JOINS AND HIGHER SECANT VARIETIES

BJØRN ÅDLANDSVIK

Introduction.

The join of two varieties X and Y in $P = P^N$ is the closure of the union of the lines of form xy, $x \in X$, $y \in Y$. The r'th secant variety of $X \subset P$ is the closure of the union of the (r-1)-planes spanned by r points in X.

In section 1 we observe that the set Var(P) of closed subvarieties in P becomes a monoid under the operation join, and that the higher secant varieties of X are the powers of X in this monoid.

Using this monoid we prove among other things that the higher secant varieties of a curve always have the expected dimensions (if they are nonlinear). Although this was known to Palatini [15, footnote p. 635] it was considered an open problem by Atiyah [3, p. 424]. From this fact Atiyah's arguments give a proof of Nagata's theorem about the minimal section of a ruled surface. Recently, Lange [14] and Zak [19] has proved that these secant varieties have the right dimensions. Lange also gave the application to Nagata's theorem.

We also consider Terracini's lemma. This is a useful tool for the differential study of the secant variety, as shown by works of Zak [18], Fujita-Roberts [6], Dale [4] and others. We give a simple proof of Terracini's lemma for joins.

Together the monoid and Terracini's lemma give a framework for further studies of higher secant varieties. For instance, we have been able to classify varieties with a maximal number of degenerate higher secant varieties (see [1]).

In section 2 we prove a join-defect formula generalising the embedding-obstruction/double point formula from secant varieties to joins. This formula expresses the dimension of the join XY of X and Y in terms of the Segre class of $X \cap Y$ in $X \times Y$.

As a corollary we observe that a special case gives a "refined Bezout theorem" connected with results of Fulton [7, 12.3].

Received September 25, 1986.

I would like to thank my colleagues at the University of Bergen, especially M. Dale, for interesting conversations about these topics.

1. General theory and tangential properties of joints.

1.1. DEFINITIONS, NOTATIONS AND OBSERVATIONS. Let k be an algebraically closed field and V a finite dimensional linear space. Let $\mathbf{A} = \mathbf{V}(V) = \operatorname{Spec} S(V)$, where S denotes symmetric algebra.

By a variety we will mean a reduced and irreducible algebraic k-scheme. If X and Y are subvarieties of A, we define their $sum\ X+Y$ as the closure of the image of $X\times Y$ under the addition morphism $A\times A\to A$. Clearly $\dim(X+Y)\leq \dim X+\dim Y$.

Let P = P(V) = Proj S(V). For a subvariety $Z \subset P$ let \widehat{Z} denote the affine cone in A. Let X and Y be subvarieties in P, then there is a subvariety $XY \subset P$ the join of X and Y such that $(XY)^{\hat{}} = \widehat{X} + \widehat{Y}$. We have $\dim XY \leq \dim X + \dim Y + 1$. The set Var(P) of projective subvarieties of P becomes an ordered abelian monoid under join, where the ordering is given by inclusion and the empty variety is the unit element. The empty variety has always dimension -1.

If $x_1, ..., x_r$ are points in P, then the join $x_1 ... x_r$ equals their linear span. With this notation, $X_1 ... X_r$ is the closure of the union of the $x_1 ... x_r$'s with $x_i \in X_i$, i = 1, ..., r. If dim $x_1 ... x_r = r - 1$, $x_i \in X_i$, we call $x_1 ... x_r$ a joining (r-1)-plane of $X_1, ..., X_r$.

The higher secant varieties of a given $X \in Var(P)$ are the powers of X in this monoid. We use this notation writing X^2 for Sec(X) and so on. In this situation we sometimes change our terminology and talk about r-secant (r-1)-planes or just r-secants if no confusion is likely. With these notations we see that $X \in Var(P)$ is idempotent if and only if it is a linear subspace. We make the following observation generalising [8, Lemma 7.10]. Palatini [16] gave another proof.

Observation 1.2. Let $X \in Var(P)$. If $X^i = X^{i+1}$, then X^i is linear.

