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FUNDAMENTAL THEOREMS FOR LINEAR MEASURE
DIFFERENTIAL EQUATIONS

JAN PERSSON

1. Introduction.

The aim of the present paper is to give proofs of some fundamental
theorems for linear measure differential equations i.e. equations where some
coefficients are allowed to be complex Borel measures. We shall prove
theorems for first order linear systems and apply these theorems to scalar linear
equations of order n > | rewritten as systems. In Section 2 we prove an
existence and uniqueness theorem, Theorem 2.1, for the two-sided Cauchy
problem. We refer to this theorem in the introductary discussion of measure
differential equations below.

We look at the simplest model equation. Let 6, be the Dirac measure at
x = 1. Let ¢ and a be constants. We look at the problem

(1.1) Du+adu=0, x>0, u0)=-c.

Formally (1.1) is equivalent to the integral equation

x

(1.2) u(x)=c—a ju(s)dé,(s).
0

But (1.2) is ambiguous. If the integration is taken over [0, x), then u(x) = c,
x £ 1, and u(x) = c(1—a), x > 1.

This corresponds to an Atkinson [2, Sections 11.8, 11.9] interpretation of
(1.2). If the integration is taken over [0,x], then u(x) =c, x <1, and
u(x) = c(l+a)™!, x 2 1. In the last case u(x) does not exist for x = 1 if
a = —1. This is the Sharma interpretation of (1.2), see [29]. In Theorem 2.1
the condition a # — 1 is expressed by condition (2.1). The proof of Theorem 2.1
shows that the forward part of the theorem for first order equations
corresponds to the Sharma interpretation and that the backward part
corresponds to the Atkinson interpretation of the forward part.
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We have just pointed out the connection between the Sharma interpretation
and the Atkinson interpretation. The one is just the reflection of the other.
Here we have chosen the interpretation giving right continuous solutions.
Anyhow condition (2.1) is very disturbing. It is hard to motivate physically
or in other ways that (2.1) must be satisfied. The main result, Theorem 3.1
in Section 3, solves this paradox. If one regularizes the Dirac measures in
(1.2) and then takes the limit of the solutions of the regularized problems
then this limit does not solve (1.2) in either sense. Theorem 3.1 says that the
limit solves a modified version of (1.2) in the Sharma sense. Theorem 3.1 is
formulated for a first order linear system. Corollary 3.2 is a reformulation of
Theorem 3.1 to the case of a scalar higher order linear equation. A first order
version of Corollary 3.2 is found in Persson [23]. Examples for the wave
equation corresponding to Corollary 3.2 are found in Persson [25]. See
also [21].

In Section 4 we give an existence a uniqueness theorem, Theorem 4.2, for
a system of first order stochastic differential equations. In Gihman and
Skorohod [9, p. 216] one asks for a satisfactory theory for measure differential
equations. We guess that they think of the obstacle set by condition (2.1).
In the light of the results of Section 3 we believe that the system of
Theorem 4.2 in an approximation situation should be modified according to
Theorem 3.1 with the true stochastic part unchanged. But we have no proof
of this.

In Section 5 we prove an extension of Libri’s theorem on the correspondence
between the coefficients of homogeneous linear differential equations and the
fundamental set of solutions of the equations, Corollary 5.2. Theorem 5.1 is
the corresponding theorem for systems. As to Libri’s theorem see Demidov [7],
and Coddington and Levinson [5, Theorem 6.2, p. 83]. Condition (2.9) turns
out as a nice condition on the Wronskian of the fundamental set.

In connection with an earlier version of this note the referee pointed out two
important references which I have missed, Kurzweil [13] and Schwabik,
Tvrdy, and Vejvoda [28]. See also Kurzweil [12]. It turns out that Theorem 2.1
is essentially contained in [28, Theorem 3.1.4, p. 106 and Theorem 3.3.1, p. 124].
The book [28] contains a detailed account of what in our terminology is
linear measure differential systems. In [12] Kurzweil introduces an integral
which turns out to be the Perron-Stieltjes integral, see [28, p. 33]. He uses
the integral to define generalized differential equations. In [12], he treats a
class of such equations with continuous solutions. In [13] he introduces a
problem close to that of Theorem 3.1, see [13, Theorems 5.1 and 5.2]. The
difference is that there is only one jump in the limit and the continuous
parts of the right hand side does not change in the limiting process whereas
the limiting process is more general and the problem is non-linear. Theorems
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5.1 and 5.2 are derived from Theorems 4.1 and 4.2. The assumptions of the
hypotheses of the latter theorems are complicated and hard to verify.

Section 5 below is also essentially contained in [28, pp. 111-123]. Still we
think it deserves its place here given by the definitions of this note. In [28],
there seem to be no results of the kind which is expressed by Theorem 3.1.

For earlier special cases and variants of Corollary 2.2 see also Sharma
[29], Pandit [15], Deo and Pandit [8], Persson [17], [18]: For results on
boundary problems for measure differential equations apart from those con-
tained in the book [28] see Albeverio, Fenstad and Heegh-Krohn [1], Birke-
land [4], Kac and Krein [11], Mingarelli [14], Persson [15], [22], Benne-
witz and Everitt [3]. As another example of Atkinson interpretation see
Samoilenko and Perestyuk [27].

