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ALGEBRAIC AND GEOMETRIC APPROACH TO THE
CLASSIFICATION OF SEMISPACES

MAREK LASSAK and ANDRZEJ PROSZYNSKI

Let L be a linear space over an ordered field K and let M be a
subspace of L. Maximal convex subsets of L\M are called semispaces of
L at M (comp. Hammer [2]). Klee [4] gave a classification of semispaces in
the case of K =R and M = 0. Those semispaces correspond to linear
orderings of L (see [3] and [6]). What is more, the conditions

(1) S is a semispace at M in L,
2) S is a (strong) preordering on Lwith S; = M,

(see Section 1 for definitions) are equivalent ([6, Proposition 2.2]).

Consideration of those equivalent algebraic objects gives some adventages.
Firstly, instead of semispaces at M in L, one can consider semispaces at
0 in L/M. Secondly, the classical results about ordered groups (see [1]) can
be adopted in a natural way to linear orderings. Since the field of reals is
the only complete ordered field, indecomposable real orderings are one-
dimensional. This fact enables one to obtain Klee’s classification purely
algebraically.

Thanks to Theorem 1.5 or more general Theorem 2.5, a classification of
semispaces of a linear space over an Archimedean field (and a classification of
ordered abelian groups) can be reduced to the case of the field of reals, that
is, to the classification of Klee.

It seems that the algebraic method of the proof of Theorem 1.5 cannot
be applied to the proof of the more general Theorem 2.5 and to the proof
of Theorem 2.4. The last theorem (announced in the introduction of [6])
and the description [5] of convex half-spaces (i.e. convex sets with convex
complements) in R" give a description of convex half-spaces in any finite-
dimensional space over an Archimedean field.

The first part of the paper is written in terms of orderings and the
second independent one in terms of convexity.
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1. Description of linear preorderings.

Let K be an ordered field with the set K* of positive elements, and
let L be a linear space over K. A set Sc L is called a (strong)
K-preordering on L, if it satisfies the following conditions

(i) S+ScS, K*ScS,
(ii) L =8 0S8y U(—S)for some linear subspace S, of L,

where the symbol U stands for the disjoint union. Then L becomes a
partially ordered linear space with the relation < defined as follows:
a<b<b—aeS. Ifa<bforeveryaeA, beB, we write A < B. The space L
is fully ordered by the relation < if S; = 0. In this case S is called a (strong)
K-ordering on L. It is easy to see that the above definitions coincide with
those of [6]. We leave to the reader the proof of the following result.

LEMMA 1.1. Let M be a subspace of L and let v:L — L/M denote the
natural homomorphism. There is a natural one-to-one correspondence between
K-preorderings on L satisfying So = M and K-orderings § on L/M, which is
given by § = v(S) and S = v~ 1(S).

The above Lemma reduces the investigation of K-preorderings to the
study of more familiar K-orderings. Many properties of them are analogous
to those of [1], stated for ordered groups (see Propositions 1.2-1.4 below).
Therefore some proofs are sketched only.

Let ¥ be a chain of subspaces of L. For ¥V € ¥" denote by ¥ the union of
all W e ¥ properly contained in V. We say that the chain ¥ is admissible,
if for every x e L there exists a smallest subspace V, e ¥ containing x. In
other words, xeV,\V, and, as a consequence, V =V if and only if
V # V, for every x € L. For an admissible chain " on L we have

L=\ (v\W)= U v\,

xelL Vey

and it is clear that we can reject every V € ¥ equal to ¥, obtaining another
admissible chain with the same operator . Any chain closed under inter-
sections is admissible. Each admissible chain ¥~ contains a smallest subspace
Vo€ ¥ . Evidently 7, = @, and except for this case, every ¥ is a subspace of V.

ProposITION 1.2. Let ¥ be an admissible chain of subspaces of L with the
smallest subspace 0, and let W = ¥ \{0}. There is a natural one-to-one
correspondence between the set of K-orderings S on L satisfying S NV < S\V
for all V € # and the set of systems (Sy;VeW) of K-orderings Sy on V/V.
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Proor. Let S be a K-ordering on L. Then L\O = Uy 4 (V \¥) and
S= UycySy where Sy =5 n(V\V). The assumption S nV <S\V
means that S, < Sy for ¥V ¢ W. Obviously, S, is a K-preordering on V
with (Sy)o = ¥, and this gives us a K-ordering S, on V/¥, for all Ve #".
Conversely, the inverse images S, of S, are K-preorderings on V (for all
Ve w), satisfying S, +Sy < S, for W V. Thus we get a K-ordering
S = Uy Sy on L satisfying the desired condition.

