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C*-ACTIONS ON GRASSMANN BUNDLES
AND THE CYCLE AT INFINITY

SINAN SERTOZ

0. Introduction.

This paper describes the Grassmann Graph construction of MacPherson in
the analytic category using C*-actions. The details of the algebraic case can be
found in [1].

In section 1 we summarize the decomposition theorem of Bailynicki-Birula
in the compact Kaehler case, [2], [3]. Section 2 describes a C*-action
on Grassmann manifolds and gives the corresponding Bialynicki-Birula decom-
position. Examples are given in the next section. In section 4 this C*-action is
carried on to Grassmann bundles and Z, the cycle at infinity corresponding
to a bundle morphism is defined. It is shown that in the compact Kaehler
case Z,, is an analytic cycle. The graph construction is finally accomplished
in section 5. Examples are given in section 6.

Verdier uses the existence of a closed analytic space § which contains the
closure of the graph in transcribing for analytic spaces the results of
MacPherson, [9, section 5, proposition], [6]. We show in theorem 1
that in the compact Kaehler case S not only contains but is equal to the closure
of the graph.

1. Bialynicki-Birula decomposition.

The references for this section are [2] for the algebraic case and [3] for
the complex case. There is also a clear summary in [4, section Ic].

Let M be a compact Kaehler manifold with a C*-action on it. Let this
C*-action have nontrivial fixed point set B with components By, ..., B,,. The
components of the fixed point set are complex submanifolds of M. For
AeC* and pe M let i-p denote the action of 4 on p. The C*-action extends
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to a meromorphic map
P' x{pj->M

hence lim;_ o4 p and lim;_  A-p exist in M. Clearly these limits are in B.
There are two canonical decompositions of M into invariant complex sub-
manifolds. Define

M} = {peM|lim Ai-peB;}

Ai—0

fori = 1,...,m. Each M is a complex manifold of M and
M={JM}, 1Sism
This is called the plus decomposition of M. Similarly the minus decomposition

is defined as

M; = {peM|lim i-peB;)

A= o0
fori = 1,...,m. Each M; is a complex submanifold and similarly
M=M;, 1Sism

There are two distinguished components of the fixed point set B, say B,
and B,, which are determined by the property that M} and M, are open
and dense in M. B, is called the source and B,, is called the sink.

2. C*-actions on G(k, n).

In this section we describe a particular C*-action on G(k,n), the
Grassmannian manifold of k-planes in n-space. Fix a coordinate system on
C". We will use the representation of G(k,n) by matrices. Any point
peG(k,n) can be represented by a k xn-matrix A of rankk. Two such
matrices A and B represent the same point in G(k, n) if there is an invertible
k x k-matrix g e GL(k,C) such that g4 = B. For a k x n-matrix A of rank k
set [A] = the row space of A.

Given a k x n-matrix A = (a;;), 1 S i Sk, 1 = j < n define two submatrices

A1=(a,~j). lél,j.s_k
and
A2=(a,'j), 1§i§k,k+l§j§n.

A, is a kxk-matrix and A, is a kx (n—k)-matrix and 4 = (4,,4;) is a
partitioning of A. '
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Define a C*-action on G(k, n)
C*x G(k,n) — G(k,n)

by
A-[A] = [(4,,244,)]).

To describe the behaviour of this action define a subset X;; of G(k,n) as the
set of all p in G(k,n) which can be represented by a k x n-matrix 4 = (4,, 4,)
such that rank A4, =i and rank A, = j, where k—min{k,n—k} < i < k and
0 = j £ min{k,n—k}. Let B = (B,, B,) be another k x n-matrix representing p.
Then there is an invertible k x k-matrix g such that g4 = B

gAl = Bl and gAz = BZ‘

Hence rank B, = rank(gA,) = rank A, = i and similarly rank B, = j, and the
following definition of X ; is well defined :

X;; = {[A]eG(k,n)|rank A, = i,rank 4, = j}

where k —min{k,n—k} < i < kand 0 < j < min{k, n—k}. Necessarily we have
i+j 2 k; to see this, recall that 4 represents a point in G(k,n) hence has
rank k, and if A, has ranki, then 4, must supply at least the remaining
k —i ranks.

