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SMOOTHLY SYMMETRIZABLE HYPERBOLIC SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

DALE CLARKE HERNQUIST

Abstract.

In this paper we consider hyperbolic systems of linear, homogeneous, first order partial
differential equations with variable coefficients. We will say that the Cauchy initial value
problem for such a system is well posed if, for any sufficiently smooth initial data with
compact support, there exists a unique classical solution which grows at most exponentially
in time. Hyperbolicity alone does not guarantee the well-posedness of the Cauchy initial
value problem for systems with variable coefficients. The Cauchy problem is well posed if
the system is symmetric, or if it can be smoothly symmetrized (see [10]). The existence of
smooth symmetrizers for systems whose roots have constant multiplicity has been proved
(see [8]). We show that smooth symmetrizers exist for systems whose roots have multiplicities
which vary between 1 and 2, provided that the roots satisfy an algebraic condition. We
then show 2 examples - one of a system whose roots satisfy the algebraic condition and the
other of a system whose roots do not satisfy the algebraic conditions. We prove that the
Cauchy problem for the second system is also well-posed, but that any symmetrizer of this
system is not even twice differentiable. Thus smooth symmetrizability is sufficient, but not
necessary for the well-posedness of the Cauchy problem.

1. Introduction.

Before proceeding it is necessary to state precisely the definitions of the
terms used in the preceeding paragraph. A hyperbolic system of N linear,
homogeneous, first order partial differential equations in n+ 1 independent
variables can be written in the form

(1.1) = = 2 Al(x z)—"i'P(x,z,d/dx)u,
i=1 i

where u is the N-vector (u,,...,uy) and for each i =1,..,n, A'(x,t) is a
smooth N x N matrix function of (x,t) = (x,..., X,,t). With the system (1.1)
we associate the N x N matrix P, called the symbol of (1.1), defined by

(1.2) P(x,t,& 1) = Al — P(x,t, &).
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Pis the N x N matrix whose elements are linear functions of (¢, 4) = (¢4, ..., &,, )
with coefficients which are functions of (x,t). The characteristic equation of
the system (1.1) is obtained by setting the determinant of the symbol equal
to 0. The roots of the characteristic equation are the eigenvalues of P(x, t, £).
For convenience, these roots are called the roots of the system. The system is
hyperbolic if all of its roots are real.

The system (1.1) is called strongly hyperbolic if it is hyperbolic and uni-
formly diagonalizable. By this we mean that there exists a constant K,, a .
nonsingular transformation I = I'(x,t,¢), and a real diagonal matrix
A = A(x,t, &) such that

(1.3) ‘ma)é(){ll“(x, LOLIF ' (x,t ¢} S K,
and
(1.4) A(x, t, &) = (TPT~Y)(x,t, &).

If the coefficients of the system are constant, P(x,t, &) = P(£), then strong
hyperbolicity implies the well-posedness of the Cauchy problem for all systems
with P(&) as principal part (see [9]).

If, in addition to being strongly hyperbolic, the system (1.1) can be
smoothly symmetrized, then the Cauchy problem for (1.1) is well-posed (see
[10]). We say that the system is symmetrizable if there exists a nondegenerate
symmetric matrix H = H(x,t, ¢) and a constant K, such that

(1.5) K;!' £ |H| £ K,,
and
(1.6) (HP)(x,t,&) = (HP)"(x,t,&) = (PTH)(x, 1, ).

We say that it is smoothly symmetrizable if H can be chosen to be a
sufficiently smooth function of x, t, and . If P is diagonalizable it is easy
to show that any symmetrizer H of P can be written in the form

(1L.7) H(x,1,¢) = (I'"MI)(x1,),

where I is as in (1.4). M(x,t,¢) is a diagonal matrix if the eigenvalues of
P(x,t, &) are distinct. In general M(x,t, ) is a block diagonal matrix whose
block size is determined by the multiplicity of the eigenvalues of P(x,t,¢).
We see from (1.7) that if I is a smooth function of x, t, and ¢, then the H
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defined by (1.7) with M taken to be the identity matrix is also a smooth
function of x, t, and &.

