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CHARACTERIZATION OF THE PREDUAL AND IDEAL
STRUCTURE OF A JBW*.-TRIPLE

GUNTHER HORN

In recent years, a certain category of normed Jordan triple systems
called JB*-triples has been an object of study in both complex analysis and
functional analysis. A standard example of a JB*-triple system is a norm-
closed subspace of the space of all bounded linear operators on a complex
Hilbert space which is also closed under the Jordan triple product
{xy*z} := J(xy*z +zy*x). Therefore, JB*-triples generalize C*-algebras. The
importance of the category of JB*-triples in complex analysis stems from its
equivalence with the category of bounded symmetric domains with base point
in complex Banach spaces [17]. A detailed presentation of this theory is
contained in [29]. In the context of functional analysis, JB*-triples arise
naturally in the solution of the contractive projection problem for C*-algebras
in [9] (see also [18]).

In this paper, we study JBW*-triples, i.e., JB*-triples which are dual Banach
spaces, in analogy to the theory of JBW*-algebras [13]. After the presen-
tation of preparatory material in section 1 and section 2 we will
characterize the predual of a JBW*-triple by various conditions and prove
its uniqueness in section 3. The main result of section 4 relates the ideal
structure of a JBW*-triple to that of the JBW*-algebra determined by a
complete tripotent.

In a forthcoming paper, we will prove a coordinatization theorem for
JBW*-triples and we will use it to obtain a classification of JBW*-triples of
type 1.

Since the completion of this study which is contained in the author’s
dissertation (1984), great progress has been made in the theory of JB*-triples
in [7], [2] (separate weak-*-continuity of the product of a JBW*-triple) and
[11]. The results in [2] and [11], however, may not be used to simplify
proofs given here as they in turn make use of results presented here and in
the mentioned forthcoming paper.
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1. Jordan-*-triples

Our standard reference for Jordan algebras is [1S5], for Jordan triple
systems it is [22] and [23].

A Jordan-*-triple is a complex vector space U with a sesquilinear map
U x U - End(U): (x,y) = x [0 y* such that

(1.1) the triple product {xy*z} := x [J y*(z) is symmetric in x and z,

(1.2)  {uv*{xy*z}} = {{uo*x}y*z} — {x{vu*y}*z} + {xy*{uv*z}}
for all u,v,x,y,ze U.

Let Q(x,2)y := {xy*z}, Q(x) := Q(x,x) for all x,y,ze U. Every Jordan-*-
algebra is a Jordan-*-triple in the product

(1.3) {xy*z} :=(xoy*)oz—(xo0z)oy*+(y*oz)ox.

(1.4) A Jordan-*-triple U is called abelian if x (] y* and u (] v* commute
or equivalently, if {xy*{uv*w}} = {{xy*u}v*w} for all x,y,u,v,we U.

A subtriple generated by a single element is always abelian.

(1.5) A non-zero tripotent (i.e., an element e with Q(e)e = ¢) in a Jordan-*-
triple U induces a decomposition of U into the eigenspaces of e [] e*, the
Peirce decomposition U = U,(e) ® U, ,,(e) ® Uy(e) where

Uile) := {ze U|{ee*z} = kz} for k =0,3,1.
U, := U,(e) is called the Peirce-k-space of e.
For Peirce-k-spaces, the following multiplication rules hold:

(1.6) {U,UtU} = {UoUtU} =0,

(1.7) {U,UrU,} < U;_ sy, where i,j,ke {0,3,1} and
U:= forl+#04,1.

In particular, Peirce-k-spaces are subtriples.

(1.8) The projection p; = p; of U onto U, with p(z) =0 for ze U;, j + k
is called the Peirce-k-projection of e.

pi is a polynomial over the integers in e [Je*. Furthermore, p§ = Q(e)>.
This and (1.7) yield U,(e) = Q(e)U.
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(1.9) Two tripotents e and f are called compatible if p§ and p{ commute
for all jke{0,3,1}.

