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MAXIMALLY GENERATED COHEN-MACAULAY
MODULES

JOSEPH P. BRENNAN, JURGEN HERZOG, AND BERND ULRICH*

0. Introduction.

This paper examines a class of finitely generated Cohen-Macaulay modules
of the maximal possible dimension over a Cohen-Macaulay local or homo-
geneous ring. The number of generators of such a module is bounded by the
multiplicity of the module. The class examined herein consists of those modules
for which this bound is attained. These modules are denominated MGMCM
modules (Maximally Generated Maximal Cohen-Macaulay modules).

The major result of this paper is to show the existence of MGMCM
modules for two dimensional homogeneous Cohen-Macaulay domains. This is
done by showing that such rings possess a Gorenstein ideal primary to the
irrelevant maximal ideal with the maximum possible number of generators,
and then constructing a MGMCM module by extending this ideal by the
canonical module.

The existence of a MGMCM module is of some interest in that if the
residue class field of the ring is infinite such a module is the lifting of a
direct sum of copies of the residue class field. The MGMCM modules over a
local or homogeneous Cohen-Macaulay ring R are those modules M which
are Cohen-Macaulay modules of maximal possible dimension such that M,
the completion of M, has a linear A-resolution where R = A/I, A a regular
local ring. This provides the fact.that if a local Cohen-Macaulay ring R
admits a MGMCM module, then the associated graded ring of R with respect
to the maximal ideal admits a small Cohen-Macaulay module.

The existence of MGMCM module of rank m over a hypersurface domain
R = A/(f) with A a regular local or homogeneous ring has been shown by
Eisenbud [3] to yield a presentation of f™ as the determinant of a
m[e(R)] x m[e(R)]-matrix. - Therefore as a consequence of Theorem 4.8, we
have for a homogeneous polynomial f of degree e, fek[x,y,z], that the
polynomial f2 is the determinant of a 2e x 2e-matrix with linear entries.

Section one provides an introduction to notation and properties of
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MGMCM modules. In section two some elementary cases in which MGMCM
modules exist are explicitly given. Rings of dimension one, rings of minimal
multiplicity and rings associated with the maximal minors of a matrix with
linear entries are explicitly shown to possess MGMCM modules. Section three
uses a remarkable device of Eisenbud, namely matrices with no generalized
zeros to construct Gorenstein ideals in any two dimensional homogeneous
domain. A matrix A is said to have no generalized zeros, if A has as entries
linear forms from k[x,,..., x,] and no nontrivial k-linear combination of the
rows of 4 and the columns of 4 produces a zero entry. The key result here
is Eisenbud’s [4] who — among other things — shows that matrices with no
generalized zeros have nonzero determinant.

Section four is concerned with the construction and existence of MGMCM
modules and shows that the existence of a Cohen-Macaulay ideal I of
codimension two with e(R)[r(R/I)+ 1] generators implies the existence of a
MGMCM module of multiplicity e(R)[r(R/I)+1]. (e(R) is the multiplicity
of R while r(R/I) is the type of R/I.)

Section five deals with the question of what ranks can occur as
the rank of a MGMCM module M over a normal homogeneous hyper-
surface domain R of dimension two, where M has the property that
[Homg(Homg(A2"kM M R),R)] =0 in the class group of R. Such a
module is called orientable (see [8]). The semigroup of ranks of such modules
is described and shown to depend on the multiplicity of the ring. In particular
if the multiplicity of the ring R is odd and greater than one, the ring is shown
to have an ideal primary to the irrelevant maximal ideal with three times the
multiplicity of the ring generators. This shows the existence of a MGMCM
module of rank three.

Section six concludes the paper with four questions we consider to have
some interest.

The authors would like to thank David Eisenbud for his consultations on
the subject of this paper and for Theorem 3.1, which is essential for the
constructions of this paper.

1. Preliminaries.

A homogeneous ring over a field k is a graded ring @;,oR; with Ry = k
and generated by R, as a k-algebra. Let R, = @, (R; be the irrelevant
maximal ideal of R. By an R-module for a homogeneous ring we will mean
a graded R-module. All modules will be finitely generated.

In this paper all rings are Noetherian Cohen—Macaulay commutative rings
with unit and either local with maximal ideal m or homogeneous with irre-
levant maximal ideal m and the field R/m will be denoted by k.
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If R is such a ring, a Cohen-Macaulay R-module M is said to be a
Maximal Cohen-Macaulay module if depth,, M = dim R. For M an R-module,
let v(M) be the minimal number of generators of M and let e(M) denote
the multiplicity of M. The module M is said to have rank m if for every
associated prime q of R, M, >~ ®™R,.

ProposiTioN (1.1) (see [14], [15]). For R as above, if M is a Maximal
Cohen-Macaulay R-module, then v(M) < e(M).

Proor. After a purely transcendental extension of the residue class field,
we may assume that m has a minimal reduction generated by a maximal
M-regular sequence ¥. Then v(M) = dim,(M/mM) < length(M/xM) = e¢(M).

If M has positive rank, then e(M) = e(R)rank(M) so that the inequality
of (1.1) becomes v(M) = e(R)rank(M).

A Maximal Cohen-Macaulay module M will be called a MGMCM
module (Maximally Generated Maximal Cohen-Macaulay) provided that
v(M) = e(M). Such a module is denominated an Ulrich module in [8]. In [15]
the question was asked: Does every Cohen-Macaulay ring R admit a
MGMCM module?

If R is zero dimensional the answer is positive and all such modules can be
characterized.