To describe the behaviour of the C*-action that is defined above we
prove the following lemmas.

Lemma 1. X;,_; are the fixed point components of the C*-action,
k—min{k,n—k} S i £ k.

Proor. Let [4]€ X, _;, A = (A;,A;). We first show that 1-[A4] = [4].
Ifi =0, then 4, =0, and if i = k, then A, = 0. In both cases - [4] = [4].
Assume 0 < i < k. Then there exists an invertible k x k-matrix g such that g4

is of the form
B, 0
=(5 5.

where B, e GL(;,C) and B, eGL(k—i,C). For AeC* define h;, to be the
diagonal matrix [1,...1,1/4,..., 1/4], where the number of 1/A’s is k—i. We
then have the following sequence of equalities:
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A-[A] = 4-[94]
()
(s 2)
Bl &)
{(: 2)

= [4].

Thus we have proven that X;,_; is a subset of the fixed point set. That in
fact there are no other fixed points than UX;,_;, k—min{k,n—k} i<k
follows from the results of the following two lemmas.

LEmMA 2. If [A] € X, then lim, o A-[A] € X, _;, where

k—min{k,n—k} i<k, 0= j < mintk,n—k}i+j 2 k.
In particular X,q is the source.

Proor. If i = 0 or i = k, then X;;is a component of the fixed point set as
in Lemma 1. Assume 0 < i < k. There exists g € GL(k, C) such that

: 0

B, :
gA = I B,
0 | B

where B, e GL(i,C), B; e GL(k—i,C) and B, is a (i+j—k)x (n—k)-matrix.
Let h, be as in Lemma 1. Then

! 0
B, !
h,igA = | AB,
.6-- :- -B;-

and since lim;_, ,AB, = 0 we have
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lim A-[A] = lim [h;AgA]
A—0

A—0
-|(5 2)
0 B)|
This last matrix is clearly in X;,_; as claimed.
LemMma 3. If [A] € X,j, then lim,_ ,A-[A] € X, _;;, where
k—min{k,n—k} £ i <k, 0= j < min{k,n—k}.
In particular X, _ . is the sink, where m = min{k,n—k}.

Proor. If i =0 or i =k, then X,;; is a fixed point component. Assume
0 < i < k. There exists g € GL(k, C) such that

_’?z-Jl_‘.O._
B
A ] 2 |
g : B,
0 |

where B, e GL(k—,C), B; e GL(j,C) and B, is a (i +j—k) x k-matrix. Then

lim A-[A] = lim [Ah,g9A4]
A=

A= o
B, 0
= lim A7'B,
A= 33
0

-[( 5)]

This last matrix is in X, _;; as desired.

These last two lemmas show that X;,_; for k—min{n—k} < i < k are the
only fixed point components and thus complete the proof of lemma 1.

We can apply these lemmas to examine the behaviour of Schubert cells
under the action of C* op the Grassmann manifold. We will adopt the
terminology of Griffiths and Harris on Schubert cells. For details refer to
[5, pp. 195-196].

Let {e,,...,e,} be the standard basis for C" and V, = span{e,,...,e;}. Then
{V,..., V,} defines a flag. For any nonincreasing sequence of nonnegative
integers between 0 and n—k define a cell

W, = {[A)e G(k,n)|&im(A NV, _41i4q) =i}
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The sequence of nonincreasing integers a = (ay,...,a;) with 0 £ a; £ n—k is
called a Schubert symbol. For [A]«e G(k, n), let A be a k x n-matrix such that
[A] = [4]): If [A]e W, for some Schubert symbol a = (a,,...,q;), then the
rank of the first kx (n—k+i—a;) minor is i and the rank of the last
k x (k —i+a;) minor is k—i. The closure of W,

W, = {[A]eGk,n)|dim(A AV, ;) Z i}

is called a Schubert variety. If A4 is a matrix representing [A] as above,
then [A]'is in W, iff the rank of the first k x (n—k +i—a;) minor of A4 is at
least i and the rank of the last k x (k—i+a;) minor of A is at most k—i.
It is well-known that W, is an analytic subvariety of G(k,n) and the
homology class of W,, denoted by g,, is independent of the flag used in
its definition, [S, p. 196]. g, is called the Schubert cycle corresponding to
a = (a,,..,a,) Regarding the behaviour of Schubert cycles under the C*-
action we give the following corollary to the above lemmas:

CoroLLary 1. All Schubert cycles of positive codimension in G(k, 2k) lie in

X;j's where j < k. In particular they do not flow to the sink, i.e. if pe W, then
lim;_, A p is not in the sink.