PROOF. $X^i = X^{i+1}$ implies X^i idempotent.

If $X \in Var(P)$ and P is a point, we say that P is a vertex of X if XP = X. The set of vertices of X is denoted Vert(X). It is easy to vertify that Vert(X) is a linear subvariety of X and that codim $(Vert(X), X) \ge 2$ for X nonlinear, see also [5].

Proposition 1.3. Let $X, Y \in Var(P)$, then

- i) XY = X if and only if $Y \subset Vert(X)$,
- ii) $\dim XY = \dim X + 1$ implies $Y \subset \operatorname{Vert}(XY)$.

PROOF. The first statement is trivial. For the second suppose dim X = n, dim XY = n + 1. By i) we cannot have $Y \subset Vert(X)$. Take $y \in Y$, $y \notin Vert(X)$. Then $Xy \neq X$ giving Xy = XY therefore $XYy = Xy^2 = XY$ giving $y \in Vert(XY)$.

As a corallary we obtain the following result of Palatini [16, 3, Teorema I] giving a stronger version of Observation 1.2.

COROLLARY 1.4. If dim $X^{i+1} \leq \dim X^{i+1}$, then X^{i+1} is linear.

PROOF. By the proposition $X \subset \text{Vert}(X^{i+1})$. But $\text{Vert}(X^{i+1})$ is linear, giving $X^{i+1} \subset \text{Vert}(X^{i+1})$ and X^{i+1} becomes linear.

COROLLARY 1.5. Suppose $X_1, ..., X_r \subset P$ are curves. Then $\dim X_1 ... X_r < 2r - 1$ if and only if there is a sequence $1 \le i_1 < ... < i_s \le r$ such that $X_{i_1} ... X_{i_s}$ is linear of dimension < 2s - 1.

PROOF. Suppose no such sequence exist. We prove $\dim X_1 \dots X_r = 2r-1$ by induction. It is certainly true for r=1. Suppose $r \ge 2$ and let $Z_i = X_1 \dots X_i \dots X_r$, and $X = X_1 \dots X_r = X_i Z_i$. By induction $\dim Z_i = 2r-3$. Suppose $\dim X < 2r-1$. Then $\dim X \le \dim Z_i + 1$ and since $X = Z_i X_i$, we get $X_i \subset \operatorname{Vert}(X)$. This holds for $1 \le i \le r$ and implies that $X \subset \operatorname{Vert}(X)$. Thus X is linear of dimension < 2r-1, giving a contradiction.

The converse is a trivial dimension count.

REMARK 1.6. Each of the corollaries implies that the higher secant-varieties of a curve has the "right" dimensions if they are nonlinear.

We will now take a look at the tangential properties of joins.

For a variety X we let $t_{X,x}$ denote the Zariski tangent space. If $X \subset A$ then naturally $t_{X,x} \subset T_{A,x} = V^*$ and we identify $t_{X,x}$ with the corresponding linear subvariety of A.

If $X \subset P$ then $t_{X,x} \subset t_{P,x}$ and we let $T_{X,x}$ denote the embedded tangent space, that is the linear subvariety L of P such that $t_{L,x} = t_{X,x}$ in $t_{P,x}$. Clearly $(T_{X,x})^{\hat{}} = t_{X,x}$ for x' in A lying over x.

Proposition 1.7. Suppose $X, Y, Z \in Var(P)$.

- (1) If $x \in X$, then $T_{XY,x} \supset x \langle Y \rangle$ where $\langle Y \rangle$ is the linear span of Y.
- (2) If XYZ is nonlinear, then $(X \cap Y) \subset \text{Sing}(XYZ)$.

PROOF. (1) $T_{XY,x} \supset T_{xY,x} = x \langle Y \rangle$.

(2) Take $w \in X \cap Y$, then $T_{XYZ, w} \supset w \langle Y \rangle \supset YZ$ by (1). Interchanging X and Y gives $T_{XYZ, w} \supset XZ$, thus $T_{XYZ, w} \supset XYZ$. If XYZ is nonlinear this implies that $w \in \text{Sing}(XYZ)$.