If one disregards the models lying behind measure differential equations
one may look at the following mathematical problem. What conditions must
the differential equation fulfil in order to have solutions in a certain class.
For first order equations we have Peano’s existence theorem for continuously
differentiable solutions, and Carathéodory’s theorem for absolutely continuous
solutions. The hypotheses of these theorems can be weakened, Peetre, Persson,
see Persson [16]. When the solutions are allowed to be of locally bounded
variation then measure differential equations arises in a natural way. Then one
may ask if it is possible to have linear equations where some coefficients are
distributions and not necessarily measures. In Persson [19] one shows that it
is possible to prove an existence and uniquene$s theorem for the Cauchy
problem for such equations. For equations of order strictly less than three it
is just the forward part of Corollary 2.2 with zero initial data. It differs for
higher order cases. In Persson [24], these results are extended such that the
forward part of Corollary 2.2 is a special case of a general theorem for
distribution differential equations.

I like to thank Einar Mjelhus. He challenged me on the question of
regularization of first order measure differential equations. His criticism
initiated the search which ultimately led to Theorem 3.1. Later the same kind
of criticism is found in a book review by O. Hajek [10]. I also want to
thank the referee not only for pointing out [13] and [28] to me but also for
encouraging me not to leave Theorem 3.1 as a conjecture for n > 1.

2. The Cauchy problem.

Here we prove the existence and uniqueness theorem for the two-sided
Cauchy problem for measure differential equations. We also prove a theorem
of the equiboundedness of the solutions of the corresponding regularized
equations for fixed initial data at a fixed initial point. The proof of our main
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result, Theorem 3.1 of Section 3, depends heavily on the results of this section
and also on their proofs.

The space of all complex Borel measures on the real line is called 2°.
Let k > 0 be an integer and let D denote distribution differentiation. Let f
be a complex valued function such that D*fe #°, then f is said to be in 2%
By choice the elements of #* k > 1, are continuous and those of #' are
continuous to the right.

The natural dual of #2° on any compact interval is the space #° of all
locally bounded Borel measurable complex valued functions. Just as we have
chosen the elements of #*, k > 1, continuous and those of 2! right continuous
we go outside distribution theory when we define #*. Let k > 0 be an integer
and let f and g be complex valued functions such that DY =g in 2’
with g€ #°. Then the pair (f,g) is said to be in #* In the same way if
f€2 and D*g = f in 2’ with ge %°, then (f,g) is said to be in 7% We
normally write f = (f,g) and tacitly think of this special g. If f € 87, then
a primitive function of f is g+C with C a constant. If f €#° then the
primitive distribution of f in 2! is right continuous so we do not have to
think of #* as a space of pairs.

THEOREM 2.1. Let n 2 1 be an integer and let ae R. Let A be an n x n matrix
with entries in 2° and let I be the n x n identity matrix. Let f € (P°Y'((#~')").
We assume that

.1 A({x})+1 is invertible, xeR.

Then to each choice of ¢ = (cy,...,c,) €C" there is a unique ue (P (#°))
such that

X X

22) u(x) =c— ~[d:‘i(t)u(tH jdf(t), x 2 a,
and
(2.3) u(x)=c+ JdA(t)u(t)— j df(t), x<a.

Proor. We solve (2.1) and (2.2) by successive approximations. At first we let
f €(2°). Now the integrals of (2.2) are taken over the interval (a, x] and those
of (2.3) over (x,a] in the ordinary sense. The exact meaning of the last
integrals of (2.2) and (2.3), when f € (#')", is the primitive distribution of f
in (#°)" which is zero at x = a.



FUNDAMENTAL THEOREMS FOR LINEAR MEASURE DIFFERENTIAL EQUATIONS 23

Let

(2.4) vo(x) = c+ jdf(t), xZa, volx)=c— de(t), x <a,

at x*

and

a

(2.5) vp(x) = JdA(t)v,_l(t), x < a,

x*

vy(x) = — jdA(t)v,,-,(t), xZa,p=12,....

at

We chose the norm

|dl = max |d;|, deC"

I<j<n

and

HBH==‘H?X XZWﬂL

sksn j=1

when B = (bj,) is an n x n matrix with entries in C. It follows that |Bd| < ||B|||d|.
If h = h"+ih", where h’ and h" are signed Borel measures, then we let

1= (fils- - 1fal):

In the same way we let |4]| = (jayl).
Let b' <a < b be constants. Then there is always a finite number of

points x,, k= —j, —j+1,..,0,1,...j for some j such that x, =a,
b'=x_j<x_j4; <...<xj=b, such that
(2.6) MAIx X4 ) <278, —j Sk <j.
Let the constant C be defined by
b

2.7) le] + ‘ Jdlfl(t) =C.

bl+
We claim that
(2.8) lo,(x)| S27PC, xo=x<x;,p=0,1,....

It follows from (2.7) that (2.8) is true for p = 0. Let it be true for p =L
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Then (2.4), (2.6), and (2.8) shows that

X1

j d|A|(r))

xg

e () < sup  |ui(x)| S27171C, xo £ x < x;.

Xo £ X=X,

That shows that (2.8) is true for all p. Let u = Z:O=0Up- It follows that u
converges, that ju(x)| = 2C, x, £ x < x,, and that

u(x) =c— IdA(l)u(t)+ jdf(t)

in the same interval. It is now also clear that u(x;) exists and that
lu(x;)l = 2C. Then we compute u(x,) from (2.2). We get

u(xy) = ulxy)—A{x ulxe) +f ({x1})

This is always possible because of condition (2.1). It is obvious from the proof
that the solution u in xo = x £ x, is unique. It is also obvious how we
now can repeat the proof in x; = x < x,. Then we get a unique value of
u(x,) and so on. We finally arrive at a unique solution u in a £ x < b. For
the backward part we start by computing u(a™) from (2.3). We get

u(@”) = c+A({a})c+f({a}).
Then we solve

u(x) =u(@ )+ j dA(@)u(t)+ J af(t), x.i=x<a

by successive approximations. We do not write down that proof. Then we
compute u(x-,) from (2.5) and repeat the proof in x_, < x < x_,. Finally
we arrive at the existence of a unique solution u in (#')" of (2.4) and (2.6).
If f=(f,fo)e(@ '), then we let v(x) = u(x)—fo(x)+fo(a). Then (2.2)
and (2.3) are turned into equations of the same form with u replaced by v
and with a new f which this time is in (#°)". It follows that v exists and is
unique in (2')". Then u exisits in (#°)" and is unique. Theorem 2.1 is proved.

