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ON EULER’S QUARTIC SURFACE

A. BREMNER

We are concerned in this note with the quartic surface given by the equation
(1) x4yt =14

This has recently been shown by Noam D. Elkies (communication to Richard
K. Guy dated August 19, 1987) to have the integer solution

2682440* + 15365639* + 1879760* = 20615673*.

Previously, the best result appears to be that of Lander, Parkin, Selfridge [7]
who by direct computation showed that there is no non-trivial solution in
integers of the Diophantine equation (1), for which t < 220.000.

Euler is apparently the first person, at least in print, to consider the
question of whether a fourth power could be expressed as the sum of three
smaller fourth powers. His remarks [5] are of interest:

Quum demonstratum sit neque summam neque differentiam
duorum biquadratorum quadratum esse posse, multo minus
biquadratum esse poterit; haud minori autem fiducia negari
solet summam trium adeo biquadratorum umquam biquadratum
esse posse, etiamsi hoc nusquam demonstratum reperiatur.
Utrum autem quatuor biquadrata reperire liceat, quorum
summa sit biquadratum, merito dubitamus, quum a nemine
adhuc talia biquadrata sint exhibita.

In later writings, his remarks [6] are stonger:

Pluribus autem insignibus Geometris visum est haec
theoremata latius extendi posse. Quemadmodum enim duo
cubi exhiberi nequeunt, quorum summa vel differentia sit
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cubus, ita etiam certum est nequidem exhiberi posse tria
biquadrata, quorum summa sit pariter biquadratum, sed ad
minimum quatuor biquadrata requiri, ut eorum summa prodire
queat biquadratum, quamquam nemo adhuc talia quatuor
biquadrata assignare potuerit. Eodem modo etiam affirmari
posse videtur non exhiberi posse quatuor potestates quintas,
quarum summa etiam esset potestas quinta ; similique modo
res se habebit in altioribus potestatibus; unde sequentes
quoque positiones omnes pro impossibilibus erunt habendae:

L a&*+b* =3,
II. a*+b*+c* = d*,
O @®+b°+c’+d° = e,
IV. a®+b°+c®+d®+e® =f°
etc. .

Plurimum igitur scientia numerorum promoveri esset
censenda, si demonstrationem desideratam etiam ad has
formulas extendere liceret.

Despite the assuredness, a proof is lacking. In 1911, Norrie gave a numerical
example to show that a fourth power could indeed be a sum of four fourth
powers

30%+120% +272% + 315 = 3534,

as predicted by Euler. However, in 1966, Lander and Parkin found by
computer search the identity

275 +84° +110° + 113° = 1445,

which is a counterexample to the Euler conjecture on fifth powers. The
fourth power problem was thus rendered all the more tantalizing; but the
example of Elkies shows also that Euler was mistaken.

In the current note, we make no further remarks on this aspect of
equation (1). Instead, we concentrate upon the existence of parametrizations
of (1) corresponding to curves of geometric genus zero lying on the surface.
Segre [9] in his extensive survey of the surface

xt+x3+x3+xt=0
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considers parametrizable curves of small degree, which consequently cor-
respond to such curves on (1) with field of definition C(4). Attention here is
restricted to real parametrizations (which in fact turns out to be equivalent
to parametrizations defined over Q(ﬁ ).

There are infinitely many such real parametrizations, yet by a simple
application of Galois Theory, no such parametrizations defined over Q. The
methods of Swinnerton-Dyer [12] as exemplified in Bremner [1], [2]. [3].
coupled with the finiteness results of Sterk [11] provide a finite algorithm for
generating all such real parametrizations; but the calculations necessary to
furnish the relevant finite sets are not a priori effective. See the worked
examples of Swinnerton-Dyer [12] and Bremner [1], [2]. We have not under-
taken these computations for the surface (1).

As a corollary to knowing all the real parametrizable curves on (1) (at least,
of small degree), we exhibit those diagonal quartic surfaces defined over Q
which admit of rational parametrizations of degree 2, and of degree 4.

2.

Let V denote the surface (1). Then V is a non-singular quartic surface, and
hence K3. So algebraic equivalence of divisors on V is the same as linear
equivalence of divisors. By abuse of notation we shall use the same symbol
to denote a divisor on V, its linear equivalence class, and the corresponding
curve on V.