(1.10) If f e U,(e) for some ke {0,4, 1}, then e and f are compatible. This
follows from (1.8) together with (1.2).

In particular, ¢ and f are compatible if they are orthogonal, ie., if
{ee*f} = 0 which implies e (J f* = f (D e* = 0.

A finite compatible family e, ..., e, of tripotents has a joint Peirce decom-
position

U= @ Ugfi) o o Ug(f)
ko=1041!

(1.11) A tripotent e is called complete if Uy(e) = 0. e is called unitary if
U = U,le).

(1.12) The Peirce spaces with respect to an orthogonal family & = (€;)ie;
of tripotents are defined by
Ui :=Uye), Uy i=Ujple) n Uy jale)) (i # )
Uio := Ug; :=Uyple) N ﬂ Uo(ej), Ugo := ﬂ Uol(ey).
j#i iel

& is called complete if Uyy = 0.
The sum P of the Peirce spaces is direct. If & is finite then P = U.

(1.13) {U,IU}';(U“} < U“ (i,j,k,lel 0{0})
Products of Peirce spaces which cannot be written in this form vanish.

1.14) LEMMA. Let e, f be tripotents in U.
(1)  feUjle) implies Uy(f) = U,(e) and Ugle) = Uo(f).

(2) feU,(e) and ec U,(f) imply Ui le) = U(f) for every k = 0,4, 1.

Proor. (1) U(f) = Q(f)U = Uy(e) by (1.7), (f O f*)Uole) = 0 by (L.6).
(2) By (1), U,(e) = Ui(f) for k = 0, 1. The compatibility of e and f (1.10)
then yields U,;,(e) = U, ,2(f).

2. JB*-triples.

A JB*.triple is a Jordan-*-triple U endowed with a complete norm such
that the triple product is jointly continuous, z (] z* is a hermitian operator
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with positive spectrum and

(2.1) ||{zz*z}|| = |lzIl* for all ze U.

(2.1) is equivalent to

(22) |1z0 z¥| = ||zll* for all ze U (cf. [17, (5.3)]).

Closed subtriples of JB*-triples and [*-sums of JB*-triples are again JB*-
triples.

Any JB*-algebra (cf. [30], is a JB*-triple in the product (1.3) ([29, 20.35]).
So in particular, every C*-algebra is a JB*-triple in the product
{xy*z} := 3(xy*z +zy*x).

(2.3) Conversely, if e is a tripotent in a JB*-triple U, then U,(e) is a JB*-
algebra with product xoy:= {xe*y} and involution x* := {ex*e].

(CI. [6, (2.2)] and [19, (3.7)]).

(2.4) ProrosiTION. The surjective isometries of JB*-triples are precisely the
algebraic isomorphisms.

Proor. Let f:U; —» U, be an algebraic isomorphism of the JB*-triples U,
and U, (no continuity assumed). Then o(z [Jz*) = o(f(z) O f (2)*) and so

llzIl> = llz O z*|| = supa(z O z*) = supa(f(2) A S (2)*) = --- = I/ @)II°

for all ze U, because for hermitian operators norm and spectral radius
coincide ([27, Proposition 2]). The converse follows from [17, (5.5)].

(2.5) The complete tripotents of a JB*-triple U coincide with the complex
and the real extreme points of the closed unit ball of U (cf. [19, (3.5)] and
[6, (14.1)]).

(2.6) Let e be a tripotent in a JB*-triple. Then the Peirce projections of e
are contractive. If e is complete they are hermitian.
(Use the fact that exp(it e (J e*) is an isometry for all real ¢ (cf. [10,1.2]).)

(2.7) Let e and f be tripotents in U. f is said to be an e-projection if f
is a projection in the Jordan-*-algebra U,(e) (in the sense of (2.3)). If [ is
in the center of U,(e) it is called a central e-projection.