CorOLLARY 2.2. Let n>0 be an integer and let acR. Let aje#°,
0= j<n,andlet f e P° (B ). Let

29) a,-1({x})# —1, xeR.
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Then to each choice of ¢ = (co,¢y,...,C,_1)€C" there is a unique ue P"(#" ')
such that

(2.10) u®+a,_u" V4 tagu=f, Diu@)=c;, 1= j<n.

Remark. The precise meaning of (2.10) is that if f € 2°

X

(2.11) u" D(x)+ jd(a,,_lu‘"‘”+ cootagu)t) = ¢,y + fdf(t), xZa,

+ +

and
(2.12) u" Y(x)— fd(an_lu‘"_"+ e taqu)(t) =cpoy — de(t), x < a,
x* x*

with Dlu(a) = ¢;, 0 S j<n—1.

ProoF. One rewrites (2.11) and (2.12) as a system just as in the case of
usual differential equations. Then (2.9) turns out to be equivalent to (2.1) for
this system. Then the conclusion is drawn from Theorem 2.1. As to the case
when f € #~! we also refer to what is said in the proof of that theorem.

Let A and f be as in the hypothesis of Theorem 2.1 with f € (2°)". Let
¢eC(R), ¢ 20, with [ ¢(x)dx = 1 and supp¢ in |x| < 1. Let ¢ > 0 and let
¢(x,€) = ¢((x+¢)/e)/e. Let

A(x, &) = J¢(x—t,£)dA(t) and f(x,¢) = '[(p(x—t,a)df(t).

We let dA(t,e) = A(t,e)dt and df (t,€) = f(t,e)dt. When we regularize in the
following we shall always use this regularization. Also the notation will be the
same. Thus the reader is asked to notice that dg(t) = d(g(t)) = g(t)dt in the
following, if g is a function.

THEOREM 2.3. Let the hypothesis be as in Theorem 2.1 except that (2.1) is
not necessarily fulfilled. Let ¢ > 0 and let

X

(2.13) u(x, &) =c— jdA(t,s)u(t, e)+ fdf(t,s).

Let b’ < a < b be constants. Then the family (u(x, €))o <. <1 is equibounded in
b=x=b.

Proor. It is no restriction to assume that a = 0 and that b’ = —b. This
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we do from now on. We solve (2.13) by successive approximations. Let
vo(x, &) = ¢+ [3df (t,&) and let

X

(2.14) D1 (X,E) = — JdA(t,s)v,,(t,s), p=01,....

0o

We assert that there is a C 2 0 independent of ¢, 0 < ¢ < 1, such that

), |x| < b.

We choose C = lc|+ ["}'d|f|(t). Then (2.15) is true for p = 0. Let (2.15)
be true for a certain p. Then (2.14) and (2.15) shows that

(2.15) lv,(x,€)] = 27PCexp (2 , JIIA(I, e)||dt
(1]

= I J IHA(L, e)lllvy(t, €)ldt
0

Ja

[vp+1(x,€) = ' JdA(t, e)v,(t, &)
0

< UHA(t, £)l2""Cexp (2 I J 146, o)lds
0 0
)-)

By that we have proved that (2.15) is true for all p. Let

£27riC <exp (2 . J‘ I|A(t, €)l|dt
(V]

S27P 1Cexp <2|JIIA(t,e)||dt
0

a0

u(x,e) = Y vp(x,¢)

p=0

Now we notice that

x b+1
2U||A(t,e)ndt 2% % jdla,k|(t)=u.
j=1 k=1

0 -b
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Then we see that u(x,&) converges uniformly on |x| = b, that u(x,¢) solves
(2.13) and that |u(x, )] = 2Ce®, |x| £ b. Theorem 2.3 is proved.

3. The limit of solutions of regularized problems.

Theorem 3.1 and Corollary 3.2 below can be seen as a solution of a
problem raised by Kurzweil in [13]. See also Hajek [10]. In earlier versions
they were only given as conjectures when n > 1, Persson [23]. The proofs
below are a modification of the proof of the first order scalar result of [23].

THEOREM 3.1. Let the hypothesis be as in Theorem 2.1 with [ € (#°)" and
without condition (2.1). In addition let ¢ > 0 and let

gD)=Y (H 'D7Y,
j=1

where D is an n xn matrix with entries in C. Then when ¢ — 0 the solution

u(x, ¢) of

G.1) w'(x,e)+ Alx, e)u(x, &) = f(x, &), ula,e)=c,

converges pointwise to the unique solution ue (#')* of

(3.2) u(x) =c— ~“y(z‘i({t}))dA(t)u(t)+ J‘y(A({t}))df"(t), x 2 a,
and ; ;

(3.3) u(x) =c+ Ig(A({t})WA(t)u(t)— fy(A({‘}))df(t), x <a.

Proor. We let A(-,0) = A and f(-,0) = f. At first we assume that there
is only a finite number of points x with A({x}) # 0. At last we remove this
restriction.

We let f = f,+7, where f, has no point masses and where /=Y _ b0,
with b;eC" and J,, is the Dirac measure at the point x = x;. If we sum
Y b; over all j with x; in a given bounded set, then this sum is absolutely
convergent, since f is a complex Borel measure. We shall prove the theorem
in an arbitrary fixed interval b’ = x < b, where b’ < a < b. We then assume
that Y 7, b; is absolutely convergent and that b’ < x; < b for all j.

