2k sectors C,...Cy, in Q; N {W, = 0} with associated points
qi-.-42€R;.

We fix a holomorphic function ¢: R; —» C, nowhere identically vanishing
while ¢ vanishes at least to order 2k+1 at each of the points p,,..., Pa,»
i Gk

2. Construction of the Leray map.

We start with the meromorphic function 1/({; —w,) on Q} and pull it back
to R;xC to get the meromorphic function g = 1/({; —a(p)t). Fix a small
neighborhood V of {p,,...,p,} in R;. Observe that g is holomorphic as a
function of {,, p and t on S} x (Q‘j N (V x C)) and that there

lgl <inf{1/IC,, 1/1el} (e lgl = const. {1/IC 1 1/1t1}).

Let y e C5 (R;), x = | on a neighborhood V' <= V of py,...,p,. po¢ V and
supp x = V. We may assume that ¢ #0on V—{p,,....p,].
We define a ¢-closed form 4 = 4, on Q] by

1= {f”w/tb if p esupp Cx
0 if p¢suppCy.
Then ||A||;z £ €|In|{,||'/? for a fixed constant ¢ > 0. We now apply Hor-
manders theory for solving the ¢-equation, cf. [4]. Because 4, is an I* — (0, 1)
form for all {, € S§, we can use the same IZ-space for solving the C-equation
for all {, € S§. In particular, choosing the solution in the closure of the range
of 0* we obtain a linear solution operator T that satisfies ¢Tf = f and
ITflz < 6|If|l;z for all d-closed (0, 1) forms with coefficients in 2.

We observe that T/, <is a holomorphic function of {; on S}, because T
is linear.

Next we define Y{(p,t,{,) = xg —®TAi. We have
(1) 1Pl < Iinlg, |12 + 1.
We push y! down to Q; to obtain yi(W,(,) = yi(IT"'(W), {;) and return
to the ~ coordinates as follows. Let w be a primitive 2k-root of unity. Define

1 2k
W?(thlaCI) = ﬁ ZW%(WD(DJWZ’C] )
1

This function is holomorphic in (W,, w3, {,), hence it can be pushed down to
Q; yielding the holomorphic function

Y09, W2, 1) = Y309, (92— 02)V24, ).
Now y2(w, ) is defined implicitly by 1 = ({; =W, )Wt + (T, —W,)y3.
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Finally this can be written in the original w-coordinates as follows
= yt%, O —wi) +¥3 08, D[ —wa + Gy, wi (G —wi)],
where
G(Cy,wy) = a(0)CH —wi*)/ (L —wi) + (/M)F (L1, wy)/(Cy —wy)
and we define the map y/ by
wiw, O) = wiow, O+ 308, DG W)
wiw, ) = w3, {).

The map y/ satisfies the requirements for a Leray map, but only for (e X
with e e,

A global map is now easily defined using a partition of unity. Let
4 €CEU,), 1,20, Yy, = 1. Define

1
(2) viw, () = Z Xj(CI/ICI')W{(W’C) (i=1,2) forlel.
ji=1

Similarly we can push down each of the functions x,g, and ¢TA. On the
“level this gives functions x*, g*J, and (¢TA)* living on Q;. We have

vl =yt =gt = (T,

where we used that g*'/ is independent of W,.

3. Estimates concerning the Leray map.

LEMMA 3.1. There exists a constant C > 0 such that for (€ Zg, (,/I(\|€l},
and w e Q the following holds:

1. w0 =1if w, ¢S} and |Wwy,—T5| < 1/CIw,|?*.

2. M w,0)=0if w, €Sh or W, — o > Clwy %

3. (@TA)*IW,0) has a zero at w, = .

4. g~iw,0) = 1/(%,=Cy).

Proor. All these properties are direct consequences of the definition of
% ¢, and g and their transformation to ~ coordinates.

LEMMA 3.2. Let K be a compact subset of Qg. Then there exists a positive
constant k such that for every { € Zg, {,/I{,|€l; the set K, the pullback of
K to 2 has distance greater than x to the boundary of 2.
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Proor. The compactum K is for some positive o contained in
{Rew,—P(w;) £ —8}. In ~ coordinates this set corresponds to
K. := {ReWw,—0,(W,) S —8}. As the gradient of Re w,({,) — Q((,, W, ) remains
uniformly bounded as { e Xy, it follows that dist(K;,dQ) = & > 0. So for
G/l el;:

dist(R,02)) 2 &

by Lemma 1.4 and the observations following it. Pulling back to Q) is done
by a translation in the Im{, direction, which has no influence on the
distance to 0Q;, followed by taking the inverse image under a proper map
which does not depend on (. Hence, there is a compactum in Q) which
contains the pullbacks of all K. Finally IT:Q; —» Q) is a biholomorphism
and the lemma follows.

