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JOINS AND HIGHER SECANT VARIETIES

BJORN ADLANDSVIK

Introduction.

The join of two varieties-X and Y in P = P¥ is the closure of the union
of the lines of form xy, x € X, ye Y. The r’th secant variety of X < P is the
closure of the union of the (r—1)-planes spanned by r points in X.

In section 1 we observe that the set Var(P) of closed subvarieties in P
becomes a monoid under the operation join, and that the higher secant
varieties of X are the powers of X in this monoid.

Using this monoid we prove among other things that the higher secant
varieties of a curve always have the expected dimensions (if they are non-
linear). Although this was known to Palatini [15, footnote p. 635] it was
considered an open problem by Atiyah [3, p. 424]. From this fact Atiyah’s
arguments give a proof of Nagata’s theorem about the minimal section of a
ruled surface. Recently, Lange [14] and Zak [19] has proved that these secant
varieties have the right dimensions. Lange also gave the application to
Nagata’s theorem.

We also consider Terracini’s lemma. This is a useful tool for the
differential study of the secant variety, as shown by works of Zak [18],
Fujita-Roberts [6], Dale [4] and others. We give a simple proof of Terracini’s
lemma for joins.

Together the monoid and Terracini’s lemma give a framework for further
studies of higher secant varieties. For instance, we have been able to classify
varieties with a maximal number of degenerate higher secant varieties
(see [1]).

In section 2 we prove a join-defect formula generalising the embedding-
obstruction/double point formula from secant varieties to joins. This formula
expresses the dimension of the join XY of X and Y in terms of the Segre
classof X nYin X x Y.

As a corollary we observe that a special case gives a “refined Bezout
theorem” connected with results of Fulton [7, 12.3].
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1. General theory and tangential properties of joints.

1.1. DEFINITIONS, NOTATIONS AND OBSERVATIONS. Let k be an algebraically
closed field and V a finite dimensional linear space. Let A = V(') = Spec S(V),
where S denotes symmetric algebra.

By a variety we will mean a reduced and irreducible algebraic k-scheme.
If X and Y are subvarieties of A, we define their sum X + Y as the closure
of the image of X x Y under the addition morphism A4 x A —» A. Clearly
dim(X+Y) = dimX +dimY.

Let P = P(V) = ProjS(V). For a subvariety Z < P let Z denote the affine
cone in A. Let X and Y be subvarieties in P, then there is a subvariety
XY c P the join of X and Y such that (XY) = X+Y. We have
dim XY = dim X +dim Y + 1. The set Var(P) of projective subvarieties of P
becomes an ordered abelian monoid under join, where the ordering is given
by inclusion and the empty variety is the unit element. The empty variety has
always dimension —1.

If x,,..., x, are points in P, then the join x,...x, equals their linear span.
With this notation, X, ... X, is the closure of the union of the x, ... x,’s with
xieX,i=1,..,n Ifdimx,...x, =r—1, x;€X;, we call x,...x, a joining
(r—1)-plane of X,,..., X,.

The higher secant varieties of a given X € Var(P) are the powers of X in
this monoid. We use this notation writing X2 for Sec(X) and so on. In this
situation we sometimes change our terminology and talk about r-secant
(r—1)-planes or just r-secants if no confusion is likely. With these notations
we see that X e Var(P) is idempotent if and only if it is a linear subspace.
‘We make the following observation generalising [8, Lemma 7.10]. Palatini
[16] gave another proof.

OBSERVATION 1.2. Let X € Var(P). If X' = X'*!, then X' is linear.
Proor. X! = X'*! implies X' idempotent.

If X e Var(P) and P is a point, we say that P is a vertex of X if XP = X.
The set of vertices of X is denoted’ Vert(X). It is easy to vertify that Vert(X)
is a linear subvariety of X and that codim (Vert(X), X) = 2 for X nonlinear,
see also [5].

ProrosiTION 1.3. Let X,Y € Var(P), then
i) XY = X if and only if Y < Vert(X),
iil) dimXY =dim X +1 implies Y < Vert(XY).
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Proor. The first statement is trivial. For the second suppose dim X = n,
dim XY = n+1. By i) we cannot have Y < Vert(X). Take ye Y, y ¢ Vert(X).
Then Xy # X giving Xy = XY therefore XYy = Xy> = Xy = XY giving
ye Vert(XY).

As a corallary we obtain the following result of Palatini [16, 3, Teorema I]
giving a stronger version of Observation 1.2.