Let fy = Z,= 1b;6,,and let hy = Yy, 1b;0,,. We notice that

6xj(x’ 8) = ¢(x —Xj 8)
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in the terminology of Section 2. We solve the regularized problems

X X

(3.4) Up(x,€) =c— jdA(s,s)uO(S,e)+ fdfb(s,a)
(3.5) uj(x,e) = — jdA(s,s)uj(s,£)+ j¢(s—xj,£)dsbj, 0<j=N,
and
(3.6) vn(x,€) = — JdA(s, e)n(s, e)+ Ith(s,s).
Let
N

3.7) u(x,e) = Y ujx, ) +uvy(x, ).

i=o

It is then clear that u(x, ¢) solves (3.4) when f, is replaced by f and thus also
(3.1). Let

x x
r r

uo(x,0) =c— | g(A({t}))dA(t, 0)uo(t,0)+ | dfo(s,0), x 2 a,

o o
a* a*

(3.8)

a a
»

uo(x,0) =c+ | g(A({t})dA(t, 0)uo(t,0)— | dfo(s,0), x <a.

Y o
x* x*

It follows from (3.8) and Theorem 2.1 that ug(x, 0) exists.
At first we assume that A({x})=0 for all x in b’=Sx <b. Let
Vo(X, €) = ug(x, €)—ugy(x,0). We combine (3.8) and (3.4) and get

(3.9) vo(x,€) = — IdA(s, €)vo(s, &) +g(x, €),

where

g(x,¢) = jd(A(S, €)—A(5,0))uo(s, 0) + '[d(fo(s,S)—fo(s,O)), x Za,

a* a*
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and
g(x,a) = - fd(A(S,8)"“/4(5,0))“0(8,0)" J‘d(fo(sv 8)_./6(570))7 x < a.

The measure (A(,€)—A(,0))up(-,0) goes setwise to zero as does
fo(-,€)—fo(-,0). Then [26, Proposition 18, p. 232] shows that g(x,¢) goes
uniformly to zero in b’ £ x = b when ¢ — 0. Then it follows from the proof of
Theorem 2.3 that vy(x, &) = 0 when ¢ — 0. In other words ug(x, ¢) = ug(x, 0).

Let there be just one x in b’ < x < b such that A({x}) # 0. We call it x".
At first we look at the case a < x' =b. The proof above shows that
ug(x, €) = ug(x,0) pointwise in b’ £ x < x’. Then we get

ug(x, &) = uo(x'—2¢,€)— j d(A({x'})P(t —x', e)uo(t, &) —
-2

x’ £

(3.10)

X

- j d(A(t’ 8)_¢(t—x,7E)A({xl}))uo(ta8)+ j dfo(t’ 8)-

x'—2¢ x'—2¢

We notice that the value of uy(x'—2¢, ¢) is not influenced by the point mass
at x = x'. Neither is ug(x'~,0). We know that uy(x, &) tends to ug(x,0)
uniformly on bounded sets when there is no point mass in 4. So we see that

Up(x" —2¢,&)—up(x'7,0)
= ug(x'—2¢, &) —ug(x’ —2¢,0)+ug(x’ —2¢,0)—uy(x’ ~ 0)

goes to zero when ¢ — 0. It follows from Theorem 2.3 that (uy(x,€))g <z <1
is equibounded in x' £ x < b. We rewrite (3.10).

(3.11) ug(x, &) = up(x' —2¢,€)— '( ot —x', e)d(A({x'}uo(t, €)) —
-2

x'—2¢

X

- J dg(t9 8)9

x' =2

with ¢g(t, ¢) defined by

(3.12) g(t,&) = (A(t, &) — A({x'}) ot —x', )uo(t, €) — fo(t, &).
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The solution of (3.11) is given by

X

(3.13) uplx, &) = exp(— j ¢(t—x’,a)A({x’})dt> x

x'—2¢
x(uo(x'—2e,£)+ J exp( j ¢(s—x’,s)A({x’})ds)g(t,e)dt).
x'—2¢ x'—2¢

Let

t

hit, &) = exp( f ¢(s—x',£)A({x’})ds>g(t,e).

x'—2¢

It follows from (3.12) and the equiboundedness of ug(x,¢) in = x < b
that h(-, ¢) tends setwise to a complex Borel measure without point masses
in the same set. Then it follows from (3.13) that

uo(x', €) = e~ ANy (x'~, 0).
It follows from (3.8) that
uo(x'~,0) = (I +g(A({x'})A({x"}u(x',0) = eAlxDu(x', 0).

We now see that ug(x’, €) = ug(x,0) when ¢ — 0. Let

X x

vo(x, €) = up(x’,0)— jdA(s, €)vo (s, €)+ fdfo(s,s).
It follows from the proof above that vy(x, €) = uy(x, 0) when & —» 0 uniformly
in xX’ £ x £b. From the proof of Theorem 2.3 it follows that vy(x,e)—
—up(x,e) >0, when &£— 0 uniformly in b < x<b, since wuy(x',e)—
—(x’,0) = 0. By that we have proved that uy(x, e) = uy(x,0) when ¢ - 0.
If b’ = x' £a then as before we have that ugy(x,&) — u(x,0) uniformly
inx' < x £b. Let

git,e) = —(Alx, &)= ¢t —x', e)A({x'})uo(t, ) + fo t, £).

