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A SPHERICAL FABRICIUS-BJERRE FORMULA
WITH APPLICATIONS TO CLOSED SPACE CURVES

JOEL L. WEINER

Let y: C > S be a 6> immersion of the circle, C, into the 2-sphere, S,
of unit radius. We call y a closed spherical curve. Fabricius-Bjerre [1] dis-
covered a formula for a “generic” closed plane curve, ¢, which involves the
number of double points of ¢, the number of inflection points of ¢, and the
number of double tangents of c. An analogous formula will be obtained for
“generic” closed spherical curves which involves all of the above but, more-
over, involves the number of pairs of points of y(C) which are antipodal to
one another. We will adapt the proof given by Fabricius-Bjerre so that it
works for spherical curves. Benjamin Halpern [4] gives an alternate approach
to the proof of the formula of Fabricius-Bjerre; presumably this approach
could be adapted as well to give a proof of our formula for closed spherical
curves.

We will also give some applications of our formula to closed curves in
Euclidean 3-space. The results for space curves are obtained by viewing y as
the tangent indicatrix of the given space curve. Particularly noteworthy is
Theorem 3 which states that any “generic” non-degenerate closed space curve
possesses a pair of parallel tangents or a pair of parallel osculating planes.

1. The formula.

We will first concern ourselves with some definitions. Some restrictions will
be imposed on 7 in the course of doing this. Let y’ denote the field of positive
unit tangent vectors to 7, i.e. those unit tangent vectors pointing in the
direction of traverse of 7.

A point P€S is a double point of y if y~!(P) contains more than one point
of C. We will assume that each double point of y has precisely two preimages
in C. Moreover, if {x,y} = y~!(P) we require that y'(x) # y'(y). For any
PeS, let P denote its antipode. If PeS, then {P, P} is called an antipodal
pair of points of y if there- exists points x,yeC such that y(x) = P and
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7(y) = P. We assume that each point of {P, P} is not a double point. In
addition, if y(x) = P and y(y) = P, we insist that y'(x) # ty'(y). If 7: C > §
is defined by 7(x) = y(x), for each xeC, then each point of an antipodal
pair of points of y is a crossing point of y with 7.

We suppose the reader is familiar with the concept of geodesic curvature of
a curve in §; the geodesic curvature of y will be denoted by k. An inflection
point of y is a point at which k = 0. We suppose that no inflection point
is a double point or a point of an antipodal pair. Also, we insist that at
each inflection point k', the derivative of k with respect to arc length, is
non-zero.

A double tangent of y is a geodesic, i.e., great circle, I, that is tangent to
y(C) at precisely two distinct points. We assume that each point of tangency
is not a double point, either point of an antipodal pair of y, or an inflection
point of y. A double tangent, [, is called an exterior double tangent if
the curve y(C) lies on the same side of /| near each point of tangency, other-
wise [ is called an interior double tangent.

When all the restrictions described immediately above are satisfied for a
closed spherical curve y, we will say that y is generic. We will be concerned
with the number of double points, antipodal pairs, etc. of a generic spherical
curve. Therefore let:

d = the number of double points of y,
a = the number of antipodal pairs of y,
2i = the number of inflection points of 7y,
t = the number of exterior double tangents,
s = the number of interior double tangents.

For generic 7 it turns out that each of d, a, i, t, and s is finite.

TueoReM 1. Let y: C — S be a generic closed spherical curve; then
t—s=d—a+i.

ProoF. We will assume that the reader is familiar with the proof of
Theorem 1 of [1] and explain how to adjust that proof to give a proof of
this theorem.

First, we need something to take the place of the positive half-tangent, p*,
and the negative half-tangent, p~, used in the proof given by Fabricius-Bijerre.
The obvious choice is to use half-geodesics. So suppose x€C; let y(x) = P
and y(x) = v, the unit positive tangent vector to y(C) at P. Then let I,
respectively I, be the geodesic segment of length n emanating from P in the
direction v, respectively —v. For each x € C, let N*(x), respectively N~ (x),

be the number of points common to y(C) and I}, respectively I;. Then,
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just as Fabricius-Bjerre, we keep track of N(x) = N*(x)—N ~(x), or more
precisely the changes in N(x) as x traverses C. Note that the changes in N(x)
as y(x) passes through a double point, an inflection point, or a point of
tangency of a double tangent are just as Fabricius-Bjerre observed in the
planar case.

What is new is that there is a change in N(x) as y(x) passes either point
of an antipodal pair {P, P} of y. Let, in fact, y € C with y(y) = P. Then as x
passes y note that j(x) crosses y(C) at P. Denote the half-geodesics to 7
at (x) by I} and T;. Also let M*(x), respectively M~ (x), be the number
of points of T}, respectively I, in common with y(C), and finally let
M(x) = M*(x)— M (x). Since 7 = —7', it follows that I} = I, and I =[],
for all x e C. Hence N(x) = — M(x), for all x. Thus the changes in N(x) are
just the opposite of the changes in M(x), but the change in M(x) as x passes y
would be the same as the change in N(x) if y(x) had crossed itself at P.
Hence the change in N(x) as x passes y is the opposite of the change in
N(x) as y(x) passes a double point. Hence, we adjust the formula of
Fabricius-Bjerre, t —s = d +i, by adding —a to the side of this formula that
contains d and obtain t —s = d —a +i.

Let H denote an open hemisphere of S. Then the following corollary is
obvious.

COROLLARY. Let y: C — S be a generic closed spherical curve with y(C) < H.
Then t—s = d+i.