CoroLtary 1.4, If dim X‘*! < dim X'+ 1, then X'+ is linear.

Proor. By the proposition X < Vert(X‘*!). But Vert(X‘*!) s linear, giving
Xi*t! < Vert(X*') and X*! becomes linear.

CoRrOLLARY 1.5. Suppose X 1,...,X, = P are curves. Thendim X, ... X, < 2r—1
if and only if there is a sequence 1 <i, <...<i; =r such that X; ...X;
is linear of dimension < 2s—1.

ProoF. Suppose no such sequence exist. We prove dimX, ... X, = 2r—1
by induction. It is certainly true for r = 1. Suppose r =2 and let
Z;=X,...X;...X,and X = X, ... X, = X;Z,. By induction dim Z; = 2r — 3.
Suppose dim X < 2r—1. Thendim X = dim Z;+ 1 and since X = Z;X;, we get
X; = Vert(X). This holds for | =i < r and implies that X <= Vert(X). Thus X
is linear of dimension < 2r—1, giving a contradiction.

The converse is a trivial dimension count.

Remark 1.6. Each of the corollaries implies that the higher secant-
varieties of a curve has the “right” dimensions if they are nonlinear.

We will now take a look at the tangential properties of joins.

For a variety X we let ty , denote the Zariski tangent space. If X < 4
then naturally ty , = T, , = V* and we identify ty , with the corresponding
linear subvariety of A.

If X < P then ty , < tp, and we let Ty , denote the embedded tangent
space, that is the linear subvariety L of P such that ¢, , =ty . in tp .
Clearly (Ty,,) = tg . for x' in A lying over x.

ProrosiTiON 1.7. Suppose X,Y, Z € Var(P).
(1) If xeX, then Txy , o x{Y) where {Y) is the linear span of Y.
(2) If XYZ is nonlinear, then (X nY) = Sing(XYZ).

PROOF. (1) Tyy,x @ Toy,x = x{Y).

(2) Take we X NnY, thén Txyz, > w(Y) o YZ by (1). Interchanging X
and Y gives Txyz ., o XZ, thus Tyyz , > XYZ. If XYZ is nonlinear this
implies that w € Sing(X Y Z).
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As a corollary we get another strengthening of Observation 1.2.
CorOLLARY 1.8. If X € Var(P) with X'*! nonlinear, then
X' < Sing(Xi*?).

Proor. Take z € X/, then Tyi+1, o z{(X) o X'*'.

ProposiTION 1.9. Let X and Y be subvarieties of A. If xeX and yeY,
the image of the differential at (x, y) of the addition morphism + : X xY - X +Y
is ty  +ix,,-

ProOOF. + : A x A - A is linear giving d+ = +, and we get
ity X bxy = by et lxy
We obtain the following affine version of Terracini’s lemma.
CoRroOLLARY 1.10. Let X,Y be as above, then
(1) tx<+ty,Stxsiyx+y for xeX,yeY.
(2) If char(k) = O then there is a dense open subset U in X + Y such that
Lx,xtly,y =1lx+y,:
forall zeU, xeX, yeY with z = x+y.

Proor. (1) Follows immediately from the proposition.
(2) Follows from the theorem of “generic submersiveness”, see [9, Proof
of 111, 10.7].

By passing to affine cones we get the following version of Terracini’s lemma.
CoroLLARY 1.11. If X,Y € Var(P), then
(1) Ty Ty, < Tyy. for xeX, yeY, and zexy.
(2) If char(k) = O then there is a dense open subset U in XY such that
TX.xTY.y = TXY,:
forall zeU, xe X, ye Y with zexy.

ReMARk. It is now an easy task to formulate and prove more “multiple”
versions of Terracini.

2. A join-defect formula.

Let (P) denote P x ... x P (r times). The tautological quotient Vp — Op(1)
induces a homomorphism
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Vey — §9l pFOg(1)

where p;: (P) — P is the ith projection. Let F denote the cokernel of this
homomorphism. For r £ N+1 =dim V, let

U, = {(x1,...x,)]dimx, ... x, =r—1}.

The support of F is the complement (PY —U,, and the Fitting ideal F°(F)
induces the reduced scheme structure since the homomorphism above corre-
sponds to the generic r x (N + 1) matrix.

Corresponding to the quotient

Vo, @ prOs(1)
i= U

r

we get a morphism
@:U, - G=G(r—1,N) = Grass,(V)

sending an r-tuple (x,,..., x,) to the (r—1)-plane x, ... x,.