ProposiTION (1.2). Let R be as above, and zero dimensional with residue
class field k, then M is a MGMCM R-module if and only if M = @"M) k.

Proor. If M is a MGMCM module, then dimM/mM = v(M) = e(M)
= lengthM. So ann M = m and hence M = @*M)k. The converse is clear.

The question of the existence of a MGMCM module over a given ring R
becomes by the following lemma a question of whether some MGMCM
module can be lifted from a zero dimensional specialization of R.

LEmMmA (1.3). Let R be as above with k an infinite field and let
dim M = dimR, then M is a MGMCM module if and only if there exists a
regular sequence x on M such that xtM = mM.

In fact the regular sequence in (1.3) can be taken to be general. This allows
reduction of many problems to the zero dimensional case. An example of this is:

ProrosiTiON (1.4). R as above, M a MGMCM R-module and M" a Maximal
Cohen-Macaulay module with 0-M' -+ M — M" — 0 exact. Then M’ and M"
are MGMCM modules.

Proor. After extending the residue class field of R if needed one can
select a general maximal regular M-sequence ¥ with xtM = mM such that x
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is also a regular sequence on M’ and M". Denoting reduction modulo x by two
bars one obtains 0 » M’ - @Mk — M” - 0 is exact. Thus M =~ @Mk
and M" =~ @"M") k. Thus by (1.3), M’ and M” are MGMCM modules.

Providing interest and of particular import in the study of MGMCM
modules is the relation of these modules to linear resolutions.

Suppose R is a local (respectively homogeneous) ring and S is a regular
local (respectively homogeneous) ring with S —» R a local (respectively
homogeneous) surjection. Denote the maximal (respectively irrelevant
maximal) ideal of S by n. Then an R-module M has a linear S-resolution,
if for a free minimal S-resolution of M

ByM) Bo(M)
257D S D S M0

the complex
( 1(M) Bo(M)
.. 8"¢z)| gr( @ S) 8‘(‘4’1)' gl‘( @ S) B"(‘Po) g (M)-—’O
where @AM) § is filtered by

B(M)
@S for j <i

_[BUM)
"‘(@ S) forjzi

is exact. Hence the latter complex is a minimal free gr,(S) resolution of
grn(M). If M is as above and has a linear S-resolution, then gr,(M) has a
minimal graded free gr,(S)-resolution of the form

BM)
Fj( ® s) =

BuM) Bi(M) BoM)
o @ gd)N—d) - D gr(S)—1) > D gra(S) - grm(M) - 0.

A sequence of elements {x,,...,x,} in a ring R is a d-sequence (see [10])
with respect to the R-module M if:

i) {xy,...,x,} is a minimal generating set for the ideal (x) generated by
{x1,..,%,} and
i) (xg,.00X)M X0y (@M = (x4,...,x)M for i=0,..,n—1.

ProposITION (1.5). Let (R, m) be a local (respectively homogeneous) Cohen-
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Macaulay ring, and let (S, n) be a local (respectively homogeneous) regular ring
with a local (respectively homogeneous) surjection S — R. And let R/m be

infinite. Let M be a Maximal Cohen—Macaulay R-module. Then the following
are equivalent :

i) M is a MGMCM R-module.
ii) The ideal n is generated by a d-sequence on M.
iii) M has a S-linear resolution.

Proor. i) =ii). Let X;,..., X, be a general maximal regular M-sequence in
R such that ¥M = mM. Let x; be a preimage of X; in S. Extend the set
{x1,..., x4} to {xy,...,x,} a minimal set of generators of n. If i < d, then

X1yee0 XM iy Xy MM = (Xy,.., XM X0y nmM = (X,,..., X;)M.
If i 2 d, then
(X1pee0 XM iy Xy ONM = (Xq,.., XM X0y " MM = mM
= (X1,.., %)M = (x4,...,X;)M.
Hence {x,,..., x,} is a d-sequence on M.

il) = iii). This was proved in [10].
ili)=i). Since M has a S-linear resolution there is a resolution

B,(M) Bi(M)
0 @ gru(S)—p)— > @D gra(SN-1)

Bo(M)
- @ gra(S) = grn(M) - 0.

=6

) = v(grm(M)) = v(M).

Applying a result of Herzog and Kiihl [7; p. 1632],

:'e

e(M) = e(grm(M)) = v(gra(M )){ =Z (

Il
-

.
| 3

= Vigra(M)) ( i

'5

Hence M is a MGMCM R-module.

For the next corollary note that even if M is graded, M is not necessarily
isomorphic to gr,(M).

CoroLLARY 1.6. Let (R,m) be a local (respectively homogeneous) Cohen-
Macaulay ring. Let M be a MGMCM R-module, then gr,, (M) is a Maximal
Cohen-Macaulay gr,, (R)-module with the same number of generators. Further
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assume that gr. (M) has a rank (e.g. if gr,(R) is a domain), then
rank M = rank gr,, (M), and if gr,(R) is Cohen-Macaulay, then gr,, (M) is a
MGMCM module.

ProOF. Let (S, 1) be a regular ring with R = S/I. Then the Betti numbers
of M as a S-module are the same as those of gr,(M) as gr,(S)-module.
Thus gr, (M) is Maximal Cohen-Macaulay with the same number of
generators as M. If gr, (M) has a rank, then

rank gr,.(M) = e(gr,,(R)) "' e(gr,(M)) = e(R) ' e(M) = rank M.

Therefore rank gi,,,(M) = rank M.