We multiply both members of

(3.14) up(x, &)+ A({x' @ (x —x', euo(x, &) = g(x, £)
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by exp(— ji ¢(t —x', e)A({x'})dt) and integrate from x'—2¢ to x'. We get

(3.15)  up(x’, ) —e~ ANy (x' —2¢, €)

= J exp(— f(p(s—x’,e)A({x’})ds)g(t,e)dt.
x'—2¢ t

The integrand of the right member is called h(t, ). We see from the definition
of g(t, €) that h(-, ¢) tends setwise to a measure without point masses. Then the
right member of (3.15) tends to zero when & — 0. Since uy(x', &) = up(x’,0)
we see that

uo(x' —2e, €) = eAXDug (x', 0).
We notice that (3.8) shows that
up(x'~,0) = (I +g(A({x"}))A({x"}uo(x’, 0)
= eAxXDyy(x', 0).

So ug(x'—2¢, &) = ug(x’~,0) when ¢ — 0.

Let h(x,e) = 1, x = x"—2¢, and h(x,¢) = 0, x > x’—2¢e. The measures with
the densities h(x, £)A(x, €) and h(x, €)f (x, ¢) tend setwise to 4 and f in x < x".
For x < x'—2¢ we get

Uo(x, &) = ug(x'—2¢,¢)+ j dA(s, 0)ug(s, &) — J‘dfo(s,0)+
+ J‘ d(h(sa S)A(S, 8)_A(sa0))u0(s’ 6)— J’d(h(s’ e)fO(s9 8)-.[0(3’ 0))

Let vo(x, €) = ug(x, €) —ugy(x,0) and let

x'

g(x,e) = J d((h(t, e)A(t, &) — A(t,0))uo(t, €) - h(t, €) fo(t, &) +

x*

+ fo(t, 0)) +uo(x’ — 2¢, ) —up(x'~, 0).
One sees from above that g(x, &) — 0 uniformly in b’ £ x < x’. We see that
o
vo(x, &) = g(x,€)+ j dA(s, O)y (s, €).

x*



32 JAN PERSSON

It then follows from the proof of Theorem 2.1 that vy(x,¢) tends to zero
uniformly on compact subsets of b’ < x < x'. By that we have proved that
ug(x, &) = ug(x,0), € » 0, when there is precisely one x with A({x}) # 0. The
extension to the case with finitely many points with that property is
immediate from the proof above. We do not write it down.

Let j> 0 and let us assume that x; > a. We solve (3.5). We see that
ui(x,e) = 0 for x < x;—2e. We rewrite (3.5) as

(3.16) uj(x, &)+ o(x — x;, e)A({x;} uj(x, £) — p(x — x;, €)b; = g(x, ¢),
where
g(x,e) = —(A(x, &)= o(x —x;, e)A({x;}Duj(x, €).

By Theorem 2.3 we know that (u;(x,€))o <. <, is equibounded in b’ = x < b.
We multiply both members of (3.16) by

X

exp ( J ot —x;,e)A({x;} )dt)

x;—2¢

and integrate from x;—2¢ to x;. In the new equation the right member tends
to zero as ¢ — 0, just as in (3.15). We get

exp(A({x;}))u;(x, €) —
X . t 5
- j ¢(t——xj,s)< z ( [ ¢(s—-x,-,s)A({xj})ds) /k!)bjdt
k=0
x;—2 x;—2e

= CXP(A({xj} Nuj(x;, €) -g(A({xj} ))bj -0, £¢-0.

In other words )
uj(x;, €) = exp(— A({x;}))g(A({x;}))b;, &— 0.
We define uj(x, 0) by

u;(x,0) = — Jg(A({t}))dA(t,O)u,(t, 0)+ fg(A({t}))b,d&,,(t), x 2 a,

+ +

a a

3.17)

“j(x’ O) = Ig(A({t})MA(t9 0)“j(t9 0)_ Ig(A({t}))bﬂéx,(t)s x <a.

x+ ) x-O
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Now (3.17) gives
uj(x;,0) = exp(—A({x;}))g(A({x;{)b;.

This shows that uj(x;, &) = u;(x;,0), ¢ = 0. Then the proof for j = 0 applies
in x; £ x £ b. So uj(x, &) = u;(x,0) pointwise in b’ < x = b ifa = x; = b.
Let x; < a. Then uj(x,e) = 0, x; = x = b. Now we multiply (3.16) by

X,

exp (— j ot —xj, e)A({x;) )dt)

and integrate from x;—2¢ to x;. This time we get
—exp(—A({x;})u;(x;—2¢e,6) —g(— A({x;})b; > 0, ¢ —0.

An easy computation shows that e®g(— B) = g(B) for any matrix B. It follows
from (3.17) that u;(x;,0) = —g(A({x;}))b;. By that we have proved that

uj(x;—2e,e) = uj(x;,0), e » 0.

The proof for j =0 then shows that uj(x, &) = u;(x,0), ¢ = 0, pointwise in
b' = x < x;. By that we have now proved that u;(x,e) — uj(x,0), ¢ =0,
j=0,1,..., pointwise in b' £ x £ b. Let

en(x,0) = — f GIA(EHAA(L, 0)oy(t, 0)+ jg(A({t}))th(z). x2Za,

(3.18)

on(x,0) = fg(A({t})dA(t,0)v~(t,0)— jg(A({t}))th(t), x <a.

x* x*

It follows from the proof of Theorem 2.1 that vy(x,0) goes to zero uniformly
in b’ £ x £ b. It follows from the proof of Theorem 2.3 that vy(x,¢) tends
to zero uniformly in b’ = x £b,0 <& < 1, when N — oo. Let

N
WN(x’O) = Z uj(x90)'

j=o

Then we let u(x,0) = 3 ;2 ou;(x,0). We see that u(x,0) = wy(x, 0)+uvy(x,0)
and that u(x, €) = u(x,0), € = 0. It is now also obvious that u(x, ¢) solves (3.1).
We see that
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X X

u(x,0) =c— JQ(A({I}))dA(l)Wn(LOH JQ(A({t}))dfﬁ(t)+
+un(x,0) = c— jg(A({t}))dA(t)u(t,OH JQ(A({I}))d./'(t),

when N — oo, since wy(t, 0) — u(t, 0) uniformly when N — oo and since fy — f
setwise, [26, Proposition 18, p. 232]). We do not repeat the argument for
x < a. It follows that u(x,0) = u(x) with u from (3.2) and (3.3). By that we
have proved the theorem for the case where there are only a finite number of
points x with A({x}) # 0.

