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ON NONSEPARABLE SIMPLEX SPACES

WOLFGANG LUSKY

Abstract.

We construct, for any given cardinality k 2 X, two simplices §,, S, satisfying the following:
(i) S, and S, have dense extreme point sets,
(ii) A(S;) and A(S,) are nonisomorphic,
(iii)  the density characters of S, and S, are equal to «,
(iv)  the density characters of A(S,) and A(S,) coincide.

1.

It is well-known that there is, up to affine homeomorphisms, one and only
one metrizable compact infinite dimensional Choquet simplex S whose extreme
point set ex S is dense in S. This simplex is of some interest e.g. in statistical
mechanics. Moreover it has the property that all metrizable compact simplices
are affinely homeomorphic to faces of S. The purpose of this note is to show
that the condition exS = S is not a characterization of a unique simplex
for any density character except in the metrizable case. We construct, for each
density character, even for N, two examples of simplices S with dense extreme
point sets whose corresponding simplex spaces

A(S) = {f:S — R| f affine continuous}

(endowed with the sup-norm) are nonisomorphic. A similar result is proven
for unit balls B(X*) of dual L,-spaces X* with the w*-topology. This is done
by extending the results of [7]. We also want to point out that such non-
metrizable simplices can be constructed without using deep set theoretical
machinery. In fact, the following proofs use only simple topological and
geometrical tools.

Recall that the density character a(X) of a topological space X is the
infimum of the cardinalities of the dense subsets of X. This definition makes
sense since the cardinal numbers are well ordered (see [1]). Theorems 1.1
and 1.4 below are extensions of Theorems 7 and 1 of [7]. We use “simplex” in
the sense of compact Choquet simplex.
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1.1. THEOREM. Let F be a simplex. Then there is a simplex S 2 F satisfying
the following

(1) exS =8,
(2) Fis a face of S,

(3) there exists an isometry T: A(F)— A(S) with Tlp =15 and Tf|p=f
for all f € A(F),

4) «(S) = a(F) and a(A(F)) = a(A(S)),
(5) S is sequentially compact if F is sequentially compact.
We postpone the main proofs to the following sections.

1.2. CoroLLARY. If F is metrizable, then S is metrizable.

Proor. If F is metrizable, then A(F) is separable. Hence x(A(F)) = Ny
= a(A(S)) which means, S is metrizable.

1.3. CoroLLARY. For any infinite cardinal number k, there are two simplices
S:,S, with dense extreme point sets such that «(S,) = a(S,)= kK and
oa(A(S,)) = a(A(S;)), but such that A(S,) and A(S,) are not isomorphic. In
particular, S| and S, are not affinely homeomorphic.

Moreover, if k Z the cardinality of the continuum, then there are S, S, such
that in addition a(A(S,)) = 2(A(S;)) = k.

We observe that, for any simplex S, a(S) = a(4(S)) = 2% (see Lemma 3.1.).
It seems remarkable that, even if k = N, simplices S,, S, with the preceding
properties exist. In this case we have a(A(S,)) = a(A(S;)) > N, because of the
fact that metrizable simplices S with dense extreme point sets (e.g. where
a(A(S)) = No) are unique (up to affine homeomorphisms). The analogous
results are true for L,-predual spaces G, where the extreme point sets of the
dual unit balls, ex B(G*), are w*-dense in B(G*). Recall, a biface H of B(G*)
is a subset of the form H = conv(F u —F), where F is a (not necessarily
w*-close) face of B(G*).

1.4. THEOREM. Let X be an L,-predual. Then there is an L,-predual G > X
satisfying the following

(6) exB(G")" = B(G*),
(1) a(G) = a(X) and a(B(G*)) = a(B(X*)),

(8) there exists a contractive projection P:G — X such that P*B(X*) is a
biface of B(G*). (Here P* is the adjoint of P.)



278 WOLFGANG LUSKY

(9) If B(X*)is w*-sequentially compact, so is B(G*).
(8) implies that P*B(X*) and B(X*) are w*-affinely homeomorphic.

1.5. CorROLLARY. For any cardinal number k = the cardinality of the continuum,
there are two L,-predual spaces G,, G, such that ex B(G¥)"" = B(G¥), i = 1,2,
and k = a(G,) = a(G,), but G, and G, are not isomorphic to each other.