2. Elementary results on the existence of Maximally Generated Maximal
Cohen-Macaulay modules.

This section provides an account of the folklore on the existence of
MGMCM modules. Some of these results were mentioned in [15]. Again
(R, m) is a local (or homogeneous) Cohen-Macaulay ring.

LemMMA (2.1). If R is a one dimensional ring, then m*®~! js ¢ MGMCM
R-module.

Proor. Since dimR =1, e(R) = dim(m*®~!/m*®) (see [14]; page 36,
Theorem 2.31), and we have

e(m“® 1) = ¢(R) = dim,(m*®~1/m*®) = y(m=® 1),
The fact that a Cohen-Macaulay ring is regular, if and only if it has multi-
plicity one can be reinterpreted as:
LEMMA (2.2). R is a MGMCM R-module if and only if R is regular.

A local Cohen-Macaulay ring R satisfies the inequality e(R) 2 embedding
dimension(R)—dimR+1 (see [1], [13]). Such a ring R is said to be of
minimal multiplicity, if equality holds in this,relation.

ExaMpLE (2.3). Let k be a field and f a homogeneous polynomial of degree
two in k[x,,..., x,], then k[x,,.., x,]}/(f) is a ring of minimal multiplicity.

We can now characterize rings of minimal multiplicity having positive
dimension.

LEMMA (2.4). Let M be an R-module and let x be an M-regular element
of R. Let M = M/xM. Then there exists an exact sequence
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0 — syz,(M) - syz,(M) - syz,_,(M) = 0
for every n > 0, where syz,(M) is the nth syzygy module of the module M over R.

Proor. Consider P a minimal free R-resolution of M. The map P % P’
given by multiplication by x yields the short exact sequence of complexes

0P -Cu)—P[-1]-0

with C(u,) the mapping cone of the map u,, which is a minimal resolution of
M as an R-module. Truncation yields the required exact sequences for n > 1.
For n = 1 the claim is obvious.

ProposiTION (2.5). (R, m) a d-dimensional ring with k ~ R/m and d > 0.
Then the following conditions are equivalent :

i)  There exists a MGMCM R-module N such that syz{(N) is a MGMCM
R-module.

iil) For some i > 0, syz;(k) is a MGMCM R-module.

iii) For every i 2 d, syz;(k) is a MGMCM R-module.

iv) R has minimal multiplicity.

Proor. After an extension of the residue class field if needed we may
assume that k is infinite.

ii) = i) By assumption M = syz;(k) is a MGMCM R-module. By Lemma
(2.4), we have

0 — syz;(M) - S)’Zi(i’) - syz;_ (M) -0,

where one bar denotes reduction by the first d —1 elements of a maximal
general regular M-sequence and two bars denotes reduction by the entire
general regular M-sequence. But since M isa MGMCM module, M = @*M) k,
)

— v(M)
syz(M) = @ (syz(k)).
Therefore syzi(ﬁ ) is a MGMCM module. Moreover i 2 d, since M = syz;(k)
is Cohen-Macaulay. Hénce as syz,_,(M) is a Maximal Cohen-Macaulay
module, by Proposition (1.4), syz;(M) and syz;_;(M) are MGMCM modules.
i) = iv) By hypothesis, we have
v(N)
0 —-syz;(N)» @ R->N-0.

By reduction modulo a general maximal regular N-sequence we obtain

vN) _  vIN)

0-syz,(N)@R—> ®@R-> ®k—0
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is exact with dim R = 0. Therefore

_ W
syz;(N)® R =~ @ mj.

Since on the other hand, syz,(N) is MGMCM, syz,;(N)® R is annihilated

by mg, and therefore m? = 0. Hence e(R) = e(R) = embedding dimension R

+ 1 = embedding dimension R —d + 1. Therefore R has minimal multiplicity.
iv) = iii) The Betti numbers for rings of minimal multiplicity have been

computed by J. Sally [13]. For i = d, the ith Betti number B;(k) equals
4_o[e(R)—1]9(%). So

v(syzi(k)) = Bi(k) = [e(R)—1]""“e(R), fori=d.

One has e(syz,-“(k))ée(R)ﬂ,-(k)—-e(syzi(k)). If syzi(k) is a MGMCM
module, then

e(syzi+1(k)) = e(R)'* '[e(R)— 1]~ ! ~e(R)'[e(R)—1]'"*
= e(RY'[e(R)—1]"""* = v(syz;1 1 (K)).

Therefore syz;, (k) is a MGMCM module. So it is enough to show that
syz,(k) is a MGMCM module.

Since B,(k) = e(R), we have to show that e(syz,(k)) = e(R)". Again by the
results of [13] we have for i < d that

Bi(k) = j;o [e(R)—1]~4 (j)

Set Z = [e(R)—1]. Then

d—1 . d—1 . i d L
e(syzq(k)) = _Zo (- 1)'ﬁi(k)e(R)’ = ‘Zo (- 1)'e(R)j§:o (j)Z"’
d-1 /d-1 L d .
()
j=o\i=j
s d
- 5| - vz-cirz () 2+

T -1y ‘f)+(—1)““"i1 ‘?)z‘-f
j=o0

j=0

= |1+(e(RY —1)| = e(R) = v(syz4(k)).

iii) = ii) Clear.
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The condition that the ring have positive dimension is necessary as can
be seen by the following example.

ExampLE (2.6). Let k be a field and n=2 an integer and let
R = k[x]/(x"). Then 0 >k >R >R -k -0 is exact, so syz,(k) is a
MGMCM module, while R has minimal multiplicity, if and only if n = 2.