Let there be a sequence (x;);~; such that x # x;, all j, implies that
A({x})=0. Let M > 1 be an integer and let

i=M+1
Let
uM(x,e) = c— JdAM(t,s)uM(t,8)+ de(t,s)

and let u(x, ¢) be defined by (3.1). Let v™(x, &) = u(x, &) —u™(x, ¢). Then one has

(3.19) M(x,e) = — JdA(t,e)vM(t, £)+ Jd(A—AM)(t,e)uM(t,e).

It follows from the proof of Theorem 2.3 that (u™(x, £))o <. < is equibounded
in b £ x b, with a bound independent of M. Then we see from the
definition of A4, that the last integral of the right member of (3.19) tends
uniformly to zero in ¥ < x £ b, 0 <e < 1, when M - 0.

Let u(x) solve (3.2) and (3.3) and let u™(x) solve the same equations when A
is replaced by A,. Let v™(x) = u(x)—uM(x). It follows from the proof of
Theorem 2.1 that v™(x) tends to zero uniformly in b’ < x < b, when M — o0.
We also see that for fixed M uM(x, &) = uM(x), ¢ —» 0. Let & > 0. Then we have

lu(x, €) —u(x)| < |u(x, &) —uM(x, &)l + [u™(x, £) —u™ (x)| + 4™ (x) — u(x)].

Now we choose M so big that the first and the last term of the right member
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both are less than ¢. Then for this M the middle term is less than & for
all small ¢ according to the first part of the proof. Theorem 3.1 is proved.

CorOLLARY 3.2. Let the hypothesis be as in Corollary 2.2 with the
restriction f € #° and without condition (2.9). Let £ > 0 and let g(s) = (¢*—1)/s,
s # 0, and g(0) = 1. Then the solution u(x, &) of

(3.20) U (x, €)+a,_ 1 (x, e)u" " V(x,e)+...+ag(x, e)ulx,e) = f(x, &),
uMa,e) =c;, 0= j<n,

tends to the solution u € 2" of

X
»

U )+ | gla,- ()@, u" V4 Fagu—f)) = oy, x 2 a,
(3.21)
5
U V(x)— | gla,_ ()@ "+ dagu—f)t) = ooy X <odl

v
x*

(3.22) uMa)=c¢;,0= j<n—1.
ProoF. We rewrite (2.10) as a system U'+ AU = F. Let

G(D) = 3 Di(j+1)H™ L
j=0

J

If D= A({t}), then D;;=0, 1 Si<n, 1= j=n Of course we have let
Uj=uY"Y and we let F;=0, 1< j<n, and F, = f. We also notice that
D,j=a;_;({t}),1 = j < n Weletc = (co,c;....,C,-1). According to Theorem
3.1 the limit U of the regularized solutions fulfils (3.2) and (3.3) with U = u,
replaced by F and g = G as in the hypothesis of Theorem 3.1. G(A({t})) # I
only at a point with A({t}) # 0. At such a point

DAtk = (Dpp¥Dpss 1 Sk =1,
and
(D'F), =0, 1=k<n,
(D’F), = (D,,yf for all j.

Then we let U; = u and one now realizes that u fulfils (3.21) and (3.22) where
strictly speaking each coefficient should be modified by addition of a bounded
function which is zero outside a denumerable set. But that does not alter the
modified coefficients as members of #°. Corollary 3.2 is proved.
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ReEMARK. We have chosen a regularization in Theorem 3.1 leading to a right
continuous limit of the solutions of the regularized problems. We now choose
¢ as before but let ¢(x,&) = ¢ '¢(x/e). We call the solution of the problem
regularized by this ¢(x, €) u(x,¢). Let

]

a = Jq)(t)dt

-1

and let u(x) be defined by Theorem 3.1. A slight modification of the proof
of that theorem shows that

(3.23) lim u(x, &) = e~ 240 Dy(x ")+ g(—ad({x])))af ({x}).

£~ 0

We do not write down that proof.

If « = 1, then we get the solution of Theorem 3.1. When a = 0, the limit
is left continuous corresponding to a reflection of the problem of Theorem 3.1
at the point x = a. But the most important thing is that outside the points
with point masses in 4 or f the limit is independent of the choice of the
regularizing functions.

I owe most of the remark above to the referee.

4. A stochastic measure differential equation.

In this section we combine measure differential equations with stochastic
measure differential equations. Theorem 4.2 below can be seen as a general-
ization of Theorem 2.1. If one sees the Dirac measure as an idealization of
something physical concentrated around a point but with no point mass at
that point I guess that one should modify y and u of (4.7) below as is done
in Theorem 3.1 for the limit of solutions of regularized problems and leave
the true stochastic part unaltered. However the regularization which we use in
order to get right continuous solutions causes problems since it uses values at t,
t > t', to define the value of the regularized solution at t’. If one instead
chooses regularizations leading to a left continuous limit then the regular-
izations are compatible with the stochastic process. That would lead to a
modification of y and p corresponding to the left continuous version of
Theorem 3.1 which we have not written down here. It is just reflexion at the
origin of Theorem 3.1. At the end, this left continuous solution would differ
from the solution of (4.7) modified as suggested by Theorem 3.1 only at the
points of discountinuity. So we stick to the right continuous version here.
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For the probability theory the reader is referred to Gihman and Skorohod
[9]. However the author’s source has been Da Prato [6].