2. Description of the systems of interest.

For which strongly hyperbolic systems do smooth symmetrizers exist? They
exist for strictly hyperbolic systems, systems for which the eigenvalues of P
are distinct for all (x,t,¢). The corresponding I' defined by (1.4) is an
analytic function of x, t, and &, so H defined by (1.7) with M taken to be the
identity is analytic. However, recently it has been shown that strictly hyper-
bolic systems are extremely rare (see [2]). Over 20 years ago the existence
of smooth symmetrizers for systems whose roots are not simple but have
constant multiplicity was shown (see [8]). At that time there was interest in
showing the existence of smooth symmetrizers for systems with multiple roots
whose multiplicity varied. It is obvious from (1.7) that there is little hope of
constructing smooth symmetrizers for such general systems. The best that
might be done is to find smooth symmetrizers for systems whose roots have
special properties. Special properties of the roots which might lead to smoothly
symmetrizable systems were considered. However, no examples of systems
with these special properties could be found.

In 1978, Fritz John published an example of a second order constant
coefficient system of 3 equations in 4 independent variables, (x,, x;, X3,t),
which is close to being strictly hyperbolic, but whose roots have varying
multiplicity (see [3]). He showed that this system is strongly hyperbolic
(see [4]). The system can be reduced to a first order homogeneous system of 7
equations. The reduction introduces a new root which is simple. The remaining
roots of the reduced system have the same properties as those of the second
order system. The first order system is also strongly hyperbolic (see [1]).
Both systems are given in section 4. Here we will describe the properties of
the roots of the first order system and generalize them to systems with
constant and variable coefficients depending on an arbitrary number of inde-
pendent variables. In the next section we will show that these systems can be
smoothly symmetrized.

We begin by describing the geometry of the roots of the systems. The
geometric conditions are easily visualized. They lead to an algebraic condition
which will be used for more general systems. The eigenvalues of P(&¢) are
simple for all £ which do not lie on 2 lines through the origin of ¢-space,
& = 0. (Since the system is homogeneous, any 2 eigenvalues of P(¢) which are
equal at &, + O are equal for all £ on the line that passes through both
&y and & = 0.) For ¢ on these 2 lines, P(¢) has 2 sets of double eigenvalues
and 3 simple eigenvalues. Each set of double eigenvalues is treated inde-
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pendently. Let A(£) and u() denote 2 eigenvalues of P(¢) which are equal at
o. Define the discriminant of A and u by

@D D) = A—w(©).

D(¢) is an analytic function of ¢ near &,. At &, D and its first derivatives
are 0. Thus we look at the matrix of the second derivatives of D, the Hessian
of D, at &,. Define

2

o*D
(2.2) Hess(D(&y)) = (a E3E, (Co))
ij=123

Hess(D(&,)) is positive semi-definite since our system is strongly hyperbolic.
Its rank gives a measure of how rapidly the eigenvalues of P(¢) split apart
for ¢ near &,. Since A and p are equal on a line through &;, the rank of
Hess(D(&,)) must be either 1 or 2. For our system the rank is 2.

What are the essential properties of this system? It is important that the
system is strongly hyperbolic, that the eigenvalues of P(¢) are simple for all &
except those lying on a finite number of lines through ¢ = 0, and that on
these exceptional lines P has only simple and double eigenvalues. The most
important condition is that if A(¢) and u(&) are eigenvalues of P(&) which are
equal at &, then the rank of Hess(D(&,)) as defined by (2.1) and (2.2) is 2.
It can be shown that this last algebraic condition quarantees that 2 previously
mentioned conditions hold. First it quarantees that the system is strongly
hyperbolic (see [1]). It also quarantees that A(£) and u(¢) are distint for all &
near £, which do not lie on the line through ¢ = 0 and &,. This means that
the requirement that there only be a finite number of lines on which P(&)
has double eigenvalues is extraneous. This is the algebraic condition mentioned
earlier which is essential to the definition of the set of systems in which we
are interested.

How do we generalize the above to systems with variable coefficients or to
systems for which n > 3. Suppose that A(x, t, &) and u(x, t, £) are eigenvalues of
P(x,t,&) (both x and & are n-vectors, n = 3) which coalesce when
(x,t, &) = (xo, to, &o)- Then define

(23) D(x,,8) = (A—p)*(x,t,£).