This example is the only one, if the ring is Gorenstein and contains k.

ProposITION (2.7). If R is a local zero dimensional Gorenstein ring with
residue class field k, and syz,(k) is a MGMCM module for some i > 0, then
R is a hypersurface ring.

Proor. Consider the minimal complex
0—syzk)>-->R—-k—-0.

As R is zero dimensional by (1.2), syz;(k) = @V k. Dualizing this complex,
with respect to R, since R is self-injective we obtain

N N
0-k—>R->">@DR->DPk—-0

and therefore N = 1. The Betti numbers of k are therefore bounded and the
conclusion follows from [3, Corollary 6.2].

Quotient rings associated with maximal minors of a matrix admit an
MGMCM module.

ProposITION (2.8). Let r,s be nonnegative integers with sZr. Let
A = k[xy,...,x,] and let C be a rxs-matrix whose entries are linear forms
in A with I = I,(C) the ideal of A generated by maximal minors of C having
grade (s—r+1). Then the ring R = A/l admits a MGMCM module M. If 1
is a prime ideal, then M can be taken to have rank one.

Proor. If I is prime, let Y be the matrix obtained from the matrix C by
deletion of a row. Then I,_,(Y) ¢ I, hence

ht(I,_(Y)) 2 ht()+1 =s—(—1)+1.
Since on the other hand ht(I,_,(Y)) £ s—(r—1)+1, it follows that
ht(I,_,(Y)) =s—(—1)+1 = ht(I)+1.

Therefore as I,_,(Y) is a Cohen-Macaulay ideal, I,_,(Y)/I is a height one
Cohen-Macaulay ideal and hence I,_,(Y)/I is a Maximal Cohen-Macaulay
R-module [9,4.13]. Moreover
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v, ((Y)/T) = v(I,-(Y)) = (r_s_1> = e(R)

(see [11]). Hence R admits a rank one MGMCM module.

Otherwise, let X be a generic rxs-matrix and S = A[X]/I,(X). Then
R = S/(yi,..- V) Where yy,..., y,, is a regular sequence consisting of linear
forms. Hence ¢(S) = e(R). By the previous paragraph, S admits a MGMCM
module M. The module M @, R is a MGMCM R-module.

This result can be generalized somewhat.

ProposITION (2.9). Let A = k[x,,..., x,] and let I be a homogeneous Cohen-
Macaulay ideal of grade g with linear resolution having generators in degree d,
and let J be a homogeneous Cohen-Macaulay ideal of grade g+ 1 with linear
resolution, which contains I and has its generators in degree.d or d—1. Then
A/l has a MGMCM module of rank one.

For A/I to admit a MGMCM of rank one, it does not suffice that I has
a linear resolution.

ExampLE (2.10). Let n be a positive integer greater than two, let X be a
generic symmetric n x n-matrix, let P = k[X], and let I =1, ,(X), and set
R = P/I. The ideal I has a linear resolution (see [6], [12]), and e(R) = ("%?)
(see [11]), while the class group of R is cyclic of order two with nontrivial
element given by an ideal with n generators (see [5]). Thus R has no rank
one MGMCM module.

3. Construction of Gorenstein ideals with a large number of generators.

For this section, let R = @;,oR; be a homogeneous domain and
Ry = k an infinite field.

Let 4 be a square matrix whose entries are linear forms in
k[xi,..,x,). The matrix A is said to have no generalized zeros if
no nontrivial k-linear combination of the rows and columns of A
has a component which is zero.

The key result on matrices with no generalized zeros is:

TueoreM (3.1) (Eisenbud). Let A be a nxn-matrix of linear forms in
k[xy,..,Xn] with no generalized zeros and z,,...z,_, linear forms in
k[x1,..., Xn]. Then detA # 0 modulo (z,,...,z,-,). In particular detA + 0.

Proor. See [4].

We now proceed to construct a matrix with no generalized zeros.
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Let U be a subspace of R; and V a subspace of R; with dim,U = dim, V.
Let {u,,...,u,; be a basis of U and {r,...,v,} be a basis of V and let
{¢1,...Cm} be a basis of R, ;. Then for some yj;ek one has

m
—_ t
up; = Z Vi€,
=1

with not all y{;, t = 1,...,m, equal to zero. Set

m
a; =) yixeek[xy, .., xy)
=1

and let 4 to be the n x n-matrix with (i,j)th entry a;;.
LEMMA (3.2). The matrix A has no generalized zeros.

Proor. The application of row and column operations to the matrix A is
equivalent to the selection of different bases of U and V as vector spaces
over k. Since R is a domain, the product of any nonzero element of U with
any nonzero element of V is nonzero. Hence it follows from the construction
of A given above that A has no generalized zeros.

PropPOSITION (3.3). Let s be a nonnegative integer and let U, and V, be subspaces
of R; for i =0,...,s such that dim,U; < dim,V,_;. Then there exists a
nonempty open subset W of R¥ = Hom(R,, k) such that for all peW,
all i =0,...,s, and for all nonzero ueU;, one has ou-V,_;) + 0 (i.e. there
exists a ve V,_; such that ¢(uv) + 0).