Let w be an n-dimensional Brownian motion on the probability space
(R,6,P). Let #, = g{w(s);s =t} be the o-algebra generated by the random
variables w(s), s =t. Let u, be an n-dimensional random variable which is
independent of U, o#,. Let ¥, = o{F,,u|. Let LL(0, T;R") be the set of
n-dimensional stochastic processes adopted to ¥ = (%,),,, such that

T
4.1) P('[lu(s)lzds < oo) =1.
0

Let M2(0, T;R") be those u in L2(0, T;R") such that

T
4.2) E (j‘ lu(s)lzds> < .
0

Let C} (0, T;R") be those u in M2(0, T;R") for which u(t ") and u(t*) exists
with u(t) = u(t*), 0 £t £ T, with probability one and which also fulfil

llull?> = E<0 sup Iu(t)|2> < 0.

stsT

Then C} (0, T;R") is a Banach space with norm ||-||.

DeriNiTION 4.1. Let u(-,w) be an nxn matrix of signed Borel measures
on [0, T] for each we Q. Let

u(, w) = Z l,uijl(', w).
.J

It is assumed that |u|([0, T], ) is bounded on Q and that for some integer N
there are numbers t,, 0 =1, < ... <ty = T with

4.3) (-1 1), ) < 1/8, 1Sk =N, weQ.

The process (t,w) = [bdu(s, )u(s, w) is assumed to be adopted to ¥ for all
ueM2(0, T;R"). Then pu is called a bounded properly adopted nxn matrix
of signed Borel measures.

Let y(, ) = (y1(, ), ..., ¥a(*, @)) where ;(-, w), 1 = j = n, is a signed Borel
measure on [0, T] such that |y;|([0, T], ) is bounded on Q. It is assumed that
(t, w) = [bdy(s, w) is adopted to ¥ with w — y({0}, w) = ug(w), w € 2. Then y
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is called a bounded properly adopted n-dimensional vector of signed Borel
measures. Here and in the rest of the section an integral sign with lower limit
a and upper limit b denotes integration over [a, b].

THEOREM 4.2. Let T, (,6,P), (W(t); 20, Uo, and C,(0,T;R") be as in
Definition 4.1. Let y be a bounded properly adopted n-dimensional vector and let
u be a bounded properly adopted nxn matrix of signed Borel measures. Let
uy be square integrable. Let G(t,x,w), 0=t <s< T be measurable in
B([0, T] x R")x %, with values in the space of real nxn matrices. Here #
stands for the a-algebra of Borel sets. It is assumed that G(t,u(t,w), w) is an
adopted stochastic process for each u in M2(0, T,R") and that there exists a
constant M such that with the Euclidean norm on R’

4.4) IG(t,x, )] = M(1+1x]), (t,x,w)e[0,T]xR"xQ,

and

4.5) |Gt x,0)—G(t,y,w)l EM|x—y|, 0=t=T,x,yeR" weQ,

are true with probability one. Let I be the n x n identity matrix. It is assumed that
4.6) u({t}, w)—1I is invertible, 0 St £ T, we Q.

Then there is a unique ue C, (0, T;R") solving

t t . t
4.7) u(t,w) = ug(w)+ jdy(s,w)«i— jdﬂ(s,w)u(s,w)+ JG(s,u(s,w), w)dw(s).
0* 0+ 0*
with probability one.

Proor. Let ue C} (0, T;R"). Let ¢(u)(t, w) be equal to the right member of
(4.7). Then the first two integrals in (4.7) represent a function in C} (0, T; R").
From (4.4) one sees that Gy(s, u(s, w), w) is in M2(0, T;R") for 1 < i,j < n.
This shows that

t— JG(S, u(s, w), w)dw(s)

0

is continuous with probability one. Further one sees that

n n ’ 2
g <i=zl (igl J‘GU(S, u(s’ . ), . )dW(S)) )
0

i E(J(Gif(S,u(S,'),‘))zdS), 0st=T.
0

1 j=1

™M=
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This combined with (4.4) gives

t

E ( sup JG(S, u(s, ), )dw(s)
OstsT
0

That means that ¢ is a map from C} (0, T;R") into itself.
We now refine the partition of the interval [0, T] used in (4.3) such that for
a new N both

2
> S2MAT(1+lull?) < .

(48) tk""tk_l <(8M2)_l, l ékéNw

and (4.3) are true. We shall use this N from now on.
We first assume that N = 1. We let f and g be in C (0, T;R") both with
the value ug(w) at (0, w). It follows from the definition of ¢ that

).

1

E(l@(f)—o@)t,")I*) = 2E <\ Jdu(& I —9)s.7)

0+
2)

+2E (\j(G(S.."(S, D) =G, gls. ). Ndwis)
0

T-

2
< 2E ((0 SUPT If —glGs.-) f d\ul(s, )) ) +

+

T
+2E <J GG, f(s,°),7)— G5, 95,7 ) )|2ds) .
0

We use (4.3), (4.5) and (4.8) and get

(4.9) E( sup |¢(f)—¢(g)|2(s,~)> s 2‘15( sup |f —glz(s,'))

0ss< 0ss<T

The restriction to [0, T) of C, (0, T, R") with the norm modified in the natural
way gives a new Banach space. Then (4.9) shows that ¢ is a contraction
mapping giving a fixed point u fulfilling (4.7) with probability one. Then
u(T, ) is uniquely defined from (4.6) and

w(T, ) = u(T™, 0)+p({T}, o)u(T, ) +y({T}, w)

for those w for which u(T ~, w) is defined. This u is unique in the sense of the
theorem.
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Let N > 1. It follows from the proof with N =1 that we can find a
ueC}(0, T;R") such that (4.7) is true with probability one for 0 <t < ¢,.
The restriction of u to this interval is unique with probability one. Let it
be true that there is a ue C (0, T;R") such that u solves (4.7) in [0,¢,].
Then we look at those functions in C, (0, T;R") which restricted to [0,1,]
are equal to u on this interval. Then we replace O by t, and T by t,,, in
the argument used for N = 1. Then this argument shows that there is another
ueCt(0, T;R") solving (4.7) for 0 =t < t,,,. Here we uses the fact the
subspace of C, (0, T; R") where each element is equal to the unique solution
of (47) on 0 =t =1, is itself a Banach space. This induction proves the
theorem in the general case.