If kK = Ny, the situation is different. According to the introductory remarks,
in this case all such spaces G are isometrically isomorphic to each other.
Nevertheless, it is possible to construct two nonisomorphic spaces G,, G, such
that a(G,) = a(G,) and a(B(G¥)) = a(B(G,)*) = N, (see section 4).

2.

Section 2 is devoted to the proof of Theorem 1.1. Let X be a Banach
space. We need a well-known result concerning density characters. To make
the paper self-contained, we include a proof.

2.1. LeMMA. If V< X* is a bounded subset endowed with the w*-topology,
then

a(V) = a(X).

Proor. Let I be a dense subset of X of cardinality a(X). Let 4 be the set
of all pairs ({x,,...,x,},r), where x,,...x,el’, n=1,2,.., and r is a
positive rational number. Hence the cardinality of 4 is equal to a(X). If

0= ({x1,... X, r)EAQ,

put E; = span{x,,...,x,|. Fix a finite subset A; = V such that for each
x*eV, there is y* € A; with ||(x* —y*)g |l = r. Then (UseaAs is a w*-dense
subset of V whose cardinality is < a(X).

For any I let [ (I") be the Banach space of all bounded real valued functions
and co(I') the subspace of all functions vanishing at infinity. Clearly, the
unit ball B(co(I')*) of co(I')* is w*-sequentially compact. This follows from the
fact that each pecy(l')* is a measure on I' which is supported by only a
countable number of elements in I'. (We identify in the following a regular
bounded Borel measure yx on a locally compact Hausdorfl space K with the
corresponding functional on

Co(K) = {f:K — R| f continuous, f vanishes at «}.)

Now let X = A(F) be a simplex space. Denote by e the function of F
which is one everywhere. Let S(X) be the state space of X with respect
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to e, that is
S(X) = {x*e X*||Ix*| = 1 = x*(e)}.
Then F = §(X) (affinely homeomorphic). Here S(X) is endowed with the
w*-topology.
Let I' = S(X) be w*-dense, such that the cardinality of I' is a(S(X)).
Consider (X @ [,,(I'))(»,, Where

e, NN = max(lix]l, L), xeX, fel (I).

We identify X with the subspace of (X @ [,,(I')), consisting of all (x,x),
x € X. Here x el (I') is defined by X(u) = u(x), pel'. This identification is
clearly an isometry. Put

(10) Y = Y(X,I') = span({(x, X)Ixe X} U {(0, f)| f €co(I)}).

Y is a subspace of (X @1, (I')), Let S(Y) be the state space of Y(X,I)
with respect to (e, é).

2.2. LeMMA. Y(X,T') is a simplex space. The underlying simplex is affinely
homeomorphic to S(Y).

Proor. By assumption on e, we have é = 1. (e, é) is an extreme point of the
unit ball of Y (X, I')). Hence it suffices to show that Y (X, I')* is an L,-space
(see [3]). To this end, let B;, i = 1,...,4, be balls in Y(X,I") with centers
(x;, Xo +f;) and radii r; such that B; n B; # @ for all i and j. We claim that
()i-1B:#+® which proves that Y(X,I)* = L, (see [4]). Fix ¢>0. We
obtain by our assumptions on B; and the definition of the norm in Y(X,I')
that

lx;—xll £ ri+r; and ||%+f;i— X+ = rit+r;

for all i and j. Since X is an L,-predual, there is x € X with |lx—x;|| = r;,
i=1,...,4, (see [4]). Since f; e co(I), there is a finite subset Q = I' such that
[fiw) S efor pel'\Q, i=1,...,4. We have

I%i+fi—%—(X;+f;=XN S rit+r;

for all i and j. Since /,(R) is a (finite dimensional) L,-predual, there is
J€co(I') supported by @, such that

I+ fi—X =) = r;
for all i and w e Q. By assumption on Q we obtain
i+ fi—X =Sl = rit+e

for all i. This means ﬂ?zlﬁi%¢, if B, are the balls with centers
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(x;, X;+/;) and radii r;+¢. Since ¢ > 0 was arbitrary this implies ﬂ?= B+ 9
(see [4]).
Let Py: Y(X,I') - X be defined by
(1 Px(x,f)=x, (x,f)eY(X,I).