Proor. It suffices to prove this in the case dim,U; = dim,V,_; for all
i=0,...,s. Fix i and let {u,,...,u,} be a basis of U; and let {v,,...,v,} be a
basis of V,_; and {cy,...,c,} be a basis of R,. With u,v; = Y"_,y}ic,, let
A;(x) be the nx n-matrix, whose (p, j)th entry is the linear form Y"_,y.:x,
with x = (x;,..., Xp)-

Let c* be the element of R¥* with c*(c;) = 6,;. Then {c},...,ck} form a
basis of R¥. Set

W,-={(peR;" 0= 3 zch detA() #0, z,ek}.
t=1

For ¢ = Z;’; !z,c?‘ € R}, the matrix A;(3) coincides with the matrix (@(u,v;)).
If in addition ¢ € W,, then det 4;(3) # 0, and hence ¢ defines a nondegenerate
bilinear form U, x V,_; — k. Therefore ouV,_;) #+ 0 for all 0 # ueU.

Since by Lemma (3.2), A4;(x)is a matrix with no generalized zeros, it follows
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from Theorem (3.1) that the open set W, is nonempty. Now set W = ()i _ o Wi.
Since k is infinite, W is a nonempty open set satisfying the conditions of the
proposition.

For ¢@eR*, ¢ #0, set I(¢);=1{aeR;|p@@R,_;)=0} and set
I(¢) = ®;z0l(9): Let R(p) = R/I(o).

ProrosiTioN (3.4). For e R¥, ¢ # 0, 1(p) is a homogeneous Gorenstein
ideal primary to the irrelevant maximal ideal. The artinian ring R(¢) = R/I(@)
has its socle lying in degree s.

ProoF. I(¢) is obviously a homogeneous ideal. If i > s, then R;_; = 0, thus
I(¢); = R;. So I(¢) is primary to the irrelevant maximal ideal m. The socle
of R(p) is the image in R(¢p) of the set X = {xe R|xmeI(p)}. Since I(¢p)
is homogeneous, every element of X is the sum of homogeneous elements of
X.If xeR; n X, then (xR R,_;_{) = 0. Thus if i # 5, then x € I(¢). There-
fore the socle of R(¢p) lies in degree s. Since dim,ker ¢ = dim,R;—1, the
dimension of the socle of R(¢) equals one. So the ideal I(¢) is Gorenstein.

The following special case of Proposition (3.3) is our principal application
of that result.

ProposITION (3.5). Let s be a nonnegative integer and let U;, i=0,...,s
be subspaces of R; such that dimU; £ dimR,_; for i =0,..,s. Then there
exists a nonempty open set W = R¥, such that for o€ W one has U; n 1(p) = 0.

ProoF. Applying Proposition (3.3) to the case V,=R,, i =0,...,s, yields
the required result.

The existence of Gorenstein ideals with many generators can now be shown
in dimension two.

COROLLARY (3.6). In addition to the assumptions from the beginning of this
section, suppose that R is 2-dimensional, then there exists a Gorenstein ideal of
R primary to m with at least 2e(R) generators.

Proor. Since dim R = 2 for i = 0 one has
3.7) dim,R; —dim;R;_, = e(R).

Let ¢t be a sufficiently large integer such that (3.7) holds for all i 2 t. Set
s = 2t. By Proposition (3.5) with U; = 0 for i #t and U, = R,. there exists
@ e R¥* with I(¢) N R, = 0. Hence as R is a homogeneous domain, I(¢) " R; = 0
if i < t. Thus v(I(@)) 2 dimI(@),.,. Since R(@) is Gorenstein by Proposition
3.4, and hence has symmetric Hilbert function, we obtain
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dim,I(¢),,, = dimR,,, —dim R(9),,, = dimR,,, —dim,R(¢),_,.
But R(¢),—; = R,_,, since I(¢),—; = 0. Thus
dimI(@),,; = dimR,,; —dim;R,_; = 2e(R).

The last equality is satisfied since (3.7) holds for t and t+1. Therefore
v(I(@)) Z 2e(R).

4. The existence theorem.

In this section R is a Cohen-Macaulay ring admitting a canonical module
wg and I is a codimension two Cohen-Macaulay ideal of R. Let r(R/I)
= v(Ext}(R/I, wg)), the type of R/I.

The following extension of the theory of Bourbaki sequences [2; VII, §4.9],
[8] enables us to construct MGMCM modules.

THeorReM (4.1). For R and I as above, there exists a Maximal Cohen-

Macaulay R-module M with at least v(I) generators and multiplicity equal to
e(R)[r(R/)+1I].

Proor. The short exact sequence 0 —» I - R —» R/I — 0 yields isomorphisms
Homg(I, wg) = wg, Exti(l, wg) = Exti(R/I, wg) = wg;;
(see [9; Satz 5.12]) and
Exti(l,wg) =0 fori=2

(see [9; Satz 6.1]). Further wg is a Maximal Cohen-Macaulay module with
Hompg(wg, wg) = R (see [9; Satz 6.1]) and e(wg) = e(R).

Let &,,..., &g be a set of minimal generators of Extx(l, wg) and let M
be the extension of I by @"®Pw, corresponding to the element
(€154 Erimyny) Of

rR/T) )
Ext} (I, @ wn) >~ @ Exti(l, wg).

Applying Homg(—, wg) to the short exact sequence

r(R/I)
0 @ wg—>M->1-0,
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one obtains the long exact sequence
rR/D
(42) 00— wg > Homg(M,wg) > @ RS wg,; — Exty(M,wg) =0

and Exti(M, wg) = 0 for i 2 2. By choice of M, the map & is surjective.
Therefore Exti(M, wg) = 0. Hence M is a Maximal Cohen-Macaulay module.
Since

r(R/T)
0 @ wg—>M->1-0

is exact, v(M) = v(I) and
e(M) = e(I)+r(R/Ie(wg) = e(R)[r(R/I)+1].