Proor. The codimension of W, for a = (aj,...,a,) is Yai, [5 p. 196].
It suffices to prove the corollary for a = (1,0,...,0). For [A]e W, let
A = (A,, A,) be a matrix representation where A is a k x n-matrix of rankk,
and A,, A, are k x k-matrices. The rank of the last k xk minor of A4 is of
rank at most k—1. Hence in particular the rank of A, is not k, therefore
[A] is not in X, Since the only points that flow to the sink belong to the
components of the form X, [4] does not flow to the sink. In general if
a=(ay,...,a,) with a; 2 1 then the last k x (k+a, —1) minor has rank at
most k—1. Since k+a, —1 = k, the rank of A4, can not be k. Hence V—V;
does not flow to the sink. If a; = 0, then a = (0,...,0) and W, does not have
positive codimension.

Using the same notation as in the previous corollary we can generalize as
follows :

CoroLLARY 2. Let —W;, a = (ay,...,a,), be a Schubert variety in G(k,n),
where a; 2 n—2k+1. Then W, does not flow to the sink if n = 2k.

Proor. Let A = (A,, A,) be a k x n-matrix with rank k representing a point
[4] in W,. A, is a kx(n—k)matrix and [4] will flow to the sink if
rank A, is maximal. Since n 2 2k means n—k 2 k, the maximal rank of 4,
is k. The rank of the last k x (k+a, —1) minor of 4 is at most k—1. By
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assumption k+a,; —1 2 n—k, therefore the rank of 4, cannot be k. Hence
W, does not flow to the sink.

3. Examples.

In examples 1 and 2 we assume that the C*-action of the previous section
is defined on the spaces G(2,4) and G(4,9).

1) G(2,4). In G(2,4) we have defined the following sets:
XZO’XII’X02~X229X12’X21'

The first three sets are the fixed point sets. As 42— 0 the elements of
X,, and X,, flow to the source X,,, and the elements of X,, flow to X,,.

As A — oo the elements of X,, and X, flow to the sink X,, and the elements
of X,, flow to X,;.

X2
X1 &

>~
7

Fig. 1.

X‘l X34

XAO X04

Fig. 2.
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See Figure 1 for the direction of these flows for each X;; as 4 — oo.

2) G(4,9). For the direction of flow as 4 — oo see Figure 2. From the
decomposition of G(4,9) into X;; it can be seen that the points that lie in

X3 VX33 VX3 UX3 UXy UXy,

do not flow to the sink or the source under the action of C*.

4. C*-actions on Grassmann bundles.

This section defines in the compact Kaehler case the Grassmann Graph
construction of [1, pp. 120-121].

Let E, F be vector bundles of ranksk and n, respectively, on an analytic
space M. Let G(k, E @ F) - M denote the Grassmann bundle whose fibre at
each xe M is G(k, E, ® F,), the Grassmanian of k-planes in E, @ F,. Define
a C*-action on G(k, E @ F) as the fibrewise C*-action. Let

n:E®F->E
n,:E®@F->F

and
n:Gk,E®@F)- M

be the projections. Any peG(k, E @ F) is represented by a k-plane H in
E, ® F, where x = n(p). n,(H) and =n,(H) are linear subspaces of E, and F,,
respectively. The total space G(k, E @ F) can be decomposed into C*-equi-
variant subbundles

X;;={[H]€Gk E @ F)|dimn,(H) = i, dim n,(H) = j}

where k—min(k,n) £ i<k, 0 < j < min(k,n), and i+j 2 k. It is easy to
see that

X;j= GG, E)xG(j.F) if i+j=k,
which are the fixed point sets of the C*-action. Let
Hom(E,F)- M
be the bundle of morphisms from E to F and let
j:Hom(E,F) > G(k,E@® F)
be the natural inclusion defined fibrewise as

Js(®) = graph(®|E,) = {(e, P(e)) € E, @ F}.
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Recall that C can be imbedded into P! as
C- P!
A—[1:4],
[1, p. 120]. Define a C*-action on G(k, E@® F)x P!
C*xGk,E®F)xP' - G(k,E® F)x P!
as
A4 p [Ao:41]) = (A-p,[Ao:44y])

where 4- p is the C*-action which is defined above. Also define the C*-action
on M xC,

C*xMxC->MxC
as
(A, x,t) = (x, At).