The result of this section is essentially taken from Persson [20].

5. An extension of Libri’s theorem.

Here we refer the reader to [5] and especially to [5, Theorem 6.2, p. 83].

THEOREM S5.1. Let A be an n x n matrix with entries in #° and let 1 be the
n x n identity matrix such that

(5.1) A({x})+1 is invertible, x € R.

Let ¢4,..., ¢, be n linearily independent solutions of u'+ Au = 0 in the sense of
Theorem 2.1 that is u = ¢; solves (2.2) and (2.3) with f = 0 and ¢ = ¢'?, where
the vectors ¢\ are linearly independent. Let ® be the nxn matrix having @;
as its jth column. Then to each compact interval K — R there is a constant
b > 0 such that

(5.2) |detd(x)] =2 b, xeK.

On the other hand let @ be an nxn matrix with entries in #'. If to each
compact interval K there is a constant b > 0 such that (5.2) is true, then there is
a unique n x n matrix A with entries in #° such that (5.1) is true and such that
@'+ AP = 0 in the sense of Theorem 2.1.

Proor. Let & fulfil the hypothesis of the first part of the theorem. If for
some compact interval K, (5.2) is not true for any constant b > 0, then there
exists points x;€K, j = 1,2,..;, such that detd(x;) -0, j —» co. Since K is
compact we may assume that x; tends to a x'€K, j— c. Then either
det d(x') = 0 or det d(x' ") = 0. In the first case P(x’) is not invertible so it
must be the second case. If &(x' ) is not invertible, then (5.1) and u = &
in (2.2) gives
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P(x) = (AGx D+ o(x' 7).

So also this leads to the contradiction of the first case.

Let the hypothesis of the second part of the theorem be fulfilled. It follows
that @(x)~! exists for all x. Let 4 = —®'® ' (x). We choose a compact
interval K and then a b >0 such that (52) is true. Let ¢j({x'}) = b,
1 £ j<n,forafixed xXeK. Let H.(x) =0, x <x',and Hy.(x) =1, x 2 x'.
Let B be an nxn matrix with b; as its jth column. Let é =@—H, (x)B.
Then @ is continuous at x = x'. We notice that A({x'}) = B®(x')"' and
d(x)P(x')" ! = 1. We get

[+A({x'}) = (xX)D(x) ' —Bd(x') ! = B(x)P(x')" ! = &(x' " )D(x')" L.

Then (5.2) shows that (5.1) is true for this 4. That A is unique follows as
in the classical proof. Theorem 5.1 is proved.

CoROLLARY 5.2. Let n > 0 be an integer and let
(5.3) Lu=u"+a,_ u" Y4+ . +agu, ueP"
with a;e #°, 0 £ j < n. Let
(5.4) a,-1({x}) # —1, xeR.

Let ¢,,..., ¢, be n linearly independent solutions of Lu = 0 in 2" in the sense
of Corollary 2.2. Let W denote the Wronskian. Then to each compact interval
K €R there is a constant b > 0 such that

(5.5) W(py,....0.)x) 2 b, xeK.

On the other hand if ¢;eP", 1 = j=n, and if to each compact K,
there is a b > 0 such that (5.5) is fulfilled, then

u-— (— l)"(W((Pl, “oey ¢n)(x))— ! W(uv (pls ceey ¢n) = Lu
fulfils the hypothesis of the first with the given ¢; as a fundamental set of
solutions. There is no other operator of (5.3) type fulfilling the same conditions.

Proor. For n = 1, it is just Theorem 5.1 for n = 1. Let n > 1.

Let the hypothesis of the first part of the corollary be fulfilled. Define
a new matrix A = (ay) with entries in #° by letting a;;., =1, 1 S j <n, let
Ay = ay-1, 1 Sk <n, and let the other a; = 0. Let U = (u,v/,...,u"" V).
Then

Lu=0<«U+A4AU =0
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and (5.1) is true if and only if (5.4) is fulfilled. We see that

W= (¢ ¢f...00" "), 1= j<n,

is a fundamental set of solutions of U'+ AU = 0. Let ¥ be the n x n matrix
whose jth column is ;. We see that det ¥ = W(¢,,..., ¢,). Thus (5.5) follows
from the first part of Theorem S5.1.

Let the hypothesis of the second part of the corollary be fulfilled and let ¥
be defined as in the proof of the first part. Then 4, = —¥'¥ ™! is the unique
matrix with entries in 2° such that ¥'+ 4,%¥ = 0 and such that Ay({x})+1
is invertible for all x according to the second part of Theorem 5.1. Define 4
as in the first part of the proof. We see that ¥+ A¥ = 0. Theorem 5.1 then
says that A = A,. But I+ A({x}) is triangular with entries equal to one on
the diagonal except in the lower right corner where it is 1 +a,_;({x}). Then
(5.1) is equivalent to (5.4). Corollary 5.2 is proved.
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