An immediate consequence of this result is:

CoroOLLARY (4.3). Let R and I be as above with v(I) Z e(R)[r(R/I)+1],
then R admits a MGMCM module with e(R)[r(R/I)+ 1] generators.

For an R-module M, we say that M is self-dual with respect to wg, if
M =~ Homgk(M, wg).

CoRrOLLARY (4.4). Let R and I be as above and let I be a Gorenstein
ideal of R, then R admits a Maximal Cohen-Macaulay module M self-dual with
respect to wg with at least v(I) generators, and multiplicity 2e(R).

Proor. Take M as constructed in (4.1). Since R/I is Gorenstein, the
complex (4.2) becomes

0 — wg - Homg(M, wg) - R 5 R/I - 0.

Hence the kernel of § is I. So Homgz(M, wg) is an extension of I by weg.
Homg(M, wg) is a Maximal Cohen-Macaulay module. Hence as

Ext‘l((l, wR) >~ (l)R“ = R/I,

and as M corresponds to £y and Homg(M, wg) corresponds t0 Cyom (m, wy)
with ¢y and Cyom,m,w,) generators of R/I, it follows that &y = ulyom, M, wy)
for ueR, u a unit. But then M > Homg(M, wg).

The ring R is called generically Gorenstein, if for every.associated prime g
of R, the ring R, is Gorenstein. In this case wy has rank one.
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CoRroLLARY (4.5). Let R and I be as above and in addition let R be
generically Gorenstein, then R admits a Maximal Cohen-Macaulay module of
rank [r(R/I)+ 1] and with at least v(I) generators.

For a normal ring R and M a R-module of rank m, the determinant of M,
detM, is the class of Homg(Homg(A™M, R),R) in the class group of R
(see [2; VII, §4.7]). Such an R-module is called orientable (see [8]) if
det M = 0. Two facts on the determinant are:

i) if0—> N - N - N" - 0is exact, then det N = det N' +det N”, and,
ii) N is a rank one torsion-free orientable module, if and only if N is
free or isomorphic to an ideal of codimension at least two.

Applying these facts to the defining sequence of the module M in (4.1)
yields:

CoOROLLARY (4.6). Let R and I be as above, and in addition let R be
Gorenstein and normal, then R admits an orientable Maximal Cohen-Macaulay
module M with rank [r(R/I)+ 1] and at least v(I) generators.

Remark (4.7). Note that the preceeding results imply that for R and I as
in (4.1)

v(I) = e(R)[r(R/I)+1].

Consequently the ideal of (3.6) has exactly 2e(R) generators and is generated
by the elements in degree ¢ + 1.

Applying Corollary (3.6) and the results of this section we obtain our main
result.

Tueorem (4.8). If R is a homogeneous 2-dimensional Cohen-Macaulay domain
with infinite residue class field, then R admits a MGMCM module self-dual with
respect to wg rank 2.

5. Admissible ranks of orientable MGMCM modules.

The theory of Bourbaki sequences of [2], [8] provides a means by which the
structure of orientable MGMCM modules over a normal Gorenstein domain
can be investigated.

An exact sequence of R-modules 0 > F - M — 1 -0 with F free, M a
Maximal Cohen-Macaulay module, and I a codimension two Cohen-Macaulay
ideal or I = R, is called a Bourbaki sequence.

A Bourbaki sequence 0-F >M —>1 -0 is said to be tight if
v(M) = v(I)+v(F) (see [8]).
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LeEMMA (5.1). Let R be a local (respectively homogeneous) normal Gorenstein
domain with infinite residue class field. Then M is an orientable Maximal
Cohen-Macaulay module, if and only if there exists a tight Bourbaki sequence

N
0> @PR->M->1-0

(respectively in the homogeneous case if all generators of M lie in the
same degree: with homogeneous maps and all generators of 1 lie in the same
degree).

Proor. See [8; Propositions 1.8, 1.9, and the proof of 2.1].

Remark (5.2). If R is a local (respectively homogeneous) normal Cohen-
Macaulay ring with infinite residue class field that admits a rank one orientable
MGMCM module M, then R is regular and M =~ R.

Proor. Clearly M =~ Homgz(Homg(M, R),R) = R.

Given that 2-dimensional homogeneous Gorenstein normal domains with
infinite residue class fields admit a rank two orientable MGMCM module and
the proscriptions against admitting a rank one orientable MGMCM module,
it is natural to ask for what ranks does there exist a MGMCM module.
Theorem (5.9) answers this question for homogeneous hypersurface domains
of dimension two. As might be expected the answer depends on the multiplicity
of the ring.

For the remainder of this section, let 4 be k[x,, x,,x3] a polynomial ring
over an infinite field. Let f € A, f a homogeneous form of degree e > 1, and
let R = A/(f) be normal. Clearly e(R) = e.

LeMMA (5.3). Let M be an orientable rank m MGMCM R-module with all
generators in the same degree, and let

m—1

0 PR->M->1-0

be a tight homogeneous Bourbaki sequence with the generators of I lying in
degree a. Then m(e—1) = 2a.

