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R-TORSION ASSOCIATED TO INFINITE DIMENSIONAL
UNITARY REPRESENTATIONS

HOWARD D. REES*

Abstract.

Reidemeister torison of R[I'}-complexes associated to certain pairs of co-dimensional unitary
representations of I' is dicussed. A qusi-analytical formula for this torison is determined and the
resulting extension of the Ray-Singer-Cheeger-Muller Theorem is conjectured.

0. Introduction.

In this note we want to discuss the classical Reidemeister torsion (R-torsion)
(see [6], [8]) and an extension related to infinite dimensions. Our hope is to
thereby gain information about R[I']-complexes when I is an infinite group,
that is not included in the classical theory. For the moment though we are
only able to show that the extension we have in mind makes sense and that
it is computable in a quasi-analytical way (see [8]). We will begin in section 1
by recalling the classical R-torsion associated to a finite dimensional
orthogonal representation of the group I'. We will also discuss an analytical-
combinatorial formulation of this invariant. It was this formula that provided
the initial evidence of a link between the combinatorial R-torsion and the
analytic torison for smooth compact manifolds [8]. We will discuss in section 3
an extension of the Ray-Singer conjecture (now a theorem (see [1], [7]))
to the infinite dimensional setting we have in mind.

In section 2 we will introduce the notion of R-torsion associated to certain
pairs, t-pairs, of infinite dimensional unitary representations. We will show
that for a stably free, s-based R[I']-complex one can define an R-torsion
associated to a t-pair of representation of I Following this we will, in
section 3, verify that this R-torsion is recoverable from the associated
laplacians and so obtain an analytical-combinatorial formula for the
R-torsion. Finally, as was mentioned above, we will outline how we think the
generalization of the Ray-Singer conjecture would be formulated within this
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setting. The proof of this extended conjecture, whether following [1] or [7],
would appear to us to involve some very interesting analysis. In particular it
seems that perturbation theory, especially scattering theory (see [3], [4]),
would necessarily play a distinctive role.

1. Classical R-torsion.

We will follow the treatments and notation of [6], [8]. Let I' be a finitely
group and let

(1) €={C,.0,:c0h}={C,2Cpy > >C, 2 Coic,,h,)

denote a complex of R[I'}-modules (or more generally modules over any
ring). For the moment we will assume that & is free and provided with
preferred bases for the C, and for its homology modules

H,(¥) = ker0,/Imd, ,,
denoted by ¢, and h, respectively. We will also assume that the boundary
modules
B, =Im(@0,+,)<=C,

are free. As in [6] these assumptions are not all necessary. After making the
appropriate contructions here and in section 2 we will then observe that
everything works if only we require each C, to be stably free and have
preferred s-bases. But given € as above we may more conveniently define the
torsion of €, t(¥), as an element of the reduced Whitehead group of R[],
R,(R[I]) as follows. Choose anybasis b, for B, = C, and select sets of
elements b, = C,,, such that

(2) a‘+1(51)=b‘-

Then as was shown in [6] the sets b,, h,,b, determine (sufficiently) a basis
(b hb,) of C, so that the following expression

G) () = ]io (= 1y~ [(bjhB): )]

determines a well-defined element of K, (R[I']). Recall from [6] that
K, R[r]) = K:RIIDAO, [(- D]}
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where
K, (R[I']) = GIR[T'])/[GIR[I']), GIR[I'])]

GI(R[I']) = lim,Gl,(R[I']), and that for two bases e = {e,,...,e,} and
f =1{/i,..-f} of a free R[I'}-module,

[e:f] = {change of basis matrix from e to f} = (a;;),

that is

(4) e; = Za,'jf:i, al'je R[r].
i

To define R-torsion we need to be in addition provided with an orthogonal
representation of I

(5) 0:I - O(m).
Extending ¢ linearly to R[I"] we obtain a ring homomorphism
(6) ¢:R[I'] » M, (R) = {m xm real matrices} = End(R™).