This is the obvious generalization of (2.1). We are interested in the Hessian.
of D(x,t, &) with respect to the £ variables only. Thus we generalize (2.2) to
2

2.4) Hess(D(x,t, &) = ( oD

3EAE; (x,t, éo))

=1,..,n
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Again we would like the rank of Hess(D(x, to, £y))) to be maximal. We will
prove later that the maximal rank is 2. Thus the properties of the systems
of the form (1.1) in which we are interested are as follows:

1. For all (x,t, &) with £ # O the eigenvalues of P(x,t, £) are simple or
double.

2. There exists a (xq, 29, &0), &o #F 0, such that P(x,,t,, ;) has at least
one pair of double eigenvalues.

3. If Ax,t,&) and pu(x,t, &) are eigenvalues of P(x,t, &) which are equal
when (x,t, &) = (xq, to, &), &o # 0, and if D(x,t, &) is defined by (2.3)
and Hess(D(xq, tg, o)) is defined by (24), then the rank of
Hess(D(xq, to, &o)) is 2.

3. Proof of the existence of smooth symmetrizers.

It suffices to construct a smooth symmetrizer for P(x,t, £) locally and to
define it globally using a partition of unity. We have already noted that in a
neighborhood of a point (x,,to, &) at which P has distinct eigenvalues, the
symmetrizer H is defined by equation (1.7). Thus it suffices to construct H
in a neighborhood of a point (xq, ty, &) at which P(x,, to, &y) has at least one
double eigenvalue. To do this we first transform P into block diagonal form
in a neighborhood of (x,,to, &,). We define the block diagonal form in the
following lemma.

LemMA 3.1. Assume that P(x,t,&) is a diagonalizable N x N matrix with real
eigenvalues and that P(xq,to,&o) has ¢ 2 1 double eigenvalues and N —2¢
simple eigenvalues. Then, in a neighborhood of (xo, to, &), P(x,t, &) is analytic-
ally similar to a matrix B(x,t, &) which is the direct sum of @ 2x 2 matrices
and a diagonal (N —2¢) x (N —2¢) matrix.

Proor. We'need to define an analytic T(x,t, &) for (x,t, &) in a sufficiently
small neighborhood of (x,, ty, &) such that

G.1) B(x,1,) = (TPT")(x,1,£)

has the desired form. For simplicity we will define 7~ instead of T.

Consider first the N —2¢ simple eigenvalues of P(xo, to, &o). Assume that the
neighborhood of (x, to, &o) in which we are to define B is sufficiently small
that these eigenvalues are simple in the whole neighborhood. Then the last
N —2¢ columns of T~! are the eigenvectors of P corresponding to these
simple eigenvalues.

Assume that A(x,t, &) and u(x,t, &) are eigenvalues of P(x,t, &) which are
equal when (x,t, &) = (xo, to, &o). Assume further that the neighborhood in
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which we are to define B is sufficiently small that 1 and u are close to each
other and separated from the other eigenvalues of P. Consider the spectral
projection of P corresponding to A and u. This projection is defined for
(x, 1, &) near (xo, to, &o) by

3.2) I(x,t, &)= ‘[(P(x, t,&)—zl)dz

where y separates 4 and u from the remainder of the spectrum of P (see [6]).
Since P is always diagonalizable, the range of IT is 2-dimensional in the
neighborhood in which it is defined. The 2 independent vectors which span
the range of IT can be chosen to be analytic functions of (x, ¢, ) in the neigh-
borhood. The first 2¢ columns of T~ ! will consist of g pairs of these vectors.

What can we say about an arbitrary 2 x 2 block of the matrix B defined in
the lemma if P(x,t, &) comes from a system of the form (1.1) which satisfies
properties 1-37? Let A(x, t, &) be an arbitrary 2 x 2 block of B. A4 is only defined
for (x,t, &) near (xq,to, &o). Since the eigenvalues of 4 are also eigenvalues of
P, they are real and are equal at (x, to, &y). 4 is also uniformly diagonalizable.
It is diagonal at (x,,?,, o) since a diagonalizable 2 x2 matrix with equal
eigenvalues is diagonal. Let

(3.3) A(x,t, &) = ("“ "”).

azy az2
The discriminant D(x, t, &) of the eigenvalues of 4 is given by the equation

(34) D(x,t,&) = (a1, —az;)* +4a,,a3;.