ReMARK. It is interesting to note that the Corollary follows directly from the
formula of Fabricisu-Bjerre. Regard S as a unit sphere in Euclidean 3-space
and let E be a plane tangent to S which is parallel to the equator
bounding H. Let n: H - E denote central projection of H onto E. What
is significant about = is that n preserves geodesics, i.e., the half-geodesics in H
are mapped by = to straight lines in E. Hence = preserves double tangents
of both kinds as well as inflection points of curves. Since n obviously preserves
the double points of curves, the formula t —s = d +i for y “pulls-back” from
the formula of Fabricius-Bjerre for moy.

2. Applications.

Let E* denote Euclidean 3-space. A ¢* immersion a: C — E? is called a
closed space curve. We suppose that a« is non-degenerate; saying that o is
non-degenerate means that a has positive curvature, k, on C. Let 7 denote the
torison of a.

We will use a prime to denote differentiation with respect to the arc length
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of a. Thus o' represents the field of positive unit tangents to a. Define y: C —» §
by setting y(x) = o'(x), for all xeC. Then y is called the tangent indicatrix
of a. By applying the formula in Theorem ! to this tangent indicatrix, y,
we obtain a formula for a. It just remains for us to decide what the various
properties of y studied in section 1 mean in terms of a. Of course, we must
impose suitable restrictions on a so that y is generic; in fact, we will say a
is generic when its tangent indicatrix, y, is generic. We will leave the details
of describing these restrictions on « to the reader. This should be easy after
reading the subsequent paragraphs.

Let P be a double point of y; in fact, suppose {x,y} =y~ '(P). From
the definition of 7, it is immediate that o'(x) = o'(y). Hence each double point
of y corresponds to a pair of points on a(C) whose positive unit tangents
are parallel in the same direction; we say these points have directly parallel
tangents. Likewise, an antipodal pair of points of y corresponds to a pair of
points on y(C) whose positive unit tangents are parallel but oppositely
directed. We say these points have oppositely parallel tangents.

One may show [3] that the geodesic curvature of y, k, is related to x
and t by

k= r'/x.

Hence y has an inflection point at x if and only if 7(x) = 0 but 7'(x) # 0;
we have taken into account here that y is generic. A point of a(x) is called
a vertex of a if 7(x) = 0 and 7'(x) # 0. Hence each vertex of a corresponds
to an inflection point of y and conversely.

Now suppose [ is a double tangent of y(C). Let y(x) and y(y) be the two
points at which [ is tangent to y(C), where x,y € C. Since « is non-degenerate
we may define its binormal indicatrix f: C —» S by

_ Xy
lly x¥'ll

It follows that B(x) = tB(y); see [3] for details. If we let O(z) denote the
osculating plane to «(C) at a(z), for all z € C, then, of course, this means that
O(x) is parallel to @(y) since B(z) is orthogonal to @(z), for all z € C. Suppose,
in addition, that [ is an exterior double tangent. View | as the equator of S
and say that y(C) lies in the northern hemisphere near y(x) and y(y). Let N
be the north pole. Of course, N may be viewed as a vector in E* orthogonal
to both @(x) and O(y). Clearly (a* N) = y- N > 0 for points of C near x or y.
Hence « passes through each of 0(x) and O(y) going in the same (general)
direction. If [ had been an interior double tangent then a would have passed
through each of ®(x) and ¢(y) going in the opposite (general) direction. We say

p
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the pair of points a(x) and a(y) have concordant, respectively discordant,
parallel osculating planes if ¢(x) is parallel to ¢(y) and « passes through each
of ¢(x) and ((y) going in the same, respectively opposite, direction.

An immediate consequence of Theorem 1 is the following theorem.

THEOREM 2. Let a: C — E> be a generic non-degenerate closed space curve,
then

i=t—-s—d+a,

where
2i = the number of vertices of a,
d = the number of pairs of directly parallel tangents of a,
a = the number of pairs of oppositely parallel tangents of a,
t = the number of pairs of concordant parallel osculating planes of «,
s

= the number of pairs of discordant parallel osculating planes of «.

Theorem 2 has a number of interesting consequences.

CoRroLLARY. Let a: C — E* be a generic non-degenerate closed space curve
with positive torsion, then

t—s=d-—a,
where now:

t = the number of pairs of directly parallel binormals,
s = the number of pairs of oppositely parallel binormals.

Proor. Since T > 0, i = 0. Also, since T > 0, a passes through each of its
osculation planes going in the (general) direction of its binormal.

The next theorem is particularly interesting in light of the fact that there
exist a closed space curves with no pairs of parallel tangents (see [5]), i..
d+a=0.

THEOREM 3. Let a: C — E* be a generic non-degenerate closed space curve.
Then a must possess a pair of parallel tangents or a pair of parallel osculating
planes.

ProoF. Suppose, to the contrary, that d = a =t = s = 0. Then Theorem 2
implies i = 0; hence the torsion, 7, does not vanish. But W. Fenchel [2] has
shown for closed non-planar space curves with k > 0 and 7 2 0 that d 2 2.
We have a contradiction.

REMARK. We do not need to assume « is generic in Theorem 3 for this
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theorem to hold. It is enough to assume that any point at which 7 = 0 is
a vertex.

COROLLARY. Let a: C — E* be a generic non-degenerate closed space curve

with non-vanishing torsion. Then o must possess a pair of parallel principal
normals.

PrOOF. Let us assume a has no pair of parallel principal normals. Then one
can see that the tangent indicatrix and the binormal indicatrix are what
J. White [6] calls SD-generic, since « is generic in the sense of this paper and
has no parallel principal normal pairs. By Theorem 3, « must possess a pair
of parallel tangents or a pair of parallel binormals. Hence « must posses a

pair of parallel principal normals (see [6]). This contradiction proves the
corollary.
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