3. JBW*-triples — characterizations of the predual.

A JB*-triple need not have any tripotents. However, if the JB*-triple
is a dual Banach space then it follows from (2.5) and the Krein-Milman
theorem that there exist “many” tripotents (cf. (3.11)).



CHARACTERIZATION OF THE PREDUAL AND IDEAL STRUCTURE ... 121

(3.1) DeFiniTION. A JB*-triple U is a JBW*-triple if U (as a Banach space)
has a predual U, such that

(3.2) the triple product is separately o(U, U,)-continuous.
a(U, U,) will be also denoted by w*.

In (3.21) it will be shown that a JBW*-triple has a unique predual in the
following sense:

(3.3) A Banach space E is said to have a unique predual F — E*, if F
is the only closed subspace of E* which is a predual of E in the canonical
duality. It should be noted, however, that a weaker notion of uniqueness
of the predual is also used in the literature (see e.g. [12]).

(3.4) If E; are Banach spaces with unique pfeduals F;(i = 1,2) then every
surjective isometry j: E; — E, is 6(E,, F,)—d(E,, F,)-continuous.

(3.5) REMARK. Barton and Timoney have recently shown [2] that (3.2) is a
consequence of (3.1). However, in their proof they use (3.20) so that (3.2)
cannot be omitted at this stage.

(3.6) A JBW*-algebra (i.e., a JB*-algebra with a predual) is a JBW*-triple
in the product (1.3) as follows from [26, Lemma 2.2] and [8, Corollary 3.3].

Further examples of JBW*-triples can be obtained from

(3.7) A a(U, U, )closed subtriple V of a JBW*-triple U (with predual U,) is
a JBW*-triple with predual U,/V° (where V° is the polar of Vin U,), and from

(3.8) If (U;)es is a family of JBW*-triples then U := ®2,U; is a JBW*-
triple.

(3.9) LEMMA. If e is a tripotent in a JBW*-triple U then the Peirce projections
of e are (U, U ,)-continuous.

Proor. The Peirce projections of e are polynomials in e (Je*. So (3.9)
follows from (3.2).

(3.10) If e is a tripotent in a JBW*-triple U then U,(e) is a JBW*-algebra
(by means of (2.3)).

ProoF. This follows from (3.9).

With respect to the local properties of a JBW*-triple one obtains the
following lemma:
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(3.11) LEMMA. An abelian, a(U, U ,)-closed subtriple W of a JBW*-triple U
is isometrically isomorphic to a commutative W*-algebra (endowed with the
product (1.3)). In particular, the set of tripotents is norm-total in U.

Proor. It follows from (2.5) and the Krein-Milman theorem that W contains
a tripotent e which is complete in W. Because W is abelian one has

{ee*{ee*z}} = {{ee*e}e*z} = {ee*z} forall ze W,

ie, e[Je*|y is an idempotent map and therefore W n U, ;(e) = 0. So W
is an associative w*-closed *-subalgebra of the JBW*-algebra U,(e) (in the
sense of (2.3)), i.e., W is a commutative W*-algebra with unit e. The w*-closed
subtriple generated by a single element is abelian by (1.4) and (3.4). In
W*-algebras, the set of projections is norm-total ([24, 1.11.3]). This proves
the second assertion.

(3.12) LemMA. If U is a JBW*-triple then

(1)  for every ze U there is a complete tripotent e € U such that
zeU,(e) and z = {ez*e},

(2)  for every orthogonal family (f;)jes of tripotents in U there is a
complete tripotent f in U such that f; is a f-projection for all jeJ.

Proor. The proofs of (1) and of (2) are parallel: The subtriple V,
(V respectively) generated by z (by {fj|jeJ} respectively) is abelian. By
Zorn’s lemma there is an abelian subtriple W, (W respectively) containing
V, (V respectively) which is maximal with respect to inclusion. By (3.2),
W, (W respectively) is w*-closed.

By (3.11) we can assume that W, and W are commutative W*-algebras.