Since the eigenvalues of A are real, D(x,t, ) 2 0 for all (x, ¢, &) for which it is
defined. Once D(x,t, &) is written in this form it is easy to see that the
maximal rank of Hess(D(xo, to, &o)) is 2.

LemMMA 3.2. Assume that P(x,t,&) is a diagonalizable N x N matrix with real
eigenvalues which are simple or double for all (x,t,&). If A(x,t,&) and p(x,t, &)
are eigenvalues of P(x,t,&) which are equal when (x,t,&) = (xo,to, &o), define
D(x,t,&) by equation (2.3) and Hess(D(xo,to, o)) by equation (2.4). The
maximal rank of Hess(D(xo, to, o)) is 2.

Proor. We know from Lemma 3.1 that P(x,t, &) can be written in block
diagonal form near (x,t, ¢). If the 2x2 block corresponding to 4 and pu is
denoted by (3.3), D is given by (3.4). Since A(xo,to,¢) and D(xo, to, ) are
analytic functions of ¢ near &, they can be written as a power series in
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{—¢&,. The rank of Hess(D(xo,t,&p))) depends only on the terms of
D(xy, to, £) which are quadratic in & —¢&,. Since A(x,, to, &) is diagonal,

(ayy —az2)(xo, to, o) = ay2(xo, to, &o) = 0.

This means that the quadratic terms of D(x,,ty, £) are determined solely by
the linear terms of a,; —a;,;, a,;, and a,,. The linear terms of these
functions vanish on an (n — 1)-dimensional plane through &,. Thus the quadratic
terms of D(x,, to, £) vanish on at least the intersection of 2 (n — 1)-dimensional
planes through the origin. The intersection of 2 (n— 1)-dimensional planes
which contain a common point is either (n—1) or (n—2)-dimensional. Thus
the quadratic terms of D(x,tq, ) must vanish on an (n—2)-dimensional
surface. This implies that the maximal rank of Hess(D(x,, to, £o))) is 2.

As soon as we construct a smooth symmetrizer for A(x,t,¢) we are done.
The smooth symmetrizer of B will just be the direct sum of the smooth
symmetrizers of the 2 x 2 blocks and the N —2¢ identity matrix. Denote the
smooth symmetrizer of B by Hg. If T is the matrix in equation (3.1), then

(3.5 H(x,t,) = (TTHgT)(x,t, &)

is a smooth symmetrizer of P(x,t, &) near (x,, to, &o).

All that remains is to construct a smooth symmetrizer of A(x,t, &). Now A
can be written as the sum of 3 symmetric matrices and a skew symmetric
matrix. Define 1;(x,t,£),i =0,...,3 by

_ G +ax; _ G11—0dy _ @2+ay, _a2—ay

(3'6) To = —_—_i—-’ T = p) ’ 2= 2 y T3 = 2

The 1; are analytic functions of (x,t, &) near (xq, to, ). Then

1 0 t 0 01 0 1
(3.7) A =To(0 1) +Tl (0 _1)+TZ(1 0>+TJ(_1 0)
and
(3.8) D(x,t, &) = 13 +13 —13.

Since D(x,t, &) 2 0, equation (3.8) says that 7, = 0 whenever 1, =7, = 0.
We would like to construct a nondegenerate symmetric matrix

hy hlz)
: = H(x,t,&) =
(3.9) | H (x,t,¢) (h12 hys

which is an analytic function of (x, ¢, £) near (x,, to, &) such that (HA)(x, ¢, &)
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is symmetric. HA will be symmetric if and only if
(3.10) 2hyati + (hya —hyy)ty = (hyy +hyo)Ts.

Note that 7, does not appear in the equation, since toHI is symmetric for
any symmetric H. Thus it is sufficient to construct a symmetrizer for 4 —t,l.

Equation (3.10) and the fact that t; = 0 whenever both 7, and t, are 0
suggest that it might be possible and advantageous to change variables
between two of the ¢; and (t,, t;). Then we could define H as a function of
(t1,7,) and the remaining (n—2)¢;. We can change coordinates between
(ty,72) and, say for convenience, (&,,&,) if 1,(Xq,to, &o) = T2(Xg.10.E0) =0
and if the Jacobian of the transformation,

0(ty,13)

0(¢1,¢2)

ot, 01, Oty 01,

(3.11) (x0, tos Go) = ((3‘5 3%, o5, 55) (x0.t0. &o) # 0.