Clearly, Py is a contractive projection onto X. (Recall, we identified x with
(x,x), xe X.)

Let S(X) = {(4,0)e Y(X, I')*|ueS(X)} and
(12) M() = {(0,u)e Y(X,)*|u a probability measure on I'}.
Note that any probability measure u on I' is of the form u = Z,.T; 1 Aidlis
where 0 = 4;, Z.qz_— 14 =1, el and f(f) = f(w), f €l (D).
If
S(X @ 1o(N) = {(w,v)e (X ® I (I')*|
0 = pe), v(é) = 1, pe)+v(@é) = L, llull+ vl = 1},

then by Hahn-Banach S(X @ I,(I'))y = S(Y). Hence in view of (10) every
element in S(Y) is of the form (u, v), where u€[0,1]:S(X), ve (X +co(I))*,
0= v(e) S 1, Jlull+IMll = 1. (X = {% el (NlxeX})

2.3. LEMMA.
(a) S(Y) = w*clos.conv(S(X) u M(I')).
(b) P%(S(X)) = S(X)isa face of S(Y).

Proor. S(X) uM(I') is a subset of S(Y) and separates the points in
Y(X,I'). So (a) follows from the Hahn-Banach separation theorem. If
(4, v)eS(Y), i =1,2,and 0 < A < 1 such that

Alpy, vi)+ (1= 2)(u2, v2) € PX(S(X)),

then there is ueS(X) with (4,0) = (Au; + (1 —A)uy, Avy + (1 —A)v,). Hence
u = Ap; +(1—2A)u, which implies py, u; € S(X). Since ||l +|lvill = 1, i = 1,2,
we obtain v, = v, = 0. Thus

(i, vi) = (i, 0) € S(X) = PH(S(X)).
24. CoroLiArY. a(Y(X,T)) = a(X) and «(S(Y)) = «(S(X)). If S(X) is

w*-sequentially compact, then S(Y) is w*-sequentially compact. Moreover

(13) exS(Y),x is w*-dense in S(X).
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PrOOF. At first we observe that the elements (0, ), where

[agk

)’iﬁia 0 é Aia

u:

It

1

A; rational numbers, XA, = 1, y, eI, are w*-dense in M(I'). Hence
a(M(I') < ¥y - N - (cardinality of I') = a(S(X)).

In view of Lemma 2.3 (a), this implies a(S(Y)) = «(S(X)). On the other hand,
the restriction map S(Y)— S(X) is surjective and continuous which yields
a(S(X)) = «(S(Y)). We conclude «(S(X)) = «(S(Y)). By (10) and (11) we have
PyY = X, (id—Py)Y = co(I'). Moreover,

a(co(IN)) = cardinality of I' = «(S(X)) =< a(X)
(in view of Lemma 2.1). It follows that a(Y) = a(X). Furthermore,
S(Y) = P%S(X)+(id — Px)*B(co(I)*).

Since B(co(I')*) is w*-sequentially compact, S(Y) is w*-sequentially compact
provided S(X) is w*-sequentially compact. Finally, (13) is a consequence of
the fact that (0, ) is an extreme point of M(I'), if pel’ and j(x) = u(x),
xeX.

2.5. Proor or THeoreM 1.1. We use induction to define
X< Y(Xyrl) < Y(Y(erl)’FZ) < Y(Y(Y(X’Fl)’FZ)’ r3) <.

as follows: Put Y, = X. If we have Y,_, already, let I', = S(Y,_,) be w*-dense
such that cardinality of I', = a(S(Y,-,)). Put Y, = Y(Y,_,,I,). Put

P, =Py Y(X,T\)=Y, = X,
P,=P, oPy :Y,—>X, n=12....

Here Py _ is the corresponding projection from Y(Y,.,,I,) = Y, onto U, _,
((11) with Y,_, instead of X).