Let z = u|z| be the polar decomposition of z in the W*-algebra W,. Then
one checks immediately that e := 1y, —uu* +u is a tripotent which is unitary
in W, and satisfies z = {ez*e}. Let

fi=ty= LA+ TS,

jeJ jeJ

The sums exists in the W*-algebra W with respect to the w*-topology. Using
(3.4), it is easily checked that f is a tripotent which is unitary in W and
that f; is a f-projection for all jeJ.

We show finally that e and f are complete tripotents in U: Suppose this is
false. Then there isa 0 # x, € Uy(e) (a0 # x € Uy(f) respectively). But by (1.4)
and (1.6) the subtriple generated by {x.} = W, (by {x} = W respectively)
is abelian. This contradicts the maximality of W, (of W respectively).

(3.13) CoroLLARY. An orthogonal family # := (fj)jes of tripotents in a
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IJBW*.triple U is summable with respect to 6(U,U,). g:=Y,c,f; is a
tripotent and f; is a g-projection for all jeJ.
F is a complete orthogonal family if and only if g is a complete tripotent.

Proor. By (3.12) there is a tripotent f in U such that .# is an orthogonal
family of projections in the JBW*-algebra U,(f). Therefore # is summable
in the w*-topology. The next two statements follow from (3.2).

Finally, if g is complete and z e Uy, (for the notations see (1.12)) then

log*z} = ) {fifi*z} =0,
jelJ
so z =0.

Conversely, let .# be complete. Because f;e U,(g) for all jeJ one has

Uolg) = ()jes Uolf;) = 0 by (L.14)(1).

(3.14) A bounded linear map p on a Banach space U is called a
projection on U if p* = p. Two projections p and q on U are orthogonal
if pg =qp =0.

(3.15) LEMMA. Let U be a JBW*-triple, let .7 := (f;)jes be an orthogonal
- family of tripotents in U. Then the Peirce sum with respect to .F (see (1.12))
is o(U, U,)-dense in U.

More precisely: There are unique weak-*-continuous, pairwise orthogonal

projections p;; on U onto the Peirce spaces U;; (i,j)eJ U {0}) which are
given by

P = Pl = Q)2 where k,leJ, k = 1,
Pui = P{'}zp{'/z =40(fi. )}, and [ := z fis
jelJ

Pro = P{/zP{"/z,
Poo = P'g-
Every ze U lies in the w*-closed subspace spanned by
{pij@)Ni,jed v {0}}.

Proor. f exists by (3.13). Because # uU {f} is a compatible family (1.9),
pij is a projection for all i, jeJ U {0} which is w*-continuous by (3.9).
Obviously, p,(U) = Uy, holds for all k,leJ.

"P1o(U) = Uyy": For zepyo(U),g := Y. f we have
keJ
k41

{99*z} = {ff*z} = {fifitz} = $2-42 =0,
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therefore ze Uqy(f,) for all ke J, k # [ by (1.14)(1).

"Uio < pro(U)’": {ff*z} = {fifi*z} = 4z holds for all ze U,,.

"po(U) = Ugo”:  Holds by (1.14)(1).
"Uoo = po(U)':  {fi*z} = Y {fifi*z} =0 by (3.2).

jelJ

This shows that p,(U)= U, for all kleJ u{0}. The projections p;;
(i,jeJ u {0}) commute and the Peirce-sum is direct, so the projections are
pairwise orthogonal.

For the last assertion we may assume without loss of generality that
ze U, (f) for some me {0,4, 1}.

“m=1": From (1.13) (for the orthogonal family {f;, f;}) follows
QUfi, ;U = Uy, so Qi )Q(fi, f;) = 0 for {k, I} # {i,j} again by (1.13).

Therefore
z=Q(fVz=3 ¥ aQUuf)’z=3 % cij'pi2)
ieJ jelJ ied jelJ
where ¢;; =1 for i = j and ¢;; = 2 for i # j (summation with respect to the
w*-topology).