This inequality is a consequence of the assumption that the rank of
Hess(D(xo, to, £o)) is 2. By rearranging the &; if necessary, we may assume that

0*D
(3.12) (W (X0, to, éo)) -
i J L]=1

is positive definite and, therefore, has a strictly positive determinant. A simple
calculation, with D defined by equation (3.8), shows that the determinant of
(3.12) is

(3.13) (

The determinant can only be strictly positive if inequality (3.11) holds.
How does 15 depend on t = (t,,7,)? To study this dependence, expand 1,
in a power series in T, letting & = (&3, ..., &,).

2

2

a(Tla T2

0(¢1, &2

6(11973)
0(81,¢2)

0(t3, 13)
0(¢1,62)

2
) (x05 tos $o)-

(3'14) t3(~x’ LT, g) =0 (x9 L E)tl +C2(x9 L, E)TZ + fo

where 7 is O(t2). If we denote the part of A— 1o/ which is linear in t by A
then

1 c 0 1+Cz
(3.15) Z(x,t,r,5)=ﬁ<_c, —11)“2(142 0 )

o A (x5, 1, E)+T45(x, 1, ).
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Now A4 has distinct eigenvalues for t # (0,0), and is thus diagonalizable. A
theorem of Lax and Strang [9] shows how to construct a matrix S(x,t, )
such that both SA,S™! and S4,S! are symmetric. When both A4, and A4,
are analytic functions of (x,t, &), then so are S and S~'. Had we chosen the
matrix T in equation (3.1) of Lemma 1 to be TS ! instead of just T, the
A would have been symmetric to begin with. Assume that we chose T properly
and that ¢, = ¢, = 0 in equations (3.14) and (3.15). Then 15 is O(t?).

We would like to define H as a power series in 7 with coefficients which
are analytic functions of (x,t,&). If we can find the coefficients and show
that the series converges, then H will be an analytic symmetrizer of A.
If we also write 73 as a power series in T with coefficients which are analytic
functions of (x,t, &), we can use equation (3.10) to solve for the coefficients
of H in terms of t and the coefficients of t;. We write

HbJel o,
0

M8

(3.16) H =

<
it

(3.17) 3=y it
j=0

i,j

Before substituting equations (3.16) and (3.17) into equation (3.10), we make

some simplifying assumptions about H. We know that 1% = ¢}.° = ¢! = 0.

Thus we see from equation (3.10) that we may assume that H%® = I. We

also assume that the trace of H is constant. Since the trace of H%® =1 is 2,

we assume that hy, +h,, = 2. With this assumption, equation (3.10) becomes
h22 - hl 1

(3.18) hlzrl + —_2_ T, = 13.

Substituting (3.16) and (3.17) into (3.18) and equating coefficients of like
powers of 7;7;, we see that the H"J, i+j=m are determined by the 7/,
i+j = m+1. Consider the coefficients of the terms of order m+ 1 in equation
(3.18). These coefficients must satisfy the following m+ 2 equations:

2h’1n'20 - 21'5'“’0
20750 4 (hyy—hy )™ = 217!
(3.19) : : :
209" 4 (hap—hy )0 = 2037
(h22—hy )™ = 213" h

These are m+2 independent equations for 2m+2 variables. Thus the equa-
tions can be solved if the power series for H converges.
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We will show that the power series converges for one fairly obvious choice
of the 2m extra variables for each m. For each m choose

(3.20) Wpr = RS == R = RO,

Solving for the remaining coefficients and summing the series, we see that

(321) hlZ(x9 tﬂrhTZa E) = ‘El(ﬁi&gé ’
Ty
(3.22) (hys —hyy )X, t, Ty, 15, &) = 2 (?1(&‘;25_)—13(@,_9,0, E’))
Ty

Since 15(x,t, 1, &) is O(z?) the right hand sides of equations (3.20) and (3.21)
are analytic functions. Since we assume earlier that the trace of H = 2,

14+ 73(1y, 72) — 73(14, 0) 13(74,0)
(323) H(x,t,1,%) = T T
' o 75(11,0) | B, m) = 5(0,0)
T T,