There are precisely 48 straight lines on V, given in Table 1. The field of
definition of these lines is Q(i, ﬁ ); the action of the Galois group is such that
\/5 - —-\/5 interchanges I'; with '}, I'; with I'}’, and i - —i interchanges
I'; with I'j", I'; with I'j. The matrix of their intersection numbers is shown
in Matrix 1, and has rank 20. It is (reasonably) well-known that the
Néron-Severi group NS(V,C) of V over C is generated as Z-module by the
classes of these straight lines (see for example Shioda [10, p. 181])
Accordingly, it follows that the field of definition of NS(V,C) is the field
K = Q(,/2).

It is readily checked that the 20 divisors

"’ i’ r ’ 43 L " e’ Ui Ui " Ui
(2) rl’ J TS R I’FZ’FZvFZ’FZsFB’FB’FS’ 53r67r6’r7’r7wr9’r9’r10vr10

form a basis for NS(V, C) over Z. The respective combinations of the 48 lines

on V in terms of this basis are given in Table 2.
Put

(3) Li=r+ry, i=1,..,12
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TABLE 1
T T; Iy ry
1=x t=x t=x t=x
r, L e _ . . _ 3.
y =&z v =¢: y = —g y = —&
r t=e2x t= —&x t = ¢e2x t= —&x
2 Y= v =gk y=—& y=—¢k:
r t = &3x t= —e2x t = e2x t = —g2x
3 v =&z y =&z v=—¢= V= —&z
r t= —X t= —X = —X t= —X
4 Vo= y=ek: v=—& y=—¢k:
=) t=y t=y =y
r -
s X =& x =&z X= —& x=—¢&%
r =g t= —¢%y t = ¢y = -y
o X =&z x =&z X = —& x = —¢&
t=¢ = —g2y t =&y = —&%y
r, = 3= — e _ 3. - g
X =&z X =&z x = —gz X=—e
r =-) =—y t=—y t=-y
8 X =&z x =gz X = —¢2 x = —&2
t=: t=z t=z =z
Iy _ . _ .3 _ . _ .3
X =& x =&y X = —gy x = —gly
t=¢z t=—¢z t=¢z t=—¢z
Io — — 3 — - = —g3
X = &) x =& X = —gy x = —g'y
r t=¢%z = —g2z t =z t=—¢2z
" x=¢% X = g) x = - X = —uy
t= -2z t= —z t=—2z t= -z
Iy, x=¢ — 3y e _ A
=gy x = &%y X = —) x = =y

1+i
NB. ¢= il is a fourth root of —1.
2

and let a bar denote conjugacy under the K-automorphism induced by

ﬁ - -—ﬁ, so that

@) Li=r+r), i=1,.,12

Then L;, L;e NS(V,R), where the field of definition of NS(V,R) is Q(/2).
The matrix of intersection of the L; and L, is shown in Matrix 2, and is
of rank 10.
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MATRIX 1
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TABLE .2
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MATRIX 2
Ll L| L.‘ LI LJ L.\ LJ LJ L‘ L§ L'i Lv 1‘7 L7 LH Ll( L" L‘F L‘U Ell} LII LII L': LIJ
-2 4 2 2| 2 2 2 2 2| 2 2 2 2
Ley a2 2| 2 2 2 2 2| 2 2 2 2 2
2
2 |-a 2] 2 2 2 2 2 2 2 2 22
L 2| 2 -4 2 2 2 2 2|2 2 2 2 2
2|2 4l-4 2 2| 2 2 2 2 2 2 2|2
Lo, 4 2| 2-4]2 2 2 2 |2 2 2 2 2
L2 2 22 4 2 2 22 2 2 2 | 2
. 2 2|2 4.2 2 2 2 2|2 2 2 2
R 2 2 (-2 4] 2 212 2 2 2 2
s 2 2 2| 2 4 -2 2| 2 2 2|2 2 2
R 2 2 2l 2 -4 2| 2 42 2| 2 2 2
o 2 2 2| 2 2| 2-a] 4 2 2| 2 2 2 2
2 2 2 2 2| 2 4l-4 2 2 2| 2 2 2
L, 2 2 2| 2 2 4 20 2-4]2 2 2 2 2
. 2 2 2] 2 2 2 2|-2 4 2| 2 2 2
« | 2 2 2 2 2 2| 2 4-2] 2 2 2 2
N 2 2 2| 2 2 2 2(-2 4] 2 2 2
> 2| 2 2 2 2] 2 2 2 42 2 2 2
2 2 2 2 2|2 2 2 2 |ea 22 4 2
Lio 2| 2 2 2 2 2 2 2 2|2 - 2 2
2 2 2 2 2| 2 2 2 1|2 af-a 2 5
L 2| 2 2 2 2 2 2 2| 2 2|22 2
2| 2 2 2 2| 2 2 2 2 2 20-2 4
La | 2 2 2| 2 2 2 2 2 2| 2 4 -2