"m=14": piiz)e Ui(f;)) nU,,2(f) =0 for all jeJ because f and f; are
compatible, so p;o(z) = p’l,z = 2{f;fi*z}. By (3.2),

z=2{ff*z} =23 {ifi*z} = X piol2).
jelJ

jeldJ
"m = 0": Here nothing remains to be shown.
The uniqueness of the projections follows from the weak-*-density of the
Peirce-sum.

In the following, U always is a JBW*-triple with a predual U, which
satisfies (3.2).

(3.16) If e is a tripotent in U and if feU, then f|y €U (e), as a
consequence of (3.9) and the uniqueness of the predual of the JBW*-algebra
U,(e) ([8, Corollary 3.7)].

The converse also holds:

(3.17) ProposiTioN. If f € U* and if fy, ) € U,(e), for all complete tripotents
ein U then feU,.
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Proor. Let U! be the closed unit ball of U. By the Krein-Smulyan theorem
it suffices to show that f|y: is continuous with respect to the topology
induced by o(U, U,).

Let (zi)ie; be a w*-convergent net in U! with lim(z;);c; = : zo. Let

A := {ge U*| there exists xe U" such that ||g|| = g(x)}.

By [3], A is norm-dense in U*.

Let ¢ > 0. Choose ge A, xe U' and a complete tripotent e in U such that
ILf—gll <% llgll = g(x) and xe U,(e) (3.12). For iel u {0} let z; = z! +2z}/?
where z¥e U,(e) for k = 1,1

By (3.9) and the assumption for f there is an iy e I such that |f(z3 —z!)| < %
for all i = iy. Furthermore we have ||z8/*—z}2|| £ 2 for all iel by (2.6).
By [10, Proposition 1a]), g(U,,,(e)) = 0. Therefore |f(z3/2 —z}/?)| < § for all
iel. It follows that |f(zo—2z;)| < & for all i 2 iy.

ReMARK. (3.16) and (3.17) show that a JB*-triple U has at most one predual
U, such that (3.2) is satisfied. It cannot be inferred from this, however, that
U has a unique predual.

Using (3.17), it is possible to generalize to JBW*-triples a known result
about W*.algebras ([28, IIT 3.11]). Let us first state the result for JBW*-
algebras.

(3.18) ProposiTiON. Let A be a JIBW*-algebra, let f € A*. Then the following
conditions are equivalent

(1) fed,,
2 f (Z ei) =Y f(e;) for every orthogonal family (e;);c; of projections.
iel iel
Proor. By [8,3.7] and [13, 4.4.15] there is a central projection e in A**
with (A4,)° = (1—e)4**. If one defines the normal part of a functional
ge A* to be g, := eg (where eg(z) : = g(ez) for all ze A) and the singular

part of g to be g, := g —g,, the proofs of [28, III Theorem 3.8, "(i) = > (ii)"]
and [28, Theorem 3.11] carry over literally.

(3.19) PROPOSITION. Let f € U*. Then the following conditions are equivalent
(1 feU,,

2 f (Z ei> = Z f(e;) for every orthogonal family (e;);c; of tripotents.

iel iel

Proor. (2) follows from (1) by (3.13). Conversely, by (3.17) it suffices to
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show that fly ) € Ui(g), for every tripotent g in U. So (1) follows from (2)
by (3.17) and (3.18).

We show next that a predual of a JBW*-triple enjoys the property of being
well-framed ("bien encadré”) (cf. [12, Definition 14]) which will imply the
uniqueness of the predual.

(3.20) ProrosITION. A predual U, of a JBW*-triple is well-framed.

Proor. By (3.19), for every feU*\U, there is an orthogonal family
(e;)ic; Of tripotents with Y ;. e; =:e and Y, ;f(e;) # f(e).