As a corollary we get another strengthening of Observation 1.2.

COROLLARY 1.8. If $X \in Var(P)$ with X^{i+1} nonlinear, then

$$X^i \subset \operatorname{Sing}(X^{i+1}).$$

PROOF. Take $z \in X^i$, then $T_{X^{i+1},z} \supset z \langle X \rangle \supset X^{i+1}$.

PROPOSITION 1.9. Let X and Y be subvarieties of A. If $x \in X$ and $y \in Y$, the image of the differential at (x, y) of the addition morphism $+: X \times Y \to X + Y$ is $t_{X,x} + t_{X,y}$.

PROOF. $+: A \times A \rightarrow A$ is linear giving d + = +, and we get

$$+: t_{X,x} \times t_{X,y} \rightarrow t_{X,x} + t_{X,y}$$

We obtain the following affine version of Terracini's lemma.

COROLLARY 1.10. Let X, Y be as above, then

- (1) $t_{X,x} + t_{Y,y} \subset t_{X+Y,x+y}$ for $x \in X, y \in Y$.
- (2) If char(k) = 0 then there is a dense open subset U in X + Y such that

$$t_{X,x} + t_{Y,y} = t_{X+Y,z}$$

for all $z \in U$, $x \in X$, $y \in Y$ with z = x + y.

Proof. (1) Follows immediately from the proposition.

(2) Follows from the theorem of "generic submersiveness", see [9, Proof of III, 10.7].

By passing to affine cones we get the following version of Terracini's lemma.

COROLLARY 1.11. If $X, Y \in Var(\mathbf{P})$, then

- (1) $T_{X,x}T_{Y,y} \subset T_{XY,z}$ for $x \in X$, $y \in Y$, and $z \in xy$.
- (2) If char(k) = 0 then there is a dense open subset U in XY such that

$$T_{X,x}T_{Y,y}=T_{XY,z}$$

for all $z \in U$, $x \in X$, $y \in Y$ with $z \in xy$.

REMARK. It is now an easy task to formulate and prove more "multiple" versions of Terracini.

2. A join-defect formula.

$$V_{(\mathbf{P})'} \to \bigoplus_{i=1}^{r} p_i^* O_{\mathbf{P}}(1)$$

where $p_i:(P)^r \to P$ is the *i*th projection. Let F denote the cokernel of this homomorphism. For $r \le N+1 = \dim V$, let

$$U_r = \{(x_1, ..., x_r) | \dim x_1 ... x_r = r - 1\}.$$

The support of F is the complement $(P)^r - U_r$, and the Fitting ideal $F^0(F)$ induces the reduced scheme structure since the homomorphism above corresponds to the generic $r \times (N+1)$ matrix.

Corresponding to the quotient

$$V_{U_r} woheadrightarrow \bigoplus_{i=1}^r p_i^* O_{\mathbf{P}}(1) \Big|_{U_r}$$

we get a morphism

$$\varphi: U_r \to G = G(r-1, N) = \operatorname{Grass}_r(V)$$

sending an r-tuple $(x_1, ..., x_r)$ to the (r-1)-plane $x_1 ... x_r$.

Let $F \subset P \times G$ be the incidence correspondence with morphisms $\alpha : F \to P$, $\beta : F \to G$ induced by the projections. Furthermore let $(F)^r$ denote $F \times_G ... \times_G F$ (r times), the multiincidence correspondence.

PROPOSITION 2.1. The morphism $\pi: (F)^r \to (P)^r$ induced by α is the blowing up of $(P)^r$ in $F^0(F)$.

PROOF. We will show that the universal property of blowing-up is fulfilled. Let $f: Y \to (P)^r$ be a morphism. By [17, Lemma 1.1] we know that $F^0(f^*F)$ is invertible if and only if the image of $V_Y \to \bigoplus_{i=1}^r f^*q_i^*O_P(1)$ is locally free of rank r.