Proor. By hypothesis R = A/(f). Thus we have by Proposition (1.5):
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0 0
m-ll eml
DA(-e)— D A(-1)
Bl !
mélA i %A
m_ll !
0> @R — M-oI-0
! !
0 0

Here i is split injective, since the Bourbaki sequence is tight. Taking the
mapping cone, one obtains an exact sequence

m—1 em—m+1

(5.4) 0—>@A(~e—a)—>e(-'§A(—1—a)—» @ A(—a)-1-0

which is a minimal A-resolution of I.

Letting J be the preimage of I in A, then A/J = R/I, so that J is a co-
dimension three Cohen-Macaulay ideal of 4.

Case 1). f is a minimal generator of J.

Then

m—1 em em—-m+1

0> @ A(-e—a)» DA(—-1-a)» @ A(—a)® A(-e)>J -0

is an A-resolution of J.
Computing the Hilbert series of 4/J one obtains
—A—(em—m+1)A°+emA®*t! —(m—1)A°*¢
(1-ay '
But since A/J is a zero dimensional ring, H(A/J, 1) is a polynomial. There-
fore, if the numerator of (5.5) is P(4), (1—A4) divides P(4), and hence the first
and second formal derivatives of P(A) evaluated at 1 are zero. So

0 = P(1)

(55)  H(A 1) =

= —ele—1)—a(@a—1)em—m+1)+ema(a+1)—(m—1)(g+e)a+e—1)
= m(e~1)—2a.
Therefore m(e—1) = 2a.
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Cask 2). f is not a minimal generator of J.
If0—- F; > F, > F, - J —0is a minimal free A-resolution of J one obtains

0->Fy->F,®A(—e)o>F, 210

is a minimal free A-resolution of I. By comparison with (5.4) one obtains
a=e—1 and

m—1 em—1 em—m+1

0- (—;3A(l—2e)—» @ A(—e)» @D A(—e+1)-J -0

is a minimal A4-resolution of J.
By the Betti number formula of [7] one obtains:

e(fe—1)

m-1= Re—1-@l2e—1--D] "

Thus m = 2 and 2(e—1) = 2a.

COROLLARY (5.6). Let R be as above and e(R) = e =0mod2 and M an
orientable MGMCM R-module of rank m with all generators lying in the same
degree. Then m = Omod 2.

Proor. By (5.3), m(e—1) = Omod 2. But e = O0mod 2, hence m = Omod 2.

The following result allows us to reduce the general case to that dealt
with above. Note that even if M is graded, it is not necessarily true that all
its generators lie in the same degree, whereas gr,,,(M) always has that property.

LemMma (5.7). Let S be a local (or homogeneous) Cohen-Macaulay ring with
(irrelevant) maximal ideal m, S/m infinite, and gr,,(S) normal. Let M be a
MGMCM orientable S-module, then gr, (M) is an orientable Maximal Cohen-
Macaulay gr,(S)-module. In particular, if gr,(S) is Cohen-Macaulay, then
gr.(M) is an orientable MGMCM gr,,.(S)-module.

Proor. By (1.6), it suffices to show that gr,,(M) is orientable. As gr,,(M)
is a torsion free gr,(S)-module, by Bourbaki’s Theorem [2; VII, §4.9,
Theorem 6], there exists an ideal I of gr,,(S) such that

m—1

0 @ gn(S)> gru(M) -1 -0

is exact. Pick a set of generators {e;,...,e,-;} of @™ !gr.(S) and let
u;eM be such that i; = i(e)) e gry(M). Let U be the submodule of M
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generated by {u,,..,u,_,}. Let J be an S-module such that
(*) 0-U-M->J->0

is exact. Then (*) induces a complex
m—1

@ £m(S) > grp(M) - gru(J) = 0

which is exact on the right. Hence there is a surjection ¢:1 — gr,(J).
Since v(M) = v(grn(M)) > m—1 2 v(U), it follows that J # 0, and hence
grm(J) # 0. Because

rank(gr,,(J)) 2 1 = rank(/),

and [ is torsion free, it is clear that I ~ gr,,(J).
As

rank(J) = (e(S)) " 'e(J) = (e(grn(S)) ™ 'e(gry(J)) = rank(gr,(J)) = 1,

and since gr,,(J) and hence J is torsion free, it follows that J is an S-ideal.
Therefore,

rank(U) = rank(M)—rank(J) = rank(gr,(M))—1 = m—1 2 v(U),

and hence U is a fiee S-module. Therefore and because M is orientable, ( *)
now implies that J is isomorphic to an S-ideal J with ht(J) = 2 (including
the case J = §).

Let [ 20 be the integer with TS m!, J & m'*!. On J we consider the
following filtration

F:F(J)=7J for is|,
and

F(=m"'J for il

On S we consider the m-adic filtration. Then 0 - J —» S — S/J — 0 induces
a complex

(» *) 0 - grp(J) ¥ grp(S) - grm(S/T) - 0.
By definition of I, y # 0. Moreover,
grr(J) = (gra(N(=1) = gru(I)(=1)
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is torsion free of rank one. Hence y is injective. But then it is an easy
exercise to show that (* *) is exact. Since

dim gr,,(S/7) £ dim gr,,(S)—2,

it is then clear that grp(J) and hence I is isomorphic to an ideal of height at
least 2. Then the exact sequence

m

0 @ grm(S) > gra(M) > 10

implies that gr,,(M) is orientable.

For a normal Cohen-Macaulay ring S, let Y(S) be the semigroup of ranks
of orientable MGMCM S-modules.

THEOREM (5.8). Let (R, m) be a 2-dimensional hypersurface ring with infinite
residue class field and gr,(R) normal. If e(R) = Omod 2, then Y(R) & 2N.