LemMmAa 3.3. For every compact K = Qg there exists a positive constant
(K) such that |{,—w,| > p(K) on suppy*’, and |I,—W,| > y(K) on
supp 1 —x*J, for we K and (€ Zg, {,/Iy] €]}

Proor. Let K denote K in the ~ coordinates. K depends on {, but by
Lemma 3.2 and its proof there exists d > 0 such that for {e Xy distance
(K, 00) > d. Hence

W, “‘811 <id= M’z—Zﬂ > 4d.

By Lemma 3.1, y*/=0 if |W,|** <3d/¢ or if w,eS, Therefore if
(W, 7) e supp x*/, then

W, —Z;] > min{}d,d/2Q - min[l, min (arg{, —argw,)] :=7;.

Ci/IEylel
W:GU:‘LHSI

7, is strictly positive because I; = S} and the sectors Sf are separated.

Next there exists 6’ > 0 such that Rew,+Q,(W;) < —& on K for all
{eZg. Now |W,—{,| <46 implies |Rew,| < 38’ because Rel, = 0. Hence
Q:(W,) < —3¢' and by Lemma 1.5, largw, —arg{,| > 6. By Lemma 1.6 and
the remark following it, we conclude that w, ¢ S§. From Q,(w,) < —3J' we
also infer that |w,| > A(6')"/?*, where A4 is independent of *({, |{| <R.
Application of Lemma 3.1 gives y*/(%,{) = 1, if

Wy — 3| < min{}d', A2*/C &'} = :9,.

Now take y(K) = min{y,, y,}.
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ProrosiTioN 3.4. For every compact K cc Qg the functions y,;, i = 1,2,
defined by (2) satisfy

lyi(w, Ol <IInjgy|1V2 +1, (e Zg, weK.

Proor. It will be enough to show that |yi(w,Q) <X |In|{ )1V +1, if
/I el (e Xy, weK. By the definition of y{ this reduces to proving that
the corresponding yi, y3 are majorized by a constant times |In|{,||''2+1,
because G({, W) remains bounded. Since y{ is the pushdown of ! we have

Iyt Dllx = Wi (p,t, Ollg, < Wi e, 6, Ol < Infc, 1'% + 1.

We used Lemma 3.2 for the first inequality, while the last inequality is just (1).
Next, we deal with

oo 1=C=w)yptend)
Wg(W, C) - ZZ—WZ .

We have for (€ Zg, we K, if |{, —w,| 2 y(K)/2

2
w3l < 7(—)(““@””24'1)

while if [{, —W,| < y(K)/2, by Lemmas 3.1, 3.3, and the fact that (¢pT4)*/
is holomorphic if |{, —W,| £ y(K)

=28, + G = W)@ TA
lwzw, Ol = ‘ s
4, j
= |@-m EE S e $ i,

4. Reproducing kernels on Q.
Let y be the Leray map for X as constructed in section 2, let y? be the
Leray map for d B(0, R), that is

4
(w-{—R?)’

We also need the map

viw, ) = — where w-{ = Y'w,Z, ({,w)eB(0,R)» B(O, R).

Li—w;
lw=¢l1>°

associated with the Bochner Martinelli formula.

yiw, () =
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We introduce smooth cut-off functions as follows. Let xeC *(RY),
0<a=1la(t)=1fort =20, a(t)=0fort = 1. Put

. 4] —¢
r:(s>=a(_"7—‘-, e = (&,6), & > 0,

‘| —R|—
Trz(g) = (lM‘"E_'"_EI‘>. €= (&,&), & > 0.
2

We distinguish the following parts in Qg
F, =?Q nBO,R), F,=7B(O,R)nQ, Fy=F, nF,.
We form for (w, ) e Qg x Qg
wenw,0) = [R2QOwiw, O+ —ZOWiw, O )1 =) )+ 2w wy, L)
€= (e1,6), n = (1,12)
Observe that we have for (w, {)e Qg x Qg
1= zj:W?"'(WKC)(C.-—W.-)

and we can extend y{'" smoothly to a neighborhood of €y x 0Qg, such that
the above identity remains valid.

ProrosiTION 4.1. Let f € A(Qg). Then for we Qg

4n*f(w) = j. SOK*"(w, {),

00

where

K*"(w, {) = (y*"(w, ()0ws"(w, {) — w5 "W, O)OWi"(w, 0)) A dly A di,.