Let W be the norm closed subspace of U spanned by {e, ¢;lieI}. By (3.13),
(e;)i e; 1s an orthogonal family of projections in the JBW*-algebra U;(e),
so W is (isometrically) isomorphic to a commutative C*-algebra with unit e.
We show that W does not contain a subspace isomorphic to I'(N): Because
I*(N) is separable such a subspace would be contained in a closed subspace W’
of W spanned by a countable subset of {e,e;|iel}. It is easily checked that
a closed subset of a commutative C*-algebra spanned by the unit and a
countably infinite orthogonal family of projections is isomorphic to ¢(N) which
in turn is isomorphic to c¢g(N). But c,(N) does not contain a subspace
isomorphic to I'(N) ([21, Theorem I 2.7]) so W’ and hence W does not
contain such a subspace.

This, together with the proof of [12, Proposition 3], shows that the
closed unit ball of W is “*-admissible” ([12, Definition 13]). Using [12,
Proposition 17], we obtain the desired result.

(3.21) TueoreM. The predual of a JBW*-triple is unique.

Proor. (3.20) and [12, Theorem 15] show that U, is unique in the sense of
[12] and that every surjective isometry on U is 6(U, U,)-6(U, U )-continuous
which implies the uniqueness of U, in the sense of (3.3).

(3.22) CoroLLARY. An (algebraic) isomorphism of JBW*-triples is weak-*-
continuous.

Proor. By (2.4), every isomorphism of a JB*-triple is isometric. So the
result follows from (3.21) and (3.4).

Summing up, one obtains the following characterization of the predual of
a JBW*-triple:

(3.23) THEOREM. Let U be a JBW*-triple with predual U,, let f € U*. Then
the following conditions are equivalent

(1) feU,,
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2) there is a complete tripotent e in U such that

flueUile), and f(U,;(e)) = 0.

(3)  Sflue€Uile), for every complete tripotent in U.

4) f( Y e,~> =Y f(e;) for every orthogonal family

iel iel

(¢)ies of tripotents.

(5)  flw is weak-*-continuous for every maximal abelian
subtriple W.

Proor. The equivalence of (1), (3), and (4) was shown in (3.16), (3.17),
and (3.19).

"(1) implies (2)': The closed unit ball U' of U is w*-compact. Therefore
there is a we U' with f(w) = ||f]| and by (3.12) there is a complete tripotent
e with we U, (e). So f(U,,2(e)) = 0 by [10, 1.2].

"(2) implies(1)”: Because U,(e) is w*-closed and has a unique predual
there is a ge U, such that f|y ) = glu,e) Let p be the Peirce projection
onto U,(e). Then f = fop =gopeU, by (3.9).

Obviously, (1) implies (5).

"(5) implies (4)": By (3.13) an orthogonal family (e;)c; of tripotents is
summable in the weak-*-topology. The subtriple V spanned by (e;)e; is
abelian. Choose any maximal abelian (necessarily w*-closed) subtriple W of U
which contains V and apply (5).

The following proposition is, of course, a consequence of the above
mentioned result of [2]. It is used in their proof, however, and is therefore
not omitted.

(3.24) ProrosiTiON. If a JB*-triple U has a unique predual U, then the
triple product is separately weak-*-continuous.

ProoF. x [] x* is a hermitian operator on U for all xe U. By [31, 3.4]
and the uniqueness of the predual, x (] x* is w*-continuous. By the polariza-
tion formula [16, (1.4)] x O y* is w*-continuous for all x,y € U. In particular,
the Peirce projections are w*-continuous (see (1.8)).