Take now I'e NS(V,R), so that I' ~ I, where ~ denotes conjugacy by
i - —i. From (2), there exists integers a,,d),...,d,9,d}o such that

r~ari+airy+...+a,0l0+a%olMo
and it follows that
a Iy +ayI +...+ayolo+aiolNo ~ a Iy +aiT{ +...+ a0l 0 +alolN0o
whenc;
(ay —ay' W =T+ (ay —a )y —TY)+...+(a10 —dio) 10— o) ~
Thus from (2), a, = a}'.d} = di, ..., a;o = d}o, and

r~ alLl +a'll", +...+a10L,0.
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So the ten divisors
(5) LlsZ:lv LZ’ Ez. LS» L59 L(;v L79 L9~ LIO

form a basis for NS(V,R) as Z-module. The respective combinations of
L,,L,,...,L,;3 L, in terms of this basis, are given in Table 3.

TABLE 3
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Finally, put
) Ai=L+L, i=1,..,12

so that A;e NS(V,Q). The matrix of intersection of the A; is shown in
Matrix 3, and is of rank 4. :

Just as above, by equating a Z-linear combination of L,,L,,..., Ly, L, to
its conjugate under \/2 — —./2, one discovers that the four divisors

Ay, Az, 3 Az + Ag), $(As+ Ayo)

(where $(A;+A¢) ~ —Ly+Ly+Ls+L¢; $(A6+Ay0) ~Ly—L,—L,— L3+
+Ls+Lg+Lg+L,o) form a basis for NS(V,Q) over Z. The latter two
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MATRIX 3

Ay Ay Ay Ay A Ae A, Ay Ae Aw Ay A
A, 4 4 4| 4 4 4| 4| 4 4 4 4 | 4
A 4 | -4 12| 4 4 4| 4| 4 4 4 4 | 4
A; 4 12| -4 4 4 4 4| 4 4 4 4 | 4
A 4 4 4| 4 4 4| 4| a 4 4 4 | 4
As 4 4 4| 4 4 4| 4| a 4 4 4 | 4
Ao 4 4 4| 4 4 | -4 | 12| 4 4 4 4 | 4
A 4 4 4| 4 4 12| -4 4 4 4 4 | 4
Ag 4 4 4| 4 4 4| 4| 4 4 4 4 | 4
Ay 4 4 4| 4 4 4| 4| 4 4 4 4 | 4
Ao | 4 4 4| 4 4 4 4| 4 4 | -4 | 12| 4
A 4 4 4| 4 4 4| 4| 4| 4 12 [ -4 | 4
An | 4 4 4| 4 4 4| 4| 4 4 4 4 | 4

divisors are indeed effective, and are realisable as curves of genus 1 on V.
Put

) (Y15 Y25 V3, Ya) = (A4, A2, 5(A; + Ag), 3(A6 + Ayo)).

Then the matrix of intersection of the y; is given in Matrix 4.
MATRIX 4

" V2 73 Vs

T 4 4 4 4
Y2 4 -4 0 4
Y3 4 0 0 2
Ya 4 4 2 0

Consider first a curve I' on V defined over Q. Then there exist integers
ny,... ns such that

I' ~nyy; +n37; +n3y3+n47,.
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The formula for the arithmetic genus of I' is given by (see, for example,
Safarevic [8, p. 5])

Pl =HI-T)+1
so that
) pa(l) = 2n3 =2n +4n,ny +4n ny +4nn, +4nyng + 2n3n, + 1.
Further, the degree of I' is given by

9) deg(I') = deg(n,y,)+...+deg(nsys)

= 4(ny +ny+n;3+ny).

The formulae at (8) and (9) immediately imply the following theorem.
THEOREM.

(i) puI)is odd.
(ii) deg(I') is divisible by 4.

CoroLLARY. There are no curves on V, defined over Q, of arithmetic genus 0.

Remark. The corollary does not imply the total non-existence of rational
parametric solutions to the equation (1). Such a parametrization corresponds
on V to a curve of geometric genus 0, and it may be the case that such
a curve actually has arithmetic genus greater than 0. See Swinnerton-Dyer [12]
for further discussion.