H(x,t, &) can be found by changing variables again. This concludes the proof of :

THEOREM 3.3. Let P(x,t,&) correspond to a hyperbolic system of partial
differential equations of the form (1.1) and assume that P(x,t, &) also satisfies
properties 1-3. Then there exists a symmetric nondegenerate matrix H(x,t, &)
such that

(HP)(x,t,&) = (HP)"(x,1,&) = (PTH)(x,1,¢).
Moreover H(x,t,&) is an infinitely smooth function of (x,t,&).
4. Examples.
The example of a system of hyperbolic partial differential equations of the
form (1.1) which satisfies properties 1-3 of section 2 is derived from a system
of 3 second order equations in 3 space variables. For i = 1,2,3, the ith

equation of the second order system is

2. a .
0u; = a,~(x,t)Au,-+(1-—ai)5—(d1vu).

(4.1) 2 X;

Here we assume that 0 < o,(x,t) < 62(x,t) < 63(x,t) < 1 for all (x,t). If the
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g; were constant and equal, these would be the equations for elastic waves in
a homogeneous, isotropic medium. System (4.1) with the o; constant but
satisfying the above inequalities was studied extensively by Fritz John
(see [3], [4]) By changing dependent variables, (4.1) can be written as a first
order system of 7 equations. Let

U‘=%, UZ:?_I{_Z.’ Us:—_aﬂ,

2) ot ot ot
oo O Oy Ouy Owy o Ouy 0wy
YT 0x; Ox,0 0 0x; 0x,’ % 0x, 0x3

If v = (vy,...,v7), then the system (4.1) can be written as

ov d
4.3) Fri P (x, t, E) v,
where
0,3 -0, ¢
636, —083 &
—05¢, 03¢y &3
(4'4) P(xv t’ 6) = 53 —él
=& &1
—¢&3 &2
&1 &2 &3

The characteristic equation of system (4.3) is

3 3
45) Q0648 = A —|c|2)( Y & ( I (AZ—o,-mP))) = 0.
r=1 i=1

itr

From equation (4.5) it is easy to see that the eigenvalues of P(x,t, ) can be
ordered as follows:

0=1 <a.l§l| =45 = Ja:l¢l = 46 = (/a3l¢l < 47 = ¢,
}.1 = "‘117, lz = —2.6, 13 = "')45.
We see that the eigenvalues of P(x,t, £) are never more than double and that

when P(x, t, £) has double eigenvalues, 4, = 13 = — /0, and A5 = 4g = \/0,.
It can be shown that the eigenvalues are double on only 2 lines through the
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origin of -space. These two lines intersect the unit sphere in &-space at the
following 4 points, denoted by &, i = 1,...,4.

( =01 \/6‘3—62) g ( [1702 o [o3=0
sV L) - Yy
Gy —0, Gy —0, 03—0, 03—0,

532“6‘ 54:_52.

él

The calculations to show that property 3 holds along these two exceptional
lines are straightforward and tedious (see [1]). Thus they are omitted.

The example of a system of the form (1.1) which satisfies properties 1-3
came from altering a system of equations which correspond to a physical
system. On the other hand the example of a system of the form (1.1) which
satisfies properties 1 and 2, but not property 3 was found by trial and error.
We looked at systems with constant coefficients because strong hyperbolicity
implies the well-posedness of the Cauchy problem for these systems. We
found a strongly hyperbolic system for which no symmetrizer of the system
can be twice continuously differentiable.

Consider the system whose symbol is

0 0 &
(4.6) P, &) = AIl—P(A, &)= Al — 0 0 -&
&it+é &i—¢& &5

The eigenvalues of P(4, &) are

M) = 3(&; — JaET +4E3+ 83),
@4.7) A2(6) = 0,

13() = 3(&+ /4G +483+80).

These eigenvalues are real and distinct for all ¢ except those on the line
Z = (0,0,&,). For & > 0, 4,(8) = 4,(Z), while for &; <0, 4,() = 4;(3). It is
easy to see that P(¢) is diagonalizable for all £ and to construct the matrix
of eigenvectors of P(¢). If the determinant of the matrix of eigenvectors of
P(¢) is non-zero and finite, the system is strongly hypqrbolic. A straight-
forward calculation shows that the value of the determinant is 1\/5 for all &
(see [1]). Thus the Cauchy problem for system (4.6) is well-posed.