Put Z = U Y, (completion): Note that by our construction the function e
corresponding to one in the simplex space X is the one function in Y(X, I'y)
once we have identified X with a subspace of Y(X, I';). The same applies to
all other simplex spaces Y, involved. So, B(Z) has an extreme point (namely
the one function e in X < Z). On the other hand, Z is an L,-predual space
since it is the union of an increasing chain of L,-preduals (see [4]). Hence Z
is a simplex space. Therefore the state space S(Z) of Z with respect to e is
a simplex and satisfies S(Z)y, = S(Y,), n=0,1,2,.... (13), applied to Y,
instead of X, implies that ex S(Z) is w*-dense in S(Z). The P, define a global
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contractive projection P: Z — X since P,y = P,_, for all n. Lemma 2.3. (b)
applied to all Y, instead of X yields that P}¥S(X) is a face of S(Y,) for all n,
hence P*S(X) is a face of S(Z). Corollary 2.4 yields that a(Y,) = a(Y,_,),
a(S(Y,)) = a(S(Y,-1)), n=1,2,.... Hence a(Z) = a(X), a(S(Z)) = a(S(X)).
Furthermore, if S(X) is w*-sequentially compact, then by Corollary 2.4, all
S(Y,) are w*-sequentially compact. Then a routine diagonalization argument
yields that S(Z) is w*-sequentially compact. This concludes the proof of
Theorem 1.1.

3.

Here we prove Corollary 1.3. To round out the discussion we include the
following :

3.1. LemMa. If S is an infinite dimensional simplex then a(S) = a(A(S)) =< 2%5,

ProOF. a(S) = a(A(S)) follows from Lemma 2.1. On the other hand, if I is
a dense subset of S with cardinality a(S), then A(S) is isometrically isomorphic
to a subspace of [ (I') (restriction to I'). We have a(l,(I')) = 2 (consider
the linear span of the functions in I (I") with modulus one which is a dense
set with minimal cardinality). Since [ (') is a metric space we obtain
a(A(S)) = a(l(I)).

3.2. LEMMA. There is a separable simplex E which is sequentially compact
such that a(A(E)) = a(ly)

prooF. This follows from a well-known example in general topology: There
is a separable compact Hausdorff space E which is first countable, hence
sequentially compact, but which is nonmetrizable (see [2, p. 164 “Helly
space™]). It turns out that E is a simplex:

Let E = {f:[0,1] - [0, 1]|f nondecreasing, f(1) = 1}. E as a subset of
[0, 1]°'1 is compact (topology of pointwise convergence). With the usual
pointwise addition of functions, E is convex ; we have

exE = {f €E|f([0,1]) = {0, 1}}.

For x €[0, 1], let J, be the function on E with é,(f) = f(x). J, is continuous
and affine. Moreover, 6, = 1. The J, separate the points of E, hence the
closed linear span of the J, is equal to the space of all continuous affine
functions, A(E), on E. To see that A(E) is a simplex space it suffices to prove
that for each 0 = x; < x, <... <x, £ 1, the J, span a subspace isometric-
ally isomorphic to I7, (see [4]). The latter fact follows from
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Z 'li‘sx,- = Sup Z Aif (%)
i=1 JeEli=1
= §up z Aif (x;)| = sup Z Ai
feexEli=1 k<nli=k

for all scalars 4, Hence 6,(.,...,6_‘" is equal to the summing basis of I7,.
We obtain, A(E) is an L-predual. Since 1€ A(E), A(E) is a simplex space
and E is a simplex.

E is separable, since every f € E is the uniform limit of a sequence of step
functions. This also shows that f has only a countable number of points of
discontinuity in [0, 1]. The latter fact implies that E is first countable. On
the other hand ||0,—d,/| = 1 whenever x # y. Hence

a(A(E)) Z cardinality of {J,|x [0, 1]} = 2%.
Since E is separable, A(E) is a subspace of /. Hence
M0 X a(A(E)) = all,,) = 2%,

3.3. LeMMA. Let x be any cardinal number = NX,. Then there are simplices
F,F, such that o(F,) = a(F,) = k, a(A(F,)) = a(A(F,)), F; is sequentially
compact, F, is not sequentially compact. Moreover, if k = 2% then F |, F, can be
arranged such that in addition a(A(F,)) = a(A(F,)) = k.

Proor. Let E; be the simplex of Lemma 3.2 and let E, = Prob(fN)
(regarded as subset of /% with the w*-topology). Then a(E,) = a(E,) = N,,
E, is sequentially compact, E, is not sequentially compact. Moreover

%(A(Ey)) = ((A(E)) = all,,) = 2%.