On $(F)^r$ this image is the pullback of the tautological quotient on G.

Suppose the image E of $V_Y o \bigoplus_{i=1}^r f^* q_i^* O_P(1)$ is an r-bundle. This gives an Y-point in G. The induced morphisms $E o f^* P_i^* O_P(1)$ are surjective, giving Y-points in F for i=1,...,r. We get a morphism $\overline{f}: Y o (F)^r$ with $\pi \circ \overline{f} = f$.

REMARK. If r = 2, then $F^0(F)$ is the ideal of the diagonal in $P \times P$ and we recover essentially the diagram in Holme's article [10]. The isomorphism of $(P \times P)^{\sim}$ with $P \times_G F$ was realised by Johnson [11].

We have the following diagram

For $X_i \in \text{Var}(P)$ i = 1, ..., n, let $n_i = \dim(X_i)$ and $n = \sum_{i=1}^r n_i$. Let Π denote $X_1 \times ... \times X_r$. If $\Pi \cap U_r \neq \emptyset$, we let B denote the strict transform of Π by π . We see that the join $J = X_1 ... X_r$ equals $\beta \alpha^{-1}(S)$, where $S = \gamma(B)$.

Proposition 2.2. If $\Pi \cap U_r \neq \emptyset$, then

- (i) for $r-1 \le m \le n+r-2$, we have dim $J \le m$ iff $\pi_*([B].s_{m+2-r}(y^*Q)) = 0$, where s denotes the Segre class,
- (ii) if dim J = n + r 1, then

$$p \cdot q \cdot \deg J = \deg \pi_*([B] \cdot s_n(\gamma^*Q))$$

where $p = \deg(\gamma|_B)$ and $q = \deg(\alpha|_{B^{-1}(s)})$.

PROOF. For $r-1 \le m \le \min\{N-1, n+r-2\}$ let A be a general linear subspace in P of codimenson m+1. Then we have $\dim J \le m$ if and only if $J \cap A = \emptyset$. Put $\Sigma = \beta(\alpha^{-1}(A))$, the Schubert variety of (r-1)-planes meeting A. We have $\dim J \le m$, iff $S \cap \Sigma = \emptyset$. Pulling this back by γ the condition becomes $B \cap \gamma^{-1}(S) = \emptyset$.

In the Chow ring of $(F)^r$ we have $[B \cap \gamma^{-1}(\Sigma)] = [B] \cdot \gamma^*[\Sigma]$. Pushing this down by π (which is birational on all components of $B \cap \gamma^{-1}(\Sigma)$) we get dim $J \leq m$, iff $\pi_*([B] \cdot \gamma^*[\Sigma]) = 0$. By Porteous' formula, we have $[\Sigma] = s_{m+2-r}(Q)$. To finish the proof of (i), observe that $s_{m+2-r}(Q) = 0$ for $m \geq N$.

If dim J = n + r - 1, then zero-cycle $\pi_*([B].s_n(\gamma^*(Q))) \neq 0$. We have $p \cdot [S] = \gamma_*[B]$ and $[\beta^{-1}S] = \beta^*[S]$ giving

$$p \cdot q \cdot [J] = \alpha_* \beta^* \gamma_* [B]$$
 in $A(P)$.

Using the projection formula and the fact that $s_n(Q) = [\Sigma] = \beta_* \alpha^* [A]$ for A a general plane of codimension n+r-1 we get

$$\gamma_*(\llbracket B \rrbracket, \gamma^* \llbracket \Sigma \rrbracket) = \beta_*(\beta^* \gamma_* \llbracket B \rrbracket, \alpha^* \llbracket A \rrbracket).$$

Taking degrees we get

$$\deg(\pi_*([B].s_n(Q))) = \deg([B].\gamma^*[\Sigma]) = \deg(\beta^*\gamma_*[B].\alpha^*[A]).$$