So we may also view, via g, R™ as an R[I'}-module and thus consider the
tensor product of R™ with the complex ¢

(1) R™®pgry € = {0 - R" ®ppry Cu =22 R™ ®ppr) Comy =+ = 0}
which we will denote simply as R™ ® , 4. Assume that R™ ® ,% is acyclic.
Fixing the standard basis e of R™, the preferred bases of € determine preferred
bases for the vector spaces of R™ ®, %, e @ c,.. That is R" ® , ¥ is an acyclic
complex of R-vector spaces with preferred bases (the homology being zero
also has a preferred basis). So as above we can define

1R"®,%)e K, (R) %R* (the positive reals)

where K, (R) 5 R* is the homomorphism given by

8) D([a]) = |det(a)| for aeGl,(R).

We define

©) 7,(€) = D(R" ® , €)).
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7,(%) is then an “alternating product” of determinants of change of basis
operators determined by the homomorphisms of %, the preferred bases of the
C,, and the representation g. That is

(10) 1,(%) = ]] |det[(b;b;): c;]I-V,
j=0

where the b;, b; are chosen as above with respect to the complex R™ @, %
and cj denotes the preferred basis of R" ®,C;. As in [6] we now observe
that if we only require that the R[I']-modules be stably free and each have
preferred s-basis then the natural extension of the above construction yields
a well-defined torsion (%) e K, (R[I']) and R-torsion 7,(¢)eR*. In section 2
we will discuss infinite dimensional representations of I' which allow an
expression similar to (10) to be defined. We hope (knowing of no counter-
example) to eventually show that this R-torsion does for infinite groups what
the following result of Bass, mentioned in [6], does for finite groups.

TueoreM. If I is a finite group, then the order of ©(€)e K,(R[I']) is finite
iff ©,(€) =1 for all irreducible orthogonal representations of I

That is the t, determine t up to torsion. It seems that the point is, for
finite I, orthogonal representation sufficiently represent I’s algebraic
structure. For instance, the regular representation is orthogonal. If I' is
infinite, this of course can not be so. In fact there are infinite groups which
possess no non-trivial orthogonal representations. Thus for infinite I' one can
not expect that the 7, detect very much of .

Now given € and ¢:I' = O(m) as above, consider R™ ® , 4. The preferred
bases of ¥ determine preferred bases of R" ® ,% and so inner products on
the vector spaces R™®,C;=V; for which these preferred bases are
orthonormal. Let 4; = 1 ® 0; and let A} denote its adjoint with respect to
these inner products. Let

(11) ;= ATA;+Aj AT+

denote the “combinatorial” laplacian of € at C; associated to ¢. 4; is self-
adjoint and positive. Define

(12) {i(s) = Trace((4;)"*)



252 HOWARD D. REES

where 0 = 4; S 4, £-- £ 4,, n; = dim V), are the eigenvalues of 4; on V.
In [8] it is shown that

) G . "
(13) logz,(¢) = 3 VZO(—l)"j'C{,(O)-
j<

An analogous formula will hold in the infinite dimensional setting and will
be discussed in section 3.

2. R-torsion associated to a f-pair.
Let H denote a complex separable Hilbert space. Consider the following:
'DeFiNITION 1. A pair of unitary representations ¢,,0,:I' » U(H) is called
a t-pair if for all ge T’
(14) 01(9)—02(9) € B, (H), the trace class (see [3], [2]).

We will denote by ZL(H), £ '(H), and B,(H) the spaces of bounded
operators, bounded operators with bounded inverses, and trace class
operators on H respectively. Recall (see [3], [2]) that if T € B,(H), then for
any orthonormal basis e = {e,} of H the following sum converges absolutely

(15) 2. (Te,e,).

It is called the trace of T and denoted tr(T). Notice that if {g,,0,} is a
t-pair of representations of I', then for all ge I’ we have for instance

(16) 19) 02(9)* = €1(9)e:9)™" = e1(9)e2(97 ") €Iy + By (H),

where I, = identity operator on H. Notice also that if dim H < oo then all
operators are of trace class.