The proof is a copy of the proof for the case of smooth domains: Fix
w € Qg, after changing ¥ in a small neighborhood of w, we can assume that
on this neighborhood ¥ = y*. Then by using Stokes’ Theorem, we see that

an’f(w) = J. FOK="(w,{),
o
where Q% form an increasing family of smooth domains which contain w and
exhaust Qi when 6 — 0. If we let 6 go to 0, we obtain the required formula.
We will let ¢ and n tend to 0. Then K*" will tend to a form K° which
is holomorphic in w. This already would yield an integral representation, but
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perhaps only in some principal value sense. We proceed by proving that K°
is a form with integrable coefficients.
Define

Kiw,0) = W10y, —¥,20.0,) A dEy A dE,
Ky(w,{) = (Wioy3 —wioyi) A diy A di,
Ksw.0) = (W w3 — iy )dl, A di,.

THeOREM 4.2. Let K < Qg. There exists a constant A such that

J|K;(W,C)l <A forweK (i=1223).

Proor. The major part is the case i = 1. On Q x 0Q we have the following
equality

a—CWZ(Wa C)
w

Y10 — a0y, = _Z,

1
3 Y 1 C /i w, Q)
ji=1
w, —(,

M(w C) 20w, C)
) Ve
Z( X 1) Z wl_Zl

As x; depends only on arg{,, we have ||d.x;ll < 1/I¢l. If lwy, — 4| > y(K) we
conclude that (3) is majorized by a constant times

3) =

|I

1 1 1
@ ) T SR WA Ol + e sup v, ).

Now

wiow, ) = w305, 0) = ¥y, (.- 050, 01)

which is a holomorphic function of three variables. Hence

ovi 631 L e ) LoV oy 0w,
6( T at; a(Wz‘Zz) of; oW, 61,’

In view of the form of the ~ coordinates we obtain

_ 0 0w =0o)
TR SE A
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Fix an open Q such that K cc Qg o= Qg. Because § is holomorphic we
have, using Proposition 3.4

0d
sup |=—— < su = su In|l,||V?+1
weg 6(“’2_82) “EngI‘ Mep,(W/“ | IC!H
and also
a(Wz—Zz) <|W1“C1|
g, €41

We infer that (4) is bounded by a constant times

[Ini, "2 +1
14

for lwy — {4l > y(K).
Now for |w, —{,| < y(K) we proceed as follows. We have |w, —,| > 7(K)

and by section 2

Wi 0) = yhige, 7y = Y0 =)

W, —-0)
Hence
) 1 1
(5) sup |3 doxwh/wy — SOl < sup |lyiiw, Ol
wekK (K) I 1| weK

where we used that ) {d.x; = 0. Similarly

1 1
0,
wi—0 W =0, )’(K)”ZB-CWI ”)

As before, we use that y? is holomorphic as a function of w,, w,—, and |
as well as the estimate for 6(@2 —,)/0Z,, to majorize (6) by a constant times

1+ su .
@] < Sup W ')
Proposition 3.4 combined with (5) the estimate for (6) gives that (3) is bounded
by a constant times (/In]{,]|'* + 1)/|{,| for we K. On F, we can take as local

coordinates Re{,, Im{,, and Im{,. The Jacobian determinants remain
bounded and we obtain

(6) Sug > x; 005 /(wy — SN < sup (

weK

1 12 41
j|xl|§c j %Ldkec,dlmc,dlmczéA
Kil <R
lnlt,‘,|<<R

for some constant A.
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(i = 2): Just note that y? and hence K, are smooth and bounded for
weK cc= B(0,r), {ecB(0,R).
(i = 3): By the boundedness of y? and Proposition 3.4
w3 —wival <injd 172 + 1.
Also
ldly A dE) S Jdxt A dxd|+1dxt A dx3|+ldx? A dxd|+|dx3 A dx3|,

where ;= xj+ix}, j=12 Using x} = P(x},x}) with @P/x}, OP/éx?
bounded for |X| < R we can estimate

R R
fle(Ws OI< j J (Injt])}/2 + 1)dtds
F "R R

J

and the latter integral is bounded.
Lemma 4.3, If yiw,{), i, j = 1,2 satisfy
L= (wy =)W w, O+ (wa = L)h(w, 0),
for w,{) in a neighborhood of 2 x 0%, then
Vi —widy = yidwi —vidyi.
Proor.
Wi =C)[Wi =¥z — (W2 —y3)iyi]
= W=y~ (w2 = 0)0ws — wi = {)wi]
= — W2 =¥ (W, =L+ w2 —Lo)wi] = 0.
Similarly
(w2 =0 Wi =y — (Wi —y3)wi] = 0
and the Lemma follows.
THeEOREM 4.4. Let f be a continuous function on 08y, then
CLf1w) := ,_il J SOK w,0)
F,
is a holomorphic function on Q. Moreover, if
f € A(Qg) (= C(Qr) N H(RR)),
then C[f] = f.