Let I' be a set of cardinality x and let ¢(I") be the subspace of | (I') spanned
by co(I') and 1. Clearly, a(c(I')) = « and ¢(I') is a simplex space whose under-
lying simplex is Prob(I" U {c0}). Here I' U {0} is the Alexandrov compacti-
fication of I with the discrete topology. Put

F, = conv(E, x {0} u {0} x Prob(I" U {0}))
and
F, = conv(E, x {0} U {0} x Prob(I" U {0})).

Hence a(F,) = a(F,) = k, a(A(F,)) = a(A(F2)), since A(F;) = A(E;) @ c(I),
i =1,2. F, is sequentially compact, F, is not sequentially compact. Finally,
if k Z 2%, then a(A(F)) = 2% -k = k.

3.2. Proor oF CororrarY 1.3. Take the simplex spaces A(F,), A(F,) of
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Lemma 3.3 and apply Theorem 1.1. We obtain simplices S,,S, with dense
extreme point sets, such that

k=0a(S;)=a(S;)=a(F)=a(F,), 2(A(S,)) = 2(A(S;)) = a(A(F)) = a(A(F))

(by (1), (@)). If k Z 2%, then k = A(F;) = A(S;), i =.1,2. S, is sequentially
compact (by (5)), but S, is not sequentially compact since F, = S, and F,
is not sequentially compact. If T:A(S,)—> A(S,) were a surjective iso-
morphism, then T*S(A(S,)) (state space of A(S,)) would be a subset of
|| T*||B(A(S,)*). Since

B(A(S,)*) = conv(S(A(Sy)) U —S(A(S,)),

the set ||T*||B(A(S,)) and therefore S, would be sequentially compact, a
contradiction. This means, A(S,) and A(S,) are not isomorphic, in particular,
S, and S, are not affinely homeomorphic.

4.

Here we prove Theorem 1.4.

Let X be an L,-predual space. We proceed in complete analogy to section 2.
Take a w*-dense subset I' = B(X*) whose cardinality is a(B(X*)). Define
Y =Y(X,I')asin (10), Py:Y - X as in (11), and M(I") as in (12).

4.1. LeMMA. Y is an L,-predual space.
B(Y*) = w*clos.conv({(X*,0)|x* € B(X*)} u M(I')).
a(B(Y*)) = a(B(X*)), «(Y) = a(X).
exB(Y*)x is w*-dense in B(X*). B(Y*) is w*-sequentially compact if B(X*)
is w*-sequentially compact. P¥B(X*) is a biface of B(Y*).

Proor. The proofs of the first assertions are identical with the proofs of
2.2, 2.3, 2.4. Only the last assertion of Lemma 4.1 is somewhat different:
Since X* ~ L,, there is a (not necessarily w*-closed) face F of B(X*) with
B(X*) = conv(F u —F). Now exactly as in the proof of 2.3 (b), one sees that
P%(F) is a face of B(Y*). Hence

P}B(X*) = conv(P¥(F) v — P¥(F))
is a biface of B(Y*).

4.2. Proor oF THEOREM 1.4. Repeat the argument of 2.5 with Lemma 4.1
instead of 2.2, 2.3, 2.4.

4.3. ProoF oF CorOLLARY 1.5. Use Lemma 3.3 to find L,-predual spaces
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X, X, with the same density character, so that B(X¥) is w*-sequentially
compact, B(X¥) is not w*-sequentially compact. (Take X; = A(F;), F; as in
Lemma 3.3, i = 1,2, and use B(X¥) = conv(F; u —F,), where F; is the state
space of F;.) Then apply Theorem 1.4 to find L,-predual spaces G; > X; such
that o(G;) = a(X;), a(B(G¥)) = a(B(X})),

exB(GH)" = B(G). i=1.2

B(G¥) is w*-sequentially compact, B(G3¥) is not w*-sequentially compact.
Then G, and G, cannot be isomorphic. If we start with X, = A(E), E as in
Lemma 3.2 and X, =[,, we obtain spaces G,, G, such that in addition
(B(GY})) = a(B(G3)) = R,.
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