We now wish to show, given a complex € as above and a t-pair {g,, 0;}
there is a well-defined torison

Yo, 01} (6) ER”
having the property that if dim H < oo, then

(17 Ton 02} () = T, (6)/7,,(6).

The problem we .have is making sense of expressions like (10) where one
would need to take the determinant of operators on Hilbert space. This of
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course is not always possible. But for t-pairs of representations the needed
determinants exist. To begin, let ¢ = {C,,d,:¢c,.h,} be a free bases R[I']-
complex as with (1). Consider the diagram:

..~ H®,, C; 1®a ) H®, Cj_y =
i~ ~ | pit
(pll J(pl
(18) e HM al Hu-v o ...
A}
o] = =] ot
= H®,, (; Toud H®,, Cj-y =
'
where

¢{:H®01Cj—»H"i =H®  ®H, ¢e=12
| ——
nj = dlmR[r]C]
are isomorphisms defined by sending the basis e ®,, i of H ®,, C; to the

basis e ® c; of H" (the set c; is then just a set of n; symbols when viewed
as part of e ® c;), and the A/ make their respective squares commute, that is

(19) Al = o7 o (1 ®,, 9;)° ()™ ().
In particular if he H, ¢; = {cji};-1,...n, then

(20) Alh ® cji) =¢i Yh ®,, 9ji)-
So that if d;c;; = Y xalf'c;- 1 4 then

(1) Alh @ ciy) = ol! (h ®,, Za(i’pcj~l,k)
P
=ol™! (2,:, (@i),,(h) ®,, cj—l,k)

= Z (aﬁi’)o,h ®cj—1,0
k
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where, for a = Yr,-geR[I],
a, = Y.r, e(9)e Z(H).

Thus if 9; is represented by the n;x n;_, matrix (ai’) with entries in R[I'],
then A/ is represented by the n; x n;_, matrix

((aw)&)i H" — HMi-y

with entries in £ (H). Notice that if 4 = (a;;)e€ G1,(R[I"]), then for any
unitary representation g¢: I’ — U(H),

A, = ((a;j),): H" > H'e £~ Y(H")
and
(22) (A4 =(471),

DerINITION 2. A pair of operators {A,, A,} < #(H) is called a t-pair of
operators if A, — A4, eB,(H).

LemMA 1. Let A:F - F be an R[I')-endomorphism of a free based R[I]-
module. If {0y, 0,} is a t-pair of representations then {A, , A,,} is a t-pair of
operators on H", n = dimn[r]F .

LemMMA 2. Let ¢, and ¢’ denote two R[I]-bases of the free R[I'}-module
R[I]" = F. Let {¢,, 0.} be a t-pair of representations of I', and together with
¢ let them determine isomorphisms

¢ H®,F->H", ¢= 1,2
as in (18). Then the change of basis operators

0,=[0.(e®,c)e®c]
form a t-pair of operators on H".

Proor oF LEMMA 1. The isomorphisms ¢, are given by
H®, F& H" & H®,F
h®, cci—h®c;+—h ®,,¢;

and A:F - F induces 4, = A,: H" - H" by
A, (h@c)= ¢ (h ®, Ac).
If A = (a;;) with respect to c, then A4, = ((a;;),): H" - H" and

(23) Ay — Ay = ((aij)g, — (aij)g,): H" — H".
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But for any a = Y r,-geR[I]

(24) ay, —dy, = 2.1, (01(9)—02(9))

is a finite sum of trace class operators and hence trace class. Therefore
A, —A;eB,(H"), ie,{A,,A,}is a t-pair.

Before we prove Lemma 2, notice that if {g,,0,} is a t-pair and
AeGl,(R[I]), then

(25) Ay oAy " €Iy + By (H"),
and so by [3], [2], det(4, o A; ') is defined.
ProoF oF LEMMA 2. Let 4 = (a;;) e GL,(R[I']) denote the change of basis

matrix [¢":c], ie,

(26) ¢;= Y a;cj, or briefly ¢’ = Ac.
j

The new bases of H", ¢.(e ®, c’) can then be written in terms of the first
basis e ® ¢ by

Pele ®y €)= Pcle ®, Ac) = A, (e ® c).
That is

27) [¢.le ®, c):e®c] = 4.
The result then follows from Lemma 1.