Now,

$$\alpha_{\star}(\beta^{\star}(\gamma_{\star}[B]).\alpha^{\star}[A]) = \alpha_{\star}\beta^{\star}\gamma_{\star}[B].[A] = pq[J].[A]$$

by the projection formula, and taking degrees we get

$$\deg(\pi_*([B].s_n(Q)) = p \cdot q \cdot \deg J.$$

COROLLARY 2.3. Suppose $\Pi = X_1 \times ... \times X_r \subset U_r$, then dim $X_1 ... X_r = n + r - 1$ and

$$\deg X_1 \dots X_r = p^{-1}q^{-1} \sum_{i=1}^r d_i,$$

where $d_i = \deg(X_i)$.

In particular, if $X_i \subset L_i$, L_i is a linear subspace such that $L_i \cap L_1 \dots L_i \dots L_r = \emptyset$, i = 1, ..., r, then $\deg X_1 \dots X_r = \prod_{i=1}^r d_i$.

PROOF. We have $B \cong \Pi$ and $\gamma^* \cong \bigoplus_{i=1}^r p_i^* O_{\mathbb{P}}(1)$. Let $t_i = c_1(p_i^* O_{\mathbb{P}}(1))$, i = 1, ..., r and $d = d_1 ... d_r$, then

$$[\Pi] = dt_1^{N-n_1} \dots t_r^{N-n_r}$$

and

$$s(\gamma^*Q) = \prod_{i=1}^r \frac{1}{1-t_i} = \prod_{i=1}^r (1+t_i+t_i^2+\ldots+t_i^N).$$

Thus $s(\gamma *Q)$ is the sum of all monomials of degree n in $t_1, ..., t_r$. We get

$$[\Pi] . s_n(\gamma^*Q) = dt_1^N \dots t_r^N.$$

If $X_i \subset L_i$ with $L_i \cap L_1 \dots L_r = \phi$ we must prove p = q = 1. If L is a joining (r-1)-plane, then L meets each L_i in one point, giving p = 1. Through each general point in $L_1 \dots L_r$, there passes exactly one (r-1)-plane meeting all the L_i 's, giving q = 1. More precisely, one can prove, see [2], that

$$P_{\Pi}\left(\bigoplus_{i=1}^{r} p_{i}^{*}O_{X_{i}}(1)\right)$$
 is the blow-up of $X_{1} \dots X_{r}$ with center $\bigcup_{i=1}^{r} X_{i}$.

We will now study closer the case r = 2. Let

$$s^k(X_1 \cap X_2, X_1 \times X_2) \in A_k(X_1 \cap X_2)$$

be the kth Segre class of $X_1 \cap X_2$ in $X_1 \times X_2$, see [7, 4.2] for the definition,

and let

$$\sigma^k(X_1, X_2) = \deg s^k(X_1 \cap X_2, X_1 \times X_2),$$

where the degree is taken by the inclusion of $X_1 \cap X_2$ in $\Delta \cong P$. For $\max(n_1, n_2) \leq m \leq n_1 + n_2$ define

$$\varphi_m = d_1 d_2 - \sum_{i=\alpha}^m {m+1 \choose m-i} \sigma^{n_1+n_2-i}(X_1, X_2)$$

where $\alpha = \alpha(X_1, X_2) = n_1 + n_2 - \dim(X_1 \cap X_2)$.

THEOREM 2.4. We have $\varphi_m \ge 0$ and $\varphi_m = 0$, iff $\dim X_1 X_2 \le m$. If $\dim X_1 X_2 = n_1 + n_2 + 1$, then $p \cdot q \cdot \deg X_1 X_2 = \varphi_{n_1 + n_2}$.

PROOF. We must find the relation between $\pi_*(\gamma[B].s_m(\gamma^*Q))$ and φ_m . To do this it is enough to replace $X \times X$ by $X_1 \times X_2$ in any proof of the double point formula for projections, see [11], [12] or the theory of embedding-obstructions [10], [13]. We will stay close to the proof in [12].