__We say that § in question (Proposition 1.2) is the ordinal sum of K-orderings
Sy. We call a K-ordering S decomposable if it is a proper ordinal sum,
that is, if there exists a proper non-zero subspace V of L satisfying
S NV < S\V. Otherwise S is called indecomposable. The next proposition
gives us the unique decomposition of a K-ordering S into an ordinal sum of
indecomposable K-orderings. The family of these indecomposable K-orderings
is called the skeleton of S.

Prorosition 1.3. If S is a K-ordering on L, then the family ¥~ of all subspaces
V < L satisfying S NV < S\V is an admissible chain with the smallest
subspace 0 and it is closed under intersections and unions. The corresponding
K-orderings S, are indecomposable.

Proor. Let V,We¥ and suppose that there exist xeV\W and
ye W \V. We can assume that x,ye S. Then xeS nV, yeS\V and hence
x < y. By symmetry we get y < x, contradiction. The rest of the proof is
immediate.

Recall [1] that a group or a group ordering S is called Archimedean if
for every x,y € S we have Nx & y (that is, there exists an integer n > 0 such
that nx > y). Let us assume in the sequel that the field K (i.e., the ordering K*)
is Archimedean. A well-known theorem of Hélder (see [1, pp. 45 and 126])
states that each Archimedean group (respectively field) is an ordered subgroup
(respectively subfield) of the group (respectively field) of real numbers R.
Consequently, we can assume that K « Rand K* = R* nK.

ProposITION 1.4. If L is a linear space over an Archimedean field K and S
is a K-ordering on L, then the following conditions are equivalent :

1) S is indecomposable,
2) S is Archimedean,
3) S = f"Y(R*) for some K-linear imbedding f: L < R.

In particular, indecomposable real ordered spaces are at most one-dimensional.

Proor. (1)< (2). We show a more general equivalence for K being an
arbitrary ordered field: S is decomposable if and only if K*x < y for some
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x,y € S. The condition 0 < K*x < y gives us a proper non-zero subspace
V ={zeL;lz| £ ix for some Ae K*}

satisfying S n ¥V < S\ V. Conversely, for any such subspace V, if xeS nV
and yeS\V, then K*x < y.

(2)<> (3). This is a version of Holder’s theorem and the proof is similar,
For a fixed xe S and ye L the real number f(y) is defined by the section
(LU (y)), where

L(y) = {AeK;ix S y}
and
U(y)={AeK;ix > y}.

The mapping f is K-linear since L(y+z) = L(y)+L(z) and L(uy) = nL(y)
for yze L and peK™*.

The above propositions allow us to prove two extension theorems. Note
that the first of them is true also in the more general situation when K and F
are arbitrary ordered fields, not necessarily Archimedean (see Theorem 2.5).
However, the proof of the general case uses methods of convexity.

THEOREM 1.5. Let K be a subfield of an Archimedean field F such that
K* = F* nK. For any K-preordering S on L there exists an F-preordering
T on FL=F @xL such that S=T nL and Ty = FS,. In particular, an
ordering on L extends to an ordering on FL.

Proor. (a) Reduction. Assume that our theorem holds for orderings. Let
So = M. Consider the following commutative diagram :

L < ® — FL

vi lu
LM =Y ,F(L/M) = FL/FM

It follows from Lemma 1.1 that S = v~!(5) where S is a K-ordering on L/M.
Since § = y~!(T) for an F-ordering T on F(L/M), we see that

S=vly ' M= 'w ' (T)=TnL,
where T = u~'(T) is an F-preordering on FL satisfying T, = FM.

(b) The case of orderings. Let S be a K-ordering. Since L ¢ FL< RL it
can be assumed that F = R. If § is indecomposable, then, in virtue of
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Proposition 1.4, we have the following commutative diagram :

where S = f “!(R*) and g is R-linear. Take some (for example, lexicographic)
R-ordering ¢ on Ker(g). Proposition 1.2 gives an R-ordering T =t U g~ '(R*)
on RL satisfying T n L = §. For an arbitrary K-ordering S consider the
skeleton (Sy; Ve #') over K. As above, we obtain a family (T, ; Ve ¥#),
where T, is an R-ordering on R(V/V) = RV/RV satisfying T, n (V/V) =S, .
Proposition 1.2 gives us an R-ordering T= U, ., -Ty on RL. As in (a),
T, nV =S8,,and finally T n L = S.

THeOREM 1.5. Let S be a strong ordering on an abelian group A. Then
S =T n A for some R-ordering T on RA = R®; A.

Proor. By Levi Theorem (see [1, p. 36]), the group A is torsion-free.
Hence it is contained in R4 = R ®q A(o), Where Ao, denotes the linear space
over the field Q of rationals, being the localization of A. The ordering S can
be extended to a Q-ordering S, = {s/t;s€S, teN} on Ay, and we are in
position to apply Theorem 1.5. Since R is a flat Z-module, it is possible to
give also a direct proof similar to the part (b) of the proof of
Theorem 1.5; it is based on original results from [1] instead of
Propositions 1.2-1.4.