Let e be a tripotent in U. Then Q(e)’ is the Peirce projection onto
Ui(e), Q(e)ly,(e) is the involution of the JBW*-algebra U, (e) and is therefore
w*-continuous, so Q(e) = Q(e)* is w*-continuous.
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Let xeU. Q(x) is w*-continuous if and only if foQ(x)e U, for every
feU,. Let feU,. By [10, Proposition 2] and the above argument, there is
a tripotent e in U such that f = foQ(e)>. Hence it suffices to show that
Q(e)’Q(x) is w*-continuous. We have

Q(»Q(z) = 2(y O z*)?—y O {zy*z}* for all y,ze U,

so Q(y)Q(z) is w*-centinuous for all y,ze U. Hence, Q(e)*Q(x) = Q(e)(Q(e)Q(x))
is w*-continuous.

4. Ideals in JBW*-triples.

(4.1) A subspace J of a Jordan-*-triple U is called an ideal if
{UU*J}+{UJ*U} = J. Two ideals I and J are said to be orthogonal if
I nJ=0.Inthiscase, IJJ*=JI*=0.

For a subset X of a JBW*-triple U let U(X) denote the weak-*-closed
ideal in U generated by X. For xe U we write U(x) instead of U({x}). The
weak-*-closed linear span of the union of a family (X,).cx of subsets of U
is denoted by Y y.xX,. We recall that for any tripotent e in U, U,(e)
naturally carries the structure of a JBW*-algebra.

(4.2) THEOREM. Let U be a JBW*-triple, e a complete tripotent in U. Then
the map 1 — U(I) is a bijection from the set ¥, of all weak-*-closed *-ideals
of the JBW*-algebra U,(e) onto the set .# of all weak-*-closed ideals of U,
with inverse J — J n U(e). One has the following properties

(1) UI nJ)=U(l)AUJ) (IJeF,)
(2) U( Y Iu)= Y Ul (Uces.)

keK kekK

(3) U(z) = Uy(2)+U,,,(2) for every central e-projection z, and every weak-*-
closed ideal in U can be uniquely written in this form.

(4) To every Je .# there is a unique complementary ideal J* € #.
S J=(UnDH@®UNIY) foralllLJes.

Proor. We first show (3): Let z be a central e-projection, w:=e—z.
Consider the Peirce decomposition of U with respect to the orthogonal family
{z,w}. U, , 1= Uy;(z) nU;pa(w) =0 because z is a central e-projection.
Ugo := Ug(z) n Uy(w) = 0 because z+w is a complete tripotent. Let

Us0:=Uy2(2) nUg(w) = Uy2(2), U,y o= Uyp(w) nUp(z) = Uypa(w).
We show that U,, O U% o= U, O U¥, =0. It then follows from the
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multiplication rules (1.13) that U,(z)+U,,,(z) is an ideal with complement
Uo(z) = Uy(w)+ U, 2(w). Suppose, acU, ,, beU, o and a[Jb* + 0. By
(3.11), we can assume that a is a tripotent. We have a L w, so c:=a+w
is a tripotent. Let b = by+b,,,+b,, where b, e Uy(a) for k =0, 1, 1. Then
by = Q(a)’b =0 by (1.13), by,,eU, o nU,(c) (because a,z and w are
compatible) and b,,, # 0 because a (J b* # 0. So

0 # {cb¥c} = 2{ab},w}e U, ,,

by (1.13), a contradiction. Similarly, one shows U, o O U¥, = 0. Clearly,
U,(z)+ U,2(z) = U(z), so the first assertion of (3) follows.

Conversely, let J be a w*-closed ideal in U, let I :=J nU,(e). I is a
w*-closed *-ideal in the JBW*-algebra U,(e), so I = U,(z) for some central e-
projection z (cf. [8,4.3]). Clearly U(z) = J.If U(z) # J then U, 5(e—2z) nJ # 0
because J is an ideal. This implies U,(e—z) nJ # 0 by [10,1.5], a contra-
diction. If 2’ is a central e-projection with U(z) = U(z'), then U,(z) = U,(z"),
so z = Z'. This shows (3) and (4). (5) now follows from (3) and 4). If z
is the unique central e-projection associated with Ie.#, by [8,4.3], then
Uy = Ul(zy), so by (3), I - U(I) is the composition of the two bijections
I - z; and z; — U(z;). Its inverse is J - J n U,(e) as shown above.