Every @ e Hom(E, F) defines an equivariant imbedding §(®) of M xC into
G(k,E ® F)x P!,

$(®):MxC - Gk,E® F)x P!
where
5(@)(x, 4) = ([jx(A®)] [1: 4]
Let s(®) = pr (5(®)) where pr is the projection
pr:Gk,E® F)xP' > Gk, E®F).
s(®)(M, A) is the graph of Ad. Now define
Z, = lim s(®)(M, 4).

A=
THEOREM 1. If M is a compact Kaehler manifold, then for any ® e Hom(E, F)
the corresponding Z ., is an analytic cycle.

Proor. Let ¢:C*xGk,E® F)— G(k,E® F) be the C*-action defined
above. Consider M as a subspace of G(k, E @ F) by the imbedding s(®)(M, 1);
i.. identify M and the graph of @. Define a holomorphic map

A:MxC*> Gk E®F)
as
A(m,t) = s(P)(m, ),

where me M and t € C*. This map is equivariant with respect to ¢ and the
trivial action of C* on M x C*, multiplication in the second component; for
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if AeC* then
A(m, A+ t) = s(®)(m, it)
= s(Ad)(m, t)
= A-s(P)(m,t)

= 0(4,5(®@)(m, 1))
(4, A(m, 1))

hence equivariance. But Sommese has shown that if y:YxC* > X is a
holomorphic map equivarient with respect to the trivial action of C* on
Yx C* and the action of C* on X with fixed points then y extends mero-
morphically to Y x P!, [8, p. 111 (Lemma II-B)]. Thus 4 extends mero-
morphically to

A :MxP' -Gk E®F).

Let T be the closure of the graph of 4 in M x P* x G(k, E @ F).
By the definition of a meromorphic map, T is an analytic space. Since

Mx{0}xZ, =T n(Mx{o0}xG(k,E® F)),

being the intersection of two analytic spaces it is analytic. If pr: M x {o0} x
x Z,, — M is the projection, then for any me M, pr*(m) = {m} x {0} x Z , is
an analytic cycle, from which it follows that Z  is analytic as desired.

Z . is called the cycle at infinity corresponding to the map &. Notice that
there is an alternate definition of Z, see [1, p. 121];

Let W be the closure of §(®)(M xC) in G(k, E® F)x P'. Then Z, x {0}
is the intersection of W and G(k, E @ F)x {c0}.

In the algebraic category W is an algebraic variety but in the analytic
category the observation that W can be obtained through a C*-action with
fixed points on a compact Kaehler manifold is crucial in concluding that it is
analytic.

Clearly {Z, = s(®)(M, A)} defines a family of cycles which are algebraically
and hence homologically equivalent.

5. Graph of complexes.

In this section we define the Grassmann Graph construction and the cycle
at infinity associated to a complex of vector bundles. This construction was
first introduced by MacPherson and used by Baum, Fulton and MacPherson
to prove Riemann-Roch theorem for singular algebraic varieties, [1] and [6].
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Consider a complex of vector bundles on M,
(E):0—>E,—E, - —E;—0.
Denote the maps by y,, i.e.
yi: E;— E;i_,

where i =0,...m, E_, =0.
Assume that there is a subvariety S of M such that (E.) is exact on M —S.
Let

G,»=G(rankE,~,E,~€|—)E,-_l), i:(),...,m.
and let
7; — G; the tautological bundle, i = 1,...,m.
Define
G = GOXM--- XMGmr
where x , denotes the bundle product on M. On G let 1; denote the pull
back of 1, » G; by the projection pr;:G — G; of the ith component,
i=0,...m.
Let
T=T—T;+...+(—1)"1,
be the virtual tautological bundle on G. Recalling the definition of s from the
previous section for any A eC define an imbedding
si:M - G;
as
si(x) = s(:)(x, 4)
where i = 0,...,m. Then define for any 1€ C an imbedding
s;:M -G
by
sa(x) = (3(x), ..., sT(x)).