Let F = P x G be the incidence correspondence with morphisms o : F — P,
p:F - G induced by the projections. Furthermore let (F) denote F x ... xgF
(r times), the multiincidence correspondence.

ProposiTiON 2.1. The morphism n:(F) — (P) induced by o is the blowing
up of (PY in F°(F).

Proor. We will show that the universal property of blowing-up is fulfilled.
Let f:Y— (PY be a morphism. By [17, Lemma 1.1] we know that FO(f*F)
is invertible if and only if the image of Vy —» @;_,f*q*0p(1) is locally free
of rank r.

On (F) this image is the pullback of the tautological quotient on G.

Suppose the image E of Vy = @;_,f*q*0p(1) is an r-bundle. This gives
an Y-point in G. The induced morphisms E — f*P}¥0p(1) are surjective,
giving Y-points in F for i = 1,...,r. We get a morphism f:Y— (F)y with
nof = f.

ReMARK. If r = 2, then F°(F) is the ideal of the diagonal in- P x P and we
recover essentially the diagram in Holme’s article [10]. The isomorphism of
(P x P)” with P x¢F was realised by Johnson [11].
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We have the following diagram

(FY F
AR/
Py G P

For X;eVar(P) i = 1,...,n, let n, =dim(X;) and n = };_n;. Let IT denote
Xyx..xX,.If I nU, + ¢, we let B denote the strict transform of IT by n.
We see that the join J = X, ... X, equals fa~!(S), where S = y(B).

ProposiTioN 2.2. If I " U, #+ @, then

(@) forr—1=m=n+r—2,we havedimJ < miff n ([B].spm+2-.,(y*Q)) =0,
where s denotes the Segre class,
(i) ifdimJ =n+r—1, then

p-q-degJ = degn,([B].s5,(y*Q))
where p = deg(y|p) and q = deg(alg-1,).

Proor.Forr—1 < m < min{N — 1,n+r —2} let 4 bea general linear subspace
in P of codimenson m+1. Then we have dimJ <m if and only if
J nA=¢.PutX = B(a"!(A)),the Schubert variety of (r — 1)-planes meeting A.
We have dimJ =m, iff SNnX=¢@. Pulling this back by 7 the
condition becomes B ny~!(S) = @.

In the Chow ring of (F) we have [B ny~'(2)] = [B].y*[£]. Pushing
this down by n (which is birational on all components of B ny~ (X))
we get dimJ < m, iff =, ([B].y*[Z]) = 0. By Porteous’ formula, we have
[2] =5m+2--(Q)- To finish the proof of (i), observe that s,,,,_,(Q) = 0 for
m 2 N.

If dimJ =n+r—1, then zerocycle =n,([B].s,(y*(Q))) #0. We have
p-[S] =v.[B] and [B~'S] = B*[5] giving

pq-[J] = a.p*,[B] in A(P)

Using the projection formula and the fact that s,(Q) = [£] = B,a*[4] for 4
a general plane of codimension n+r—1 we get

Y+([B].7*[Z]) = Bu(B*74[B].a*[A4]).
Taking degrees we get

deg(n,([B].s.(Q))) = deg([B].y*[Z]) = deg(B*y,[B].*[4]).
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Now,
2y (B*(74[B]). «*[A]) = a,B*y,[B].[A4] = pq[J].[4]

by the projection formula, and taking degrees we get

deg(n,([B].s,(Q)) = p-q-degJ.

CoroLLARY 2.3. Suppose 1 =X, x...x X, < U,, thendim X,... X, =n+r—1
and

degX,..X,=p7'q7' Y d,
i=1

where d; = deg(X,).
In particular, if X; < L;, L;is a linear subspace suchthat L, nL,...L,...L, = @,
i=1,..,r thendegX,... X, =[]i-1d.