The above theorems reduce our investigation to the real field R. Proposi-
tions 1.3 and 1.4 give us the following description of this case:

ProposiTION 1.6. Every R-preordering has the form

S= ) R*ep+7),
Vew

where W = ¥ \{V,} for some admissible chain ¥, dim(V/V)=1 and
ey € V\V for each V€ W In this case, Sy = V.

Proor. Lemma 1.1 reduces the proof to the case when S is an R-ordering.
In virtue of Proposition 1.4, the skeleton of S consists of one-dimensional
orderings, each of the form R*e. The rest is immediate.

A more familiar description of R-orderings (or, equivalently, R-semispaces
at 0) is known as the so-called “Klee representation” (see [3], [4]). Jamison
[3] pointed out that this representation is possible only over the field R.



ALGEBRAIC AND GEOMETRIC APPROACH TO ... SEMISPACES 209

Here we give a relative generalization for K-preorderings over an Archimedean
field K.

Let K denote a subring of R, for example the ring of integers or an
Archimedean field. A subset & of Homg(L,R) totally ordered by < is
called admissible with respect to a subspace V, of L, if for every x e L\V,
there exists a smallest member ¢, € ® with ¢.(x) # 0. It is called simply
admissible if V, = 0. If & is admissible with respect to V, then

§ =S(®, <) = {xe L\Vp; ¢.(x) > 0}
is a K-preordering on L with S, = V,. Conversely, we have

THeOREM 1.7. If K is an Archimedean field, then any K-preordering S has
the form S = S(®, <), where & is admissible with respect to S,. Every abelian
group ordering has the form S(®, <) for some admissible ®.

Proor. By Theorem 1.5 or 1.5' we can assume that K = R. In this case,
the description of S presented in Proposition 1.6 gives us a family
{wy:V = R; Ve #} of linear functionals defined by the conditions ¥ (e;) = 1
and y,(V)=0. Let ¢, denote an extension of W, on L. The family
& = {p,;Ve#} is admissible with respect to ¥, = S, if the ordering <
is defined as follows:

ow<gye=WaV.

In fact, if x € L \V,, then x € V., \V, with V,e #, and therefore ¢, = oy P
Since @,(x) > 0 if and only if xeR¥e, + 7., we obtain S = S(&, <).

2. Convexity under extension of the space.

Let K, be an ordered field and let K, be a subfield of K,. Consider a
linear space L, over K, and a subspace L, of L, over K, such that every
subset of L, linearly independent over K, is also linearly independent over
K,. For instance, if L, is a linear space over K,, then in the part of L,
we can take the space K, ®g, L, over K,. The spaces Q" and R" are simple
examples of such L, and L,.

The symbols aff;4, conv;4 mean the affine and the convex hulls of a set
A of the space L; over K;, i = 1,2.

LeMMA 2.1. For every A < L, we have
conv;A = L; nconv,A.

Proor. Let ae L; nconv,A. There exists a finite minimal set {a,,...,a,} < 4
for which aeconv,{ay,...,a,}. Hence a = apap+...+a,a, for some o€ K,
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such that 0 = o; = 1,i=0,...,n and og+...+a, = 1. We can assume that
a, = 0. Since ay, ..., a, are linearly independent and a = «,a, +... +a,a, over
K, it follows that a is a linear combination of a,,...,a, over K,, that is,
oy,...,0,€ K. From ap+... +a, = 1 we get o, € K,. Consequently,

aeconv,{ay,...,a,} < conv,A.
We see that L; nconv,4 < conv, A. The inverse inclusion is obvious.

From the above Lemma we obtain that a subset of L, is convex if and only
if it is the intersection of L, with a convex subset of L,. More exactly:
A = L, nconv,A4 for every convex subset A of L,.

LemMmA 2.2, If A;, i = 1,...,n, are convex subsets of L, and ﬂ:'z 14, =@,
then (i conv,4;=9.

Proor. Suppose that ()/_ conv,4;#®. Thus (\/_,conv,F;+® for
some finite F; c A4;, i = 1,...,n. Consequently, there exist minimal finite
subsets G; of A, i = 1,...,n, such that );_ conv,G; # #. Let w be a point
of this set.