A HOLOMORPHIC REPRODUCING KERNEL ... 55

Proor. The first statement follows easily by differentiating under the
integral sign, the Cauchy formula and dominated convergence. Next, if
f € A(Qg), we Qg we have by Proposition 4.1

fw) = J JOK="(w, ).
Qg
We put
Ui = Wiw, ) = T2QOWiw, O+ (1 = 2Owaw. 0), i =1,2.

Evaluation of K*" yields, using Lemma 4.3
6) K="(w, ) =[(1 -1, )2(‘513-&172 _'/72"?;'171 )+

+ (1,203 —yidyi) +

+ T;(] - T.‘, )['l’?a-;'pz + '/713;‘/’3 - V’;P’_;{/;l _';zF;V’?] +

+ 1501 -1, )['l’:x"-l;z'— W%lpl]“‘

+(1 —T;)H;T;[Wg'px _W?‘;zl A dSy A dE,

= [0 =)W, G2 =¥l ) + 1 (Wi a3 —y3dwi) +

+5;T;(Wg|/71 "/’?‘/72)]‘1{1 A de;.
We plug this in (4.1) and let n, — 0. Then 7, will tend in measure to the
characteristic function of the disc |{,| < n,, while (91,/80,)d{; A d{, will tend
in measure to arc length on |{,| = n,, compare the proof of a slightly more
involved but similar assertion in the sequel. Now we let n, — 0, then

j FRWRTWE— TN A A
Ny

will vanish, because the integrand is a continuous function and integration
is over 0Qg N {|{y| < ny}. Also if 4, =0

J fW3¥, —v3y,)d,de, -0 (o, = arc length on |;| = n)

Kal=m
{edfly

because the integrand is bounded by a constant times |In|(,||'>+1, in view
of Proposition 3.4. Therefore

fw) = j (‘tha-c'pcz —'/’;czaﬂ;zx)dCx A dg,.

o0
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We perform the same manipulation to obtain

fw) = Jf(l)(l—Tf(C))(Wx(W,C)E;Wz(W,C)—Wz(wa)F;l/ln(W,C))dCx AdG +

Fy

+ Jf(C)Tf(C)(M(W,C)J;'ll%(w,C)—W%(MC)(”E\I/%(W,C)) A dly A dl+

o0y

+ jf(C)ag(Tf(C))(!//l(W,C)ll/%(%C)*Wz(Wl)Wf(MC) AdCy A dE,.
Fy

We used that supp(l —12) N dQg < F, for all ¢,,¢, > 0.

If ¢,6; — 0, then the first integral tends to 5;} f(O)K;(w,{) by dominated
convergence, in view of Theorem 4.2. Similarly the second integral tends to
Jr, f(©)K;(w,{). For the third one, observe that

I8 T2(ONl £ Cle, and supp dst, < 0Q N {R—g,—¢; S |{] S R—¢).

We let first ¢; go to 0. Again, by dominated convergence

lim JfE;TE(W1W§-W2W%) A dly A dE,

g -0
F,

= Jfagf&),sz)(W1W§“W2Wf) Adly A dE,.
N

We claim that

lim J‘fa—;f(o,cz)(!l’l'/’%—\/’zw}) Adly AdE, = ffd51 A dg,.
Fy

£, -0
il

This is seen as follows: Put
gw,8) = (W1¥3 =y i)W, (),
let f({) be a CZ-function on R such that
sup |f —f| < &

{eF,

and let () be a CQ-function on 0Q such that |§j|<g on F, and
g=gonF, n{|{] 2 é}. Then

(7) ljfga—f(iez Adly A dl— jﬂqu1 A di,
0 Fy
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< I f(fg 7§05, A dly A dL,

aQ

+\ f]gﬁrghdc, Ade—

- ff.fidln A dE; +\ j(fé—fg)dCx e

F, Fy

Taking Re(,, Im{,, Im{ as coordinates we have, because the involved
Jacobian determinants are bounded

8) ’J(,/g“fg)gfo,ez ANdL AdEG | S CO J g/e|dRe{dIm {,dIm{, +
aQ JefQ
R—-e2 <[l|]<R
+C j g/e;|dIm ¢, dIm {,dIm{,.

{edR
6l <, R—g; < |1l <R

Now we integrate first with respect to Im¢,, and observe that for fixed (;,
Im{, runs over an interval of length C'-¢, and that g s bounded by
C"(IIn | &, |1Y2 +1), which is integrable. We infer that (8) tends to 0 with o.
For the second term in the righthand side of (7) we have by integrating by
parts

f J§85., A dly A dly = J T (o, A dly A dE,
n o0
which leads to
0. fG Adly Adl, as e —0.
AQ\F,
By Stokes’ Theorem
J 3:(fg) A dly Adly = J d(fgde, A di;) = Jf!id(:l A dG,.
N\F, OQ\F, F,

Finally the third term in (7) is O(élogd) as 6 — 0.
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