On $F \times_G F$ we have the commutative diagram with exact rows and columns

$$0 \longrightarrow I \otimes L_{1} \longrightarrow L_{1} \longrightarrow \pi^{*}F \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \gamma^{*}Q \longrightarrow L_{1} \oplus L_{2} \longrightarrow \pi^{*}F \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{2} = L_{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \qquad \qquad 0$$

where $L_i = \pi^* p_i^* O_P(1)$ and $I = F^0(\pi^* F)$ the ideal of the exceptional divisor. By [12, V, 29] we have the formula

$$s(\gamma^*Q) = s(L_1)s(L_2) \sum_{i=0}^{2N} s(L_1)^i c_1(I)^i.$$

If we let i denote the inclusion $X_1 \cap X_2 \subset P \times P$ then [12, II, 43] gives

$$i_*s^k(X_1 \cap X_2, X_1 \times X_2) = -\pi_*(c_1(I)^{n_1+n_2-k} \cdot [B]), \quad k = 0, ..., n_1+n_2-1.$$

Using the projection formula, we get

$$\pi_{*}([B].s(\gamma^{*}Q)) = d_{1}d_{2}t_{1}^{N-n_{1}}t_{2}^{N-n_{2}}(1+t_{1}+\ldots+t_{1}^{N})(1+t_{2}+\ldots+t_{2}^{N}) - \sum_{i=a}^{n_{1}+n_{2}}i_{*}s^{n_{1}+n_{2}-i}(X_{1}\cap X_{2},X_{1}\times X_{2})(1+t_{1}+\ldots+t_{1}^{N})^{i+1}(1+t_{2}+\ldots+t_{2}^{N})$$

where $t_i = c_1(p^*O_P(1))$, i = 1, 2.

Let M^l denote the sum of all monomials of degree l in $A(P \times P) = Z[t_1, t_2]/(t_1^{N+1}, t_2^{N+1})$. Then

$$i_*s^k = \Delta_*(\sigma^k \cdot \Delta^*t_1^{N-k}) = \sigma^k M^N t_1^{N-k} = \sigma^k M^{2N-k},$$

where $s^k = s^k(X_1 \cap X_2, X_1 \times X_2)$ and $\sigma^k = \sigma^k(X_1, X_2)$. Collecting terms of degree $2N - n_1 - n_2 + m$ we obtain

$$\pi_*(\lceil B \rceil, s_m(\gamma^*Q)) = \varphi_m M^{2N-n_1-n_2+m}.$$

Finally we look at the trivial cases, when $X_1 \times X_2 \cap U_2 = \emptyset$ that is $X_1 \times X_2 \subset \Delta$. Then $X_1 = X_2$ is a point P, or one of the X_i 's is empty. In the first case one can easily check that the theorem holds, in the second case the theorem becomes "empty".

We will now give an application of this formula.

Suppose $X_1 \cap X_2$ has irreducible components $W_1, ..., W_s$ of dimension m and possibly other components of less dimension. Then

$$s^{m}(X_{1} \cap X_{2}, X_{1} \times X_{2}) = \sum_{i=1}^{s} e_{i}[W_{i}]$$

where e_i is the multiplicity of W_i on $X_1 \times X_2$, see [7, 4.3].

COROLLARY 2.5. We have the following inequalities

$$(*) \dim X_1 X_2 \ge \dim X_1 + \dim X_2 - \dim(X_1 \cap X_2),$$

$$(**) \deg X_1 \cdot \deg X_2 \geqq \sum_{i=1}^{s} e_i \deg W_i.$$

If $X_1 \cap X_2 \neq \emptyset$ then (*) is an equality if and only if (**) is an equality.

PROOF. If $\dim(X_1 \cap X_2) < \min(n_1, n_2)$, then $\varphi_{\alpha-1}$ is defined. Since $\varphi_{\alpha-1} = d_1 d_2 \neq 0$, (*) holds.