3.

Consider now a curve I' on V, defined over R. From (5), there exist
integers m;, i = 1,..., 10, with

(10) I'~mL+myL,+m3Ly+myL,+msL;+mgLs+
+m7L(, +m8L7 +MQL9 +m10L|0.

We know all parametrizations over C of degree 1, since these correspond to
straight lines on V ; and there are no such parametrizations over R.

For parametrizations of degree 2, we can avail ourselves of the enumeration
by Segre [9] of quadrics defined over C on the surface. It turns out that there
are precisely eight conics on (1) which are defined over R, and precisely two
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such conics up to symmetry, namely

(11) z=Xx+y

t? =‘\/§(:2—xy)
and
(11bis) z=X+y

t? = —\/E(z2 —xy).

Since (l1bis) possesses no real points, there is essentially just the one
quadratic (11) affording a real quadratic parametrization, viz.

(12) x:yizit= =322 424+1:342+24—1:44: ¥2(312 +1).

From (10), the degree of I' is even, and so we can restrict attention to curves
I with deg(I') = 2d, d € Z. From (10),

(13) Z m; =d.

The Hodge-Index Theorem tells us the signature of the quadratic form of self-
intersection (I'-T'), at least over C. Over R, then using (13) and a simple

process of completing the square, we have the following equation, in which
o =14d

(14) (my +my +mg+mg —8)2 + (my +my +ms+mg+myq—05)° +
+(my +my +ms+mq+mg+mg—08)2 + (my +my+ms+mg—93)> +
+(my +my+ms+myo—8)* +(my +my+m;—08)* +

+(my4+my—ms)* +(my—mg)? +miy = 26> -4(I'- ).

For curves I' of genus O then (I'-I') = —2; and (14) for a prescribed
value of & gives an effective means of computing all divisors of the chosen
degree and of genus 0.

For curves of degree 4, where d = 1, the constant on the right hand side
of (14) is equal to 3, and one can (even by hand) tabulate the solutions of
this quadratic form equation. It is appropriate to remark that the symmetries
of V reduce the actual amount of computation, as follows. The group of
rational symmetries is of order 48, generated by changing the signs of x, y, z,
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and permuting x, y, z. It is straightforward to verify that the class of divisors
equivalent under symmetry to I' at (10) always contains a divisor for which
the coefficients m; satisfy

(15) 0=mo=< —my+mg < my+my—ms.

Hence it suffices to impose these extra conditions (15) on solutions of (14).

The divisors corresponding to these solutions are guaranteed to be
effective, but in practice most turn out to be reducible: in this case,
representing a conic pair. More generally, if I' is of the form A+ B where
A and B are effective divisors, then certainly I' is reducible. Of course, only
irreducible curves are of interest to us, and it turns out here that up to
symmetry there is only one such curve which is not actually the sum of two
conics, given by the divisor ' ~ —L, + L, + Lo+ L.

The parametrization of the corresponding curve is given by

(16) x:iyizit = A4 =2:243:2 /24 4%+ 2

and this curve together with the curve obtained by 4 - — 4 are cut out on V
by the quadratic

(17) x2—t2+./2yz = 0.

Similarly, for curves of degree 6 with 6 = 3/2, it turns out that there are
precisely three divisors up to symmetry with self-intersection —2. They are

—E1+L2+ZZ+L3+L6;
—Ly+Ly+L,+Ly+Ls+L¢—Lyg;
Li+L,+Ls—L,+L,.

Of these divisors, only the latter two are irreducible, the first representing a
twisted cubic over C and its conjugate (easily identified from a listing the
author made of all twisted cubics over C!).

THEOREM. Up to symmetry, there is of (1) just one reual parametrization
(corresponding to a curve on V of arithmetic genus 0) of degyree 4. There are
just two such parametrizations of degree 6.

One may continue the search to curves of higher degree, but now the
problem of determining whether a given divisor is irreducible or not takes
considerably more effort. One approach is to compile a list of all the C-divisors
corresponding to curves of small degree on V' defined over C. The techniques
are exactly as above, applied to the quadratic form of intersection derived
from the basis (2). This listing will then enable one to identify which
divisors over R are reducible. But this method is tedious in the extreme, and
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hardly seems feasible for curves even of moderate degree. Alternatively, and
more constructively, one can follow the ideas of Swinnerton-Dyer, and using
fibrations of the surface into elliptic pencils, produce a set of automorphisms
of the surface from which all curves of arithmetic genus 0 may be successively
generated from a finite set S of such curves. By Sterk [11] there exists a finite
set of automorphisms with this property. But we have not carried out what
will inevitably be very extensive computations.