Does this system satisfy property 3? The eigenvalues of P are analytic
functions of ¢ away form ¢ = 0. Thus we can determine if the rank of Hessian
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of D(&) is 2 by looking at the first order partial derivatives of (4, —4,)()
=A48),i=1if &3 >0and i = 3 if & < 0. The rank of the Hessian of D(Z)
can not be 2 if the partials of 4; with respect to both ¢, and &, are zero at &,
Both partials are zero, so property 3 does not hold.

Tueorem 4.1. If P(&) is defined by (4.6) and if H(E) is a symmetric twice
continuously differentiable matrix such that

(4.8) (HP)) = (HP)'(¢) = (PTH)(),

then H(E), where & = (0,0, £;), is not positive definite.

Proor. If equation (4.8) holds and if H(¢) is twice continuously differenti-
able, then for i,j =1,2,3

4.9) (He P+ HP;)&) = (PTH+ PTH, )(),
(4.10)  (HeeP+He Py +He Pe)@) = (PLH, +PLH; +PTH, )(E).

Note that equation (4.10) holds, because P(¢) is a linear function of £. Assume
that H(¢) can be written as

hyy hyy hys
4.11) HE)=| hi2 hy; hys
hys hys his

Equation (4.8) evaluated at & implies that

(4.12) hi3(8) = hy3(8) = 0

Equations (4.9) evaluated at & for i = 1,2 imply

Ohys
0,

6h13

4.13) ahza

h33 (&) = (5)+h11(z)

(&) —hi2()
(Z)+h12(3)

‘”‘“ @
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Equations (4.10) evaluated at () for i = 1,2 implies

(4.14) hsa(g) = hlz(g) = "hzz(g),
oh oh oh oh

4.15 2, vz s U7l

@) 6g, Tae, T e T

Equations (4.13) and (4.14) together imply that

oh, @
2h11(2)= <“ b%i-i_ 6L§lé>(g)
1
(4.16) ) :
_ [ _0has _Ohas
’( 5, acz)(z"

It is easy to see that equations (4.15) and (4.16) together imply that h,, = 0.
Then equation (4.14) implies that h,, = h,, = 0. Thus H(&) is degenerate and
the theorem is proved.

AckNOWLEDGEMENTS. I would like to thank Professor Fritz John and
Professor Heinz Kreiss for directing my attention to this problem. The
many stimulating conversations with them were extremely helpful in the
completion of this work.

BIBLIOGRAPHY

1. D. Clarke, The Structure of the Set of Hyperbolic Systems of Partial Differential Equations,
Ph. D. Thesis, New York University, 1981.

2. S. Friedland, J. W. Robbin and J. H. Sylvester, On the crossing rule, Com. Pure Appl. Math.
37 (1984), 19-37.

3. F. John, Algebraic conditions for hyperbolicity of systems of partial differential equations,
Com. Pure Appl. Math. 31 (1978), 89-106.

4. F. John, Addendum to: Algebraic conditions for hyperbolicity of systems of partial differential
equations, Com. Pure Appl. Math. 31 (1978), 787-793.

5. F. John, Partial Differential Equations, Third edition (Appl. Math. Sci. 6), Springer-Verlag,
Berlin - New York, 1978.

6. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, pp. 72-84,
Springer-Verlag, Berlin - New York, 1982.

7. H. O. Kreiss, Numerical Methods for Solving Time-Dependent Problems for Partial Differential
Equations (Sém. Math. Supérieures 65), pp. 1-39, Presses de I'Universit¢ de Montréal,
Que,, 1978.

8. H. O. Kreiss, Uber sachgemdsse Cauchyprobleme, Math. Scand. 13 (1963), 109-128.

9. G. Strang, On strong hyperbolicity, J. Math. Kyoto Univ. 6 (1967), 397-417.

10. M. E. Taylor, Pseudodifferential Operators (Princeton Math. Ser. 34), Princeton University
Press, Princeton, N.J. 1981, p. 78.

901 ASPEN DRIVE
PLAINSBORO, N.J. 08536
USA.