If $\dim(X_1 \cap X_2) = \min(n_1, n_2)$, then $\dim X_1 X_2 \ge \max(n_1, n_2) = \alpha$ and (*) holds in this case too.

If $X_1 \cap X_2 \neq \emptyset$ then φ_{α} is defined. Since

$$\varphi_{\alpha} = d_1 d_2 - \sigma^m(X_1, X_2)$$
 and $\sigma^m(X_1, X_2) = \sum_{i=1}^s e_i \deg W_i$,

(**) holds. If $X_1 \cap X_2 = \emptyset$, then (**) is trivial since the sum equals zero. Suppose $X_1 \cap X_2 \neq \emptyset$. Then equality holds in (*), iff $\varphi_{\alpha} = 0$ or equivalently, (**) is an equality.

REMARK. The inequality (**) is a special case of Fulton's refined Bezout theorem, more precisely, it follows directly from Theorem 12.3 and Example 12.3.7 in [7].

REFERENCES

- 1. B. Adlandsvik, Varieties with an extremal number of degenerate higher secant varieties, to appear in J. Reine Angew. Math.
- A. Altman and S. Kleiman, Joins of schemes, linear projections, Compositio Math. 31 (1975), 309-343.
- 3. M. F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc. (3) 5 (1955), 407-434.
- 4. M. Dale, Terracini's Lemma and the secant variety of a curve, Proc. London Math. Soc. (3) 49 (1984), 329-339.
- T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 22 (1975), 103-115.
- T. Fujita and J. Roberts, Varieties with small secant varieties: the extremal case, Amer. J. Math. 103 (1981), 953-976.
- W. Fulton, Intersection Theory (Ergeb. Math. Grenzgeb. 3), Springer-Verlag, Berlin Heidelberg New York, 1984.
- W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, in Algebraic Geometry (Proc. Chicago, 1980), eds. A. Libgover and P. Vagreich (Lecture Notes in Math. 862), pp. 26-92. Springer-Verlag, Berlin - Heidelberg - New York, 1981.
- R. Hartshorne, Algebraic Geometry (Graduate Texts in Math. 52), Springer-Verlag, Berlin -Heidelberg - New York, 1977.
- A. Holme, Embedding-obstruction for smooth, projective varieties I, in Studies in Algebraic Topology, ed. G.-C. Rota (Adv. in Math., Suppl. Studies 5), pp. 39-67. Academic Press, New York, London, 1979.
- 11. K. Johnson, Immersion and embedding of projective varieties, Acta Math. 140 (1978), 49-74.
- S. L. Kleiman, The enumerative theory of singularities, in Real and Complex Singularities, pp. 297-396 (Proc. Oslo, 1976), ed. P. Holm. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.
- D. Laksov, Some enumerative properties of secants to non-singular projective schemes, Math. Scand. 39 (1976), 171-190.
- H. Lange, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math. 47 (1984), 263-269.
- F. Palatini, Sulle superficie algebriche i cui Sh(h+1)-seganti non riempiono lo spazio ambiente, Atti Accad. Torino 41 (1906), 634-640.
- F. Palatini, Sulle varietà algebriche per le quali sono di dimensione minore dell'ordinario, senza riempire lo spazio ambiente, una o alcuna delle varietà formata da spazi seganti, Atti Accad. Torino 44 (1909), 362-375.
- 17. R. Piene, Polar classes of singular varieties, Ann. Sci. École Norm. Sup (4) 11 (1978), 247-276.
- 18. F. L. Zak, Projections of algebraic varieties, Math. USSR-Sb. 44 (1983), 535-544.

AND

 F. L. Zak, Linear systems of hyperplane sections on varieties of low codimension, Functional Anal. Appl. 19 (1985), 165-173.

MATEMATISK INSTITUTT UNIVERSITETET I BERGEN 5014 BERGEN NORWAY INSTITUTE OF MARINE RESEARCH P.O. BOX 1870 NORDNES N-5024 BERGEN NORWAY