We may now define an R-torsion of free, based R[I"] complexes associated
to t-pairs. Let € = {C,, 0, :¢c,, h,} and consider the diagram (18). Let b, be
a basis of B, (assuming for the moment that B, = C, is free) and let b,
be chosen as in (2). Denote the resulting basis (b,h,b,) of C, by c|,. Consider
the operators

(28) 0; = [plle ®, cj):e®c;], e=12j=0,..,n

As proven in Lemma 2, {04, 04} is a t-pair of operators on H". We may then
define, using the observation (25) and (see [3],[2]),

(29) %01, 011 €) = T1 Idet(8]- 04)" ).

i=0
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If dim H < o, then det(0](05)!) = (det 6{)/(det 0}) and it is easy to see that

(30) Yo 0} () = 7y, (€)/7,,(¥).

Now as in [6] we may replace everywhere above the requirements that the
R[I']-modules be free and based by the conditions that they be stably free and
s-based. It is clear that none of the above constructions are affected by such a
generalization. In fact all we have done is construct a homomorphism
(31) Dy, o : Ki(R[I]) —R*

[a] » Idet(a,, - a,,")|

given a t-pair of representations {g,, 0,}. So we may view our R-torsion as
follows:

{stably free, s-based R[I']-complexes}

T
(32) l‘t {01, 02}
R,(R[I'])————=R".
1RUD D{e, ez}

3. An analytical-combinatoial formula for 7(, , ..
Our aim is to verify Proposition 1 below. It represents the obvious extension

of the formula (13) found in [8] to our situation. Let ¢ = {C,,0,:c,, h,}
be as above and recall diagram (18) and the operators

Al =0l (18,,0) (9"
The preferred basis c; of C; determines the inner products on H ®, C; and

H™ by making the bases e ®, c; and e ® c; orthonormal. Let B/ denote the
adjoint of A, i.e.,

(33) H™ ;z Hrer with CA¥x), ) = <x, Bi(y)

for xe H", y e H"-.
We will denote the associated laplacians by

(34) Al = Bio Al+ Ai*' o Bi*1 € P(HM).
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Since we assume always that H ®,, € is acyclic, it then follows that

(35) Ale L1 (HM).

LemMma 3. If {0y, 0.} is a t-pair, then for each j, {4i, 43} is a t-pair of
invertible operators on H".

Given this for the moment we proceed with the .construction of our
analytical formula. Let

(36) Uoron(8) = tr{a])™s—(4])™*}

which, since 4/e £~ !(H"), represents an entire function of s.

ProrosiTION 1.
1 ; .
10 7(,,0,)(6) = 3 2 (=1 J* {{o,.0,}(0)-
J

As in [8] the proof relates the derivative of {f, ,. at s =0 with the
determinants of A4¥(4%)"' and these in turn with the determinants of
0%(0%)"!. So that we do not belabor the technicalities we will only prove
Proposition 1 in the case that € is an acylcic complex with n = 1. We first
prove Lemma 3.

Proor oF LEMMa 3. We begin by determining how the operators B/ depend
on the homomorphisms ;. For simplicity, let d:C - D be an R[I]-
homomorphism between free R[I']-modules with bases ¢ = {c,,...,c,} and
d = {d,,...,d,} respectively. Then with respect to ¢ and d let 0 = (a;;) and

A, = ((a;),,): H" = H™ as above.
It is then an easy exercise to check that
(37) B, = adjoint of 4, = ((@;),): H" - H"
where, for a=Yr,-geR[I'], a=Yr,-g”' That is the adjoint of the
“operatorization” of an R[I']-homomorphism is the operatorization of the
conjugate transpose of the algebraic map. Because of (37) and (34) we
then have

(38) {B{,Bj} and {44, 4}} are t-pairs.