Proor. We have B = IT and y* = @®;_,p?05(1).
Let t; = ¢, (pfOp(1)), i =1,..,rand d = d, ...d,, then
(M) =dey ™. ™

and

[] A +t+2+ ... +).

s(*Q) = [} 1_ :

Thus s(y*Q) is the sum of all monomials of degree n in t,,...,t,. We get

[H] -5.(y*Q) = dtlxv ces tiv

If X;,cL;with L, nL,...L;...L, = ¢ we must prove p=gq = 1. If L is
a joining (r—1)-plane, then L meets each L; in one point, giving p = 1.
Through each general point in L, ... L,, there passes exactly one (r — 1)-plane
meeting all the L;’s, giving g = 1. More precisely, one can prove, see [2], that

) ( éB p;—'Ox‘(l)) is the blow-up of X, ... X, with center |) X,.
i=1 i=1

We will now study closer the case r = 2. Let
s*(X, [a) Xz,Xl X XZ)EA.(XI n Xz)
be the kth Segre class of X; N X, in X, x X, see [7, 4.2] for the definition,
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and let
Uk(Xl,Xz) = degsk(Xl N X3, Xy x X,),

where the degree is taken by the inclusion of X; n X, in 4 = P. For
max(n,,n;) £ m = n, +n, define

- [m+1 .
O =dyd, — Z (m_,-)“"'”"'(Xqu)

where a = a(X,, X,;) = n; +n, —dim(X,; N X,).

THeoREM 2.4. We have ¢, 20 and ¢, =0, iff dimX, X, =m. If
dim X, X, = n, +n,+1, then p-q-deg X, X, = @ 4p,-

Proor. We must find the relation between n,(y[B].s.(y*Q)) and ¢,. To
do this it is enough to replace X x X by X, x X, in any proof of the
double point formula for projections, see [11], [12] or the theory of
embedding-obstructions [10], [13]. We will stay close to the proof in [12].

On F x ¢F we have the commutative diagram with exact rows and columns

0 0
! !
00— IQL,— L, — n*F— 0
i ! Il
00— yQ— L, ®L,— n*F— 0
! !
Lz = Lz
i i
0 0

where L; = n*p?0p(1) and I = F°(n*F) the ideal of the exceptional divisor.
By [12, V, 29] we have the formula

2N
s(y*@) = s(Ly)s(L2) ._Zo~ S(LyYey(I)'

If we let i denote the inclusion X, n X, = P x P then [12, II, 43] gives
i*s"(Xl N Xz, Xl X Xz) = -—n*(cl(l)"l*"'l_k . [B]), k= 0,..., ny +n2-1.
Using the projection formula, we get

1, ([B].s(*Q)) = dydyt) "™ 8 (14t + ..+t A+t + ... +1))—
ny+n,

= Y ST A Xy, Xy X X)Lty A ) (Lt 4 +2))

where t; = ¢, (p*0p(1)), i = 1, 2.
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Let M' denote the sum of all monomials of degree ! in A(P x P)
= Z[ty,t;]/@Y* ', t3*1). Then

iWSt = A,(0%. A% 7F) = *MP Y ¢ = g*MAN K

where s* = s*(X, n X,, X, x X,) and ¢* = 6%(X,, X,). Collecting terms of
degree 2N —n, —n, +m we obtain

n*([B] Sa(7*Q)) = (p,,,MZN""l —nytm

Finally we look at the trivial cases, when X, x X, nU, = @ that is
X;xX,c A Then X, = X, is a point P, or one of the X/s is empty.
In the first case one can easily check that the theorem holds, in the second
case the theorem becomes “empty”.

We will now give an application of this formula.

Suppose X; n X, has irreducible components W,,..., W, of dimension m
and possibly other components of less dimension. Then

SMXy N X, Xy x X5) = ) e[W]

i=1
where e; is the multiplicity of W, on X, x X, see [7, 4.3].
CoROLLARY 2.5. We have the following inequalities
(*) dim X1X2 ; dim Xl +dim X2 -—dim(Xl (@) Xz),
(#*) deg X, -deg X, = ) e;degW,.
i=1
If X, nX,# @ then (x) is an equality if and only if (**) is an equality.
Proor. If dim(X; n X,;) < min(n,,n,), then ¢,_, is defined. Since
@q-1 = dyd; # 0, (*) holds.
If dim(X, N X;) = min(n,, n,), then dim X, X, 2 max(n,,n;) = « and (*)

holds in this case too.
If X, n X, # ¢ then g, is defined. Since

@, = did, —0™(X,,X;) and o™Xy, X,) = Z e;deg W,
i=1
(**) holds. If X, n X, = ¢, then (**) is trivial since the sum equals zero.
Suppose X; n X, + ¢. Then equality holds in (*), iff ¢,=0 or
equivalently, (**) is an equality.
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RemARrk. The inequality (**) is a special case of Fulton’s refined Bezout

theorem, more precisely, it follows directly from Theorem 12.3 and Example
123.7 in [7].
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