4.

There do indeed exist rational curves on V of genus 1. By (8), such curves
correspond to solutions of the equation

2n? —2n% +4n,n, +4n,ny +4n,n, +4nyns +2n3n, = 0,
i.e., to solutions of
(18) (@ny+n3)2 + (ny+ng)?> +n2 = 2(n, +ny+n3+n,)2.

The smallest degree for such curves is 4, when n; +n, +n3+n, = 1; and then
there are precisely twelve solutions to (18). The curves corresponding to these
twelve divisors are all equivalent under symmetry, and so there is essentially
a unique divisor of degree 4 and of genus 1. It may be realised as a pencil
of curves given by the intersection of two quadratics

(19) t,—ix?+y?+2% = 0(t —iy)t—iz)
P +ix+y2 422 = 0t +iy)t +iz),

where 0 € C, 00 = 2. See also Dem’yanenko [4].

If 0eQ, then of course (19) defines a curye I' of genus 1 over the
rationals. If I' were to contain a rational point, then of course this would
furnish a numerical counterexample to the Euler conjecturé. For interest, we
obtained the necessary and sufficient conditions on 6 for I' to possess points
in every completion of Q. The “smallest” such 0 (in the sense of smallest
denominator) turn out to be

0=1%i
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In the case of 0 = 1Xi, then I' does possess rational points, corresponding
to the trivial points on the surface (1); and a straight-forward descent
argument shows that I' has no further rational points.

For the other three values of 0 above, a small computer search did not find
any rational point on the corresponding I'.

5.

Suppose we consider diagonal quartic surfaces of type
(20) ax* +by* +cz* = dt*, a,b,c,deQ,a,b,c,d > 0,

where a, b, ¢, d are fourth-power free, and ask for rational parametrizations.
From section 3, there is up to symmetry just one parametrization of (20)
over R of degree 2; and taking without loss of generality a = 1 in (20), this
quadratic parametrization is provided by (11) in the form

x+b'y—cltz =0
b'*xy —c'?z2 +(d/2)"*? = 0.

Consequently, for a rational parametrization, it is necessary that the following
ratios be rational :

1:bY4:c'* and b'4:c'?:(d/2)">.

This is equivalent to b,c e Q*, d/2eQ?, say d = 26%; and the surface (20)
becomes equivalent to

x*+y*+2* =260t
with parametrization from (12) given by
xiyizit = —3A242441:3A24+24—1:42: (322 +1)6" /2,
Thus, for a rational parametrization, J € Q2, and we have the following result.

THEOREM. Let V be a diagonal quartic surface of type (20). If V possesses
a rational parametrization of degree 2, then V is given by the equation

x“-}y“+z4 = 2%,
with parametrization

xiyizit = —3A242A4+1:342+24—1:44:3A2+ 1.
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Once can similarly ask about parametrizations of (20) of degree 4. Again,
from section 3, there is essentially a unique parametrizable quartic curve of
arithmetic genus 0 on V, which is cut out by the quadric
a2 x? —d"1?t? + (dbc)'*yz = 0.
So the quartic curve can be defined over Q only if
a'’? . d'? : (4bc)'*

are rational ratios.
Taking a = 1, then it follows that 4bc € Q*, d€Q?, d = r? say. Then (20)
is equivalent to the surface

4
(22) x*+by* + Bz"' =ri*,

with the quartic cut out by the quadric

(23) xt—rt24+2yz = 0.

It follows from (22) and (23) that points on the quartic satisfy
(24) (by? +2z%)* = 4bryzt?

and so for a rational parametrization, bryz is a rational square.
Put by = ap?, rz = ag?, so that (24) gives

2pq, p*  2¢*
Tt = -
o b + r?

9

and, from (23),

4p2q2 p4 2q4 2
i e b

The latter implies r = €2, e €Q, and the following result is immediate.

THEOREM. Let V be a diagonal quartic surface of type (20). If V possesses
a rational parametrization of degree 4, corresponding to a curve of arithmetic
genus O on V, then V is given by an equation

4
x byt + 52t =t



180 A. BREMNER

with parametrization

x:y:z:t =%l“—2:%}.3:2£:%1“+2.
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