Suppose that there exists a point ze ()i aff,G; different from w. Let
G, = {c1,...,Cm}. Obviously, w and z have the forms

W=0,Ci+... +UpCm» 2= P11+ ...+ BuComs

where oy +...+, =1, By +...4+ B =1, a; 20 and a;,B;eK, for j=1,..,m.
Since w # z and (¢, — fB,)+... + (o, — Bm) = O, at least one of the scalars

l‘, = aj/(a"—'ﬂ]), j= 1,..., m,

is defined and non-negative. Let y, = A, be the smallest non-negative one.
We have a;+4; (B;—«;) 20 for j=1,..,m with the equality for j = jo.
Moreover,

Z [a,+/'ljo(ﬂ1—-aj)] = ljo Z ﬂj+(l—)~1") Z aj = 1.
i=1 i=1 ji=1

Therefore the point

g1 = Y [o;+4,Bi—a)le; = w+y(z—w)

i=1

of the half-line with the end-point w through z belongs to the convex hull
of a proper subset of G,. Generally, a point

gi =w+y(z—w), where 3,20,
of this half-line belongs to the convex hull of a proper subset of G; for



ALGEBRAIC AND GEOMETRIC APPROACH TO ... SEMISPACES 211

every i=1,..,n Let y =min{y;,...,y.}. Obviously, g, econv,G; for
i=1,...,n Since g; belongs to the convex hull of a proper subset of G,,
we obtain a contradiction with the minimality of G;. Consequently,
()i=1aff,G; = {w}. This means that w is the only solution over K, of a
system of linear equations with coefficients from the field K,. So we L,. Since
weconv,G;, from Lemma 2.1 we obtain weconv,G,, i=1,...,n Hence
we()i=1 A A contradiction with the assumption.

The following consequence of Lemma 2.2 is of independent interest :

ProPOSITION 2.3. For arbitrary convex sets A; of Ly, i = 1,...,n, we have

n
conv, () A; = () conv,A4,.
i=1 i=1

Proor. It is sufficient to consider the case n = 2.

Let x econv,A, Nconv,A,. For some finite F, < A4, and F, = A, we have
x econv,F; nconv,F,. Consider an extreme point y of conv,F; N conv,F,.
We can find minimal sets M; < F, and M, = F, such that y € conv,M,
nconv,M,. Since y is extreme, conv,M; nconv,M, = {y}. From
Lemma 2.2 we get yeconv,(M; n M,). The arbitrariness of the extreme
point y implies conv,F; nconv,F, c conv,(M,; n M,). Consequently,
xeconv,(M; N M,) < conv,(4; N A,), which proves the inclusion =. The
inverse inclusion is obvious.

The example of intervals with end-points a;,b; € Q such that a; < \/2 < b,
i=12,... and limg; = \/ 2 = limb; shows that the above equality and
Lemma 2.2 do not hold for infinite intersections.

Let us observe that Lemma 2.2 and Proposition 2.3 enable simple transfers
of some theorems on intersection of convex sets (e.g. of Helly-type theorems)
from linear spaces over the field of reals into linear spaces over subfields of
reals, and consequently, over Archimedean fields.

THEOREM 2.4. A subset of L, is a convex half-space of L, if and only if
it is the intersection of L, with a convex half-space of L,.

Proor. Obviously, the intersection of L; with a convex half-space of L,
is a convex half-space of L.

Let G be a convex half-space of L,. From Lemma 22 we obtain
conv,G Nnconvy(L; \G) =®. By a known result of Kakutani (comp.
Theorem 2.3 in [7]: the proof is correct also in the general situation of
linear spaces over ordered fields) there exists a convex half-space H of L,
such that conv,G < H and H cconvy(L;\G)=9. So G< H and
Hn(L,\G)=9.Since G < L,, we get G =H nL,.
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THEOREM 2.5. A subset of L, is a semispace of L, at a subspace M of L,
if and only if it is the intersection of L, with a semispace of L, at the
subspace conv,M = affy,M.

Proor. It follows from Lemma 2.1 that M = L, nconv,M. Then the “if”
part of our Theorem is evident in the language of preorderings. However, it
can be shown without preorderings using the following characterization of
semispaces (see [6, Proposition 2.2]): a subset S of a linear space L over
an ordered field is a semispace of L at a subspace M if and only if S is
convexand L=S UM U (-95).

Conversely, let S be a semispace of L, at M. Thanks to Lemma 2.2 the
set conv,S is disjoint with the subspace conv,M. By Zorn’s Lemma there
exists a semispace T of L, at conv,M containing conv,S. From the “if”
part it follows that T n L, is a semispace of L, at M. Since ST n L,
is also a semispace of L, at M, we have S=T nL,.

As we pointed out in the introduction, Theorem 2.5 together with Klee
classification enables a classification of semispaces in any linear space
over an Archimedean field. Similarly, Theorem 2.4 together with part 1 of
Theorem 1 of [S] gives a description of convex half-spaces in a finite-
dimensional linear space over an Archimedean field. The analogous
description does not concern infinite-dimensional spaces because of the
existence of convex half-spaces which are not translates of semispaces (see
Remark 2.5 in [6]).
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