Using s;(M) we define
Z, = lim s;(M)

A= ©
to be the cycle at infinity corresponding to the complex (E.).
Let n:G - M be the natural projection. Recalling that S is the set off
which (E.) is exact we have the following result: (For proofs see [1, p. 121].)
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THeoreM (Baum, Fulton, MacPherson). The cycle Z, has a unique
decomposition Z,, = Z,+ M, where

1) = maps M, meromorphically onto M.

2) n:M,—mn(S)—> M-S is a biholomorphism.
3) mmaps Z into S.

4) 1t restricts on M, to the zero bundle.

ReMARK. By Theorem 1 of the previous section, Z, is a product of analytic
cycles in the product bundle G, hence this theorem ‘can be stated in the
analytic category as above. Any cycle can be written as a sum of irreducible
cycles. The decomposition of Z_ is such a sum. For a proof of (4)
see [1, p. 122].

_Finally we define two residues on S. Let E be the virtual bundle

Eoy—E +...+(—1)"E,, on M. Then 1|Z, is isomorphic to E since Z, = M.
SinceZ, and Z,, are rationally equivalent

cEyn[M]=c(t)nZy=c(t) nZ,

where c(-) denotes the Chern class and ~ denotes the cap product. Since
Z ,, decomposes

Gty nZ, =ci(t) n(Z,+M,)

I

c(t) N Zy+ci(t) " M,

I

c(t)nZ,,

where i > 0 and the last equality follows since 1|M, = 0 by (4) of the above
theorem.
Define

c§(E.) = my(ci(t) N Z,)e H,(S;C).
Similarly let ch(-) denote the Chern character, then
ch(E) n[M] =ch(r) n Z,

=ch(t)nZ,

=ch(t) nZ, +ch(x) " M,

=ch(r) n Z,.
Similarly define

chg(E.) = m,(ch(r) n Z,)eH,(S;C).

For basic properties of ch,(E.) in the algebraic category see [1, pp. 121-126].
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We will use c§(E) for calculating the Baum-Bott residues of singular
holomorphic folitations in [7].

6. Examples.

1) Let E,F be vector bundles on M and y e Hom(E, F). Then the graph
I'(y) of y gives rise to a cycle at infinity Z_,. Let rank E = k, rank F = n,
and m = min{k,n}. For i = 0,1,...,m, let B; = X, _;;, where X;; is as defined
in Section 4. B,, ..., B,, are the components of the fixed point set B under the
C*.action on the Grassmann bundle G(k, E @ F). To understand the structure
of Z., we describe its intersection with B. For this purpose define the following
sets

Zi={peMjranky, Si}, i=0,...,r

where r is the generic rank of y. The behaviour of Z_ can now be
described as follows:

(Z, nB),#+¢ iffpeZ, and t2i2r.

2) We want to show that the Hironaka Blow-up at a point can be recovered
as a Grassmann Graph construction. The problem is local so let M be an
open set in C". Define two trivial bundles L and F as

L=MxC and F=MxC"
Define a morphism 6 e Hom(L, F) as:
0(p,t) = (p,tp) for peC" teC.

The cycle at infinity Z, corresponding to 0 intersects the sink of G(1, L @ F)
in M, thatis Z, = M_+Z,. M, is the Hironaka Blow-up of M at the
origin. We can see this as follows. Let p = (p,,...,p, )€ M = C". We also
identify P(L @ F) with P". There is a C*-action

C*xMxP"->MxP"

given as
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Consider the usual imbedding of C* in P! as A = [1:4] = [45:4,], where
A = Ay/4q. Since 4 — oo iff 45 = 0 with 4; # 0, we have the following limit
Z, = lim A-T'(9)

A=

_limo {(p,[Ao:A1p1:... A1, ]) EM x P}

4o

Il

]
—~
—
=
~

(=)
=
>
>
=
3
—
~—
m

X
-l

3
—

PjXi = PiXj, i#j,1=2i,j=n,

From here it is easy to see that the intersection of Z, with the sink of the
C*-action is the Hironaka blow-up of M at the origin.
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