In fact, if we let
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(39) (algd’) = 0jo 0;+ 041 © Ty,

where J; denotes the conjugate transpose of 0; denote the “algebraic
laplacian”, then

(40) 4] = (algd’), .

Proor oF ProposiTioN 1. From [3],
jy—s 1 -5 jy— 1
(4)7" =5 ¢ &7 (E—4)7d¢
i
Y

where 7 is a simple closed curve surrounding the (bounded) spectrum of both
A% and 4} and avoiding zero (see figure)

Figure.

But (¢—4f)" ! —(£—44) ' e B,(H") and so

41) o o)) = tr{(4]) ™2 — (44)7*}

1 . ;
=t ff-’{(ﬁ—di)" —(E-4d)~"}dg
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1 . :
=5 §C"tf{(é—d’x)“—(C—Ai)"}dé

o I ) )
“42) Loy @ =tr 5 §—log¢- {(€—af)' — (- 4))~"ae

—trlog(4{(4})™")

—logdet(4(45)™ ).

259

For simplicity we now assume that € is acyclic and n = 1. Thus we are

considering just an isomorphism between free R[I"]-modules

6:C1 ""CO

with preferred bases cy,c,. Let d = (a;;) with respect to c,,co. Then we can

calculate t(%) as follows. Since B; = {0} and B, = C, we may take

43) bo=co, and B, =07 '(co).
Thus
(44) (%) = [bo:co]—[by:¢1]

=[co:co]—[07 o : 4]

=1-[(ay)" '] =1+[(;)] (see [6]).
So if we let A = (a;;), then
45) T(,. 00 (€) = |det(4, 4, 1)].
Then to prove Proposition 1 in this case we need to show

log|det(4, 4, = —3{{,,.0,1(0)
= $logdet(4}(4})™") by (42).

Notice though that in this case

(46) Al = A, A¥ (A} = adjoint of 4,).
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Hence

jlogdet(4}(43)™") = $logdet(4, A% (4,,4%)"")

= Jlogdet(d, A, (4, A;')*)
= log|det(4,,A4,.")|.

Given Proposition 1 we are led to suspect that for the category of compact
Riemannian manifolds there lurks an analytic torsion associated to a t-pair
of unitary representations of m,. Being equal to the above R-torsion would
by (30) represent a generalized Ray-Singer conjecture (shown to be true by
Cheeger [1] and Muller [7]). More precisely, given a smooth compact
Riemannian manifold W, possibly with boundary M, and given a t-pair
{91, 02} of representations of n; (W) we may consider the de Rham complexes
of (W,M) with values in the flat Hilbert bundles ¥, induced by the
representations g,, ¢ = 1,2, A*(W; 5#,). As all Hilbert bundles over compact
spaces are trivial (see [5]) (though not as flat bundles) we may identify

ANV H) = AW WX H).

We may also consider the laplacians associated to A*(W; #,) transferred to
A*(W; W x H) and denoted there by 4*. We would then be led to conjecture
that
1. {e;,0,} being a t-pair implies there exist isomorphisms y* so that
with respect to the appropriate boundary value problem A¥—A4% is
trace class,

2. Lk o (s) =tr{(4F)7°—(43)""} is defined and analytic for Re(s)}) 0
and possesses a meromorphic extension to all of ¥ analytic at s =0
(see [9]), and finally, s w
m

3. 108 Tig, o (CHW.MR) =5 3 (1Y U0 )

W, M denotes the universal cover of W and a choice of lift of M (see [8]).
C*(W, M ;R) is then an R[I'}-complex with naturally chosen preferred bases
(for the cohomology basis one looks to the harmonic forms [8]) to which the
above methods may be applied. In contrast to Ray and Singer’s work we
have as yet no hard evidence that such a conjecture should be true (beyond
the Ray-Singer conjecture itself). Our search for examples and/or counter-
examples though is leading us down a very interesting and to our knowledge
essentially unexplored path. That a proof might, if it follows the spirit of [1]
or [7], require the study of a deformation theory or approximation theory
for scattering theory (see [3], [4]), seems to us very exciting.
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