ProoF. By (5.7), Y(R) < Y(grm(R)). By (5.6) and (5.7), Y(gr.(R)) S 2N.

A more complete classification can be obtained, if the ring is a homogeneous
hypersurface domain.

THEOREM (5.9). Let R be a 2-dimensional normal homogeneous hypersurface
domain with infinite residue class field. Then

i) ife(R)=1,then Y(R) =N,

ii) if e(R)=0mod2, then Y(R) = 2N,

iii) if e(R) = 1 mod2 and e(R) # 1, then
Y(R) = 2N+3N = N\{1}.

Proor. Recall e = ¢(R). If e = 1, i) follows from Lemma (2.2). By (4.8),
Y(R) 2 2N. If e = Omod 2, then by (5.8), 2N 2 Y(R) and hence Y(R) = 2N.
Hence it suffices to show that if e # 1, e = 1 mod 2, then R admits a rank 3
orientable MGMCM module.

By (4.6) it suffices to show that R has a codimension two Cohen-Macaulay
ideal I with 3e generators and r(R/I) = 2.

The Hilbert function of R is

(t+2> e
oy |\ 2
O=9 (142 _fr-er2) __ele=3) 5,




MAXIMALLY GENERATED COHEN-MACAULAY MODULES 201

Set a =1@Be+1), s=4(5e-3), x=1[s/2]. Then x <s—x. Since h(t) is
an increasing function of t, h(x) =< h(s—x). By (3.5) there exists a nonempty
open subset W; of R¥ such that for ¢, eW,, R, nI(p,) =0. Since R
is a homogeneous domain, I(¢,) N R; = 0 for j < s/2.
Now as s—a+1 =e—1 < s/2 and as R(¢,) = R/I(¢,) is Gorenstein with
socle degree s, one obtains
dimI(¢y),-, = dim R, -, —dimR(¢,),- = dimR,_ | —dim, R(@1)s-qa+1
=dim, R,_, —dimR,_, = h(a—1)—h(e—1) = {e(e+1)
= dimkRe_ 1.
Hence by (3.5) there exists a nonempty open set W, of R¥ such that for
026 W, 1(@1)a-1 N (@2)a-1 = 0.
For any ¢, e W,, ¢, and ¢, are k-linearly independent. Set I = I(¢,) N I(p,).
I is a codimension two Cohen-Macaulay ideal. Moreover, since I(¢,) and
I(p,) are Gorenstein and since ¢, and ¢, are k-linearly independent, we
obtain r(R/I) = 2. Since I,_, = 0, and R is a homogeneous domain, it follows
that I; =0 for all j Sa—1.
Thus v(I) 2 dim,I,, while

dimI, = dim (), +dimI(9,), —dim,[I(¢,)+1(¢2)].
Z dim (¢, ), +dimI(p;),— h(a).

As R(g;), i = 1,2, is Gorenstein with socle degree s,

dim, I (¢;), = h(a) —dimR(¢;), = h(a)—dimR(¢;);- o = h(a)—h(s —a).

Therefore v(I) 2 h(a)—2h(s —a) = 3e. Thus by (4.7), v(I) = 3e and by (4.6),
R admits a rank 3 orientable MGMCM module.

6. Questions.
For the sake of completeness we list here some open questions.

QUESTION (6.1). If R is a two dimensional local Cohen-Macaulay ring, does R
admit a MGMCM module? If R admits a canonical module, by (4.3) it would
suffice to show that R possesses an ideal I of codimension two such that
v(I) = e(R)[r(R/I)+1].

QuEsTION (6.2). If R is a two dimensional normal homogeneous hyper-
surface domain, what are the possible ranks of indecomposable orientable
MGMCM modules?
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For I a codimension two Cohen-Macaulay ideal, I is said to be linked
to the ideal J if there is a regular sequence x,, x, in I such that
(xy,x5): I =J. The ideals I and J are said to be evenly linked provided
that there exists a sequence of ideals I, ..., I, with I = Iy, J = I,, I;is linked
to I;,, fori=0,..,n—1 and n is even. The even linkage class of I is the
equivalence class induced by the relation evenly linked. The even linkage class
of I is said to be indecomposable, if no ideal in the class has the form
x"I' +x'I"", where I’ and I"” are codimension two Cohen-Macaulay ideals and
x', x" is a regular sequence with x'el’ and x" €I”. By [8, Remark 2.6] the
question (6.2) is equivalent to determining the indecomposable even linkage
classes of ideals I occurring in a Bourbaki sequence 0 » F + M -1 -0
with M a MGMCM module.

Question (6.3). If R is a d-dimensional homogeneous hypersurface ring,
does R admit a MGMCM module? In particular it is not known whether
k[x,y,z,w]/(f) admits a MGMCM module, where f is a homogeneous poly-
nomial of degree three.

QuesTioN (6.4). If R is a zero dimensional local ring, when can the ith
syzygy module of the residue class field of R be a MGMCM R-module (a
direct sum of copies of the residue class field by Proposition (1.2))? Proposition
(2.7) asserts that if R is Gorenstein and contains k, then R = k[x]/(x"). If R
is arbitrary with ith syzygy module of k isomorphic to @"k, then the
Poincaré series of R is of the form

I+B‘l+ﬁ2}~2+ o +ﬂi_lli—l
(1—-Ni)

P() =

NOTE ADDED IN PROOF. Meanwhile, Question 6.3 has been answered
affirmatively by J. Backelin and J. Herzog.
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