Let I,J€.4,. Then

Uile) n (U) nUW)) = (Uile) nUU)) n(Ule) nUU) =1 nJ,

so (1) follows.
Let I,e# (keK). Then Yyicxl, and YiexU(,) are ideals by (3.2),
UQkexly) 2 U(I;) for all jeK and Ykl = YkexUU,), so (2) follows.

(4.2)(4) has the following converse:

(4.3) LeMMA. Let U be a JBW*-triple, let 1 and J be ideals in U with
I®J=U. Then I and J are weak-*-closed.

ProoF. Let e be a complete tripotent in U (2.5), let f+g = e with fel,
gelJ. Then f and g are tripotents with I = Uy(g) and J = Ue(f). So (4.3)
follows from (3.9).

(4.4) LEMMA. Let U be a JB*-triple, let I and J be closed subtriples in U
with I @ J = U. Then ||z+w|| = max(|z||, ||wl||]) for all ze I, we J if and only if
I and J are ideals.

Proor. I @™ J is a JB*-triple (operations defined compontentwise). So (4.4)
follows from the fact that the algebra isomorphisms of a JB*-triple are precisely
the surjective isometries (2.4).

(4.5) LEMMA. Let U be a IBW*-triple, let (U )xcx be an orthogonal family
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of weak-*-closed ideals in U. Then Y .k U, is canonically isometrically iso-
morphic to @ ik U,.

Proor. Let p, be the canonical projection of U onto U, (keK). p, is
contrative by (4.2)(4)and (4.4), so ¢(x) = (pi(x)kekx defines a map from
Ykex Ui into @%kcxU,. By (2.4), it suffices to show that ¢ is an algebric
triple isomorphism. Clearly,¢ is an injective triple homomorphism. To show
that ¢ is surjective, let (x;)iex be bounded, x, € U, for every ke K. Then
the w*-closed subtriple generated by (x,)kcx is abelian, therefore it is
isomorphic to a commutative W*-algebra by (3.11). But a bounded family
of elements of a W*-algebra which lie in pairwise orthogonal w*-closed ideals
is summable in the w*-topology. So ¢ is surjective.

A Jordan-*-triple U is called indecomposable if U = I®J for ideals I and J
in U implies I =0 or J = 0.

(4.6) LeMMA. Let U be a JBW*-triple, e a complete tripotent in U. Then
the following conditions are equivalent :

(1) U is indecomposable,
(2) U and O are the only weak-*-closed ideals in U,
(3) the JBW*-algebra U (e) is a factor (i.e., has trivial center).
Proor. (2) implies (1) by (4.3). The other implications follow from (4.2).

(4.7) DerFintTION. A JBW*-triple which satisfies one of the conditions in (4.6)
is called a JBW*-triple factor.

If one is interested in classifying JBW*-triples then one is naturally led to
the following definitions:

(4.8) DeriNiTION. Let U be a Jordan-*-triple, p a tripotent in U. p is called
abelian if U,(p) is abelian in the sense of (1.4). p is called minimal if

U,(p)=C-p.

(4.9) LEMMA. An abelian tripotent p in a JBW*-triple factor U is minimal.

Proor. By (3.12), there is a-complete tripotent e in U such that p is an
e-projection. U,(e) is a JBW*-algebra factor by (4.6), so p is minimal in
Ui(e) ([13,5.2.17]). Because U,(p) = U,(e) p is also minimal in U.

If Z is the center of a JBW*-algebra 4 and if p is an abelian projection in
A then U (p) = Zp by [13,5.2.17]. For JBW*-triples we have the following
weak analogue:
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(4.10) LEMMA. Let U be a JBW*-triple, let p be an abelian tripotent in U
with U(p) = U, let (p))ie; be an orthogonal family of tripotents in U with
Zielpi =p. Then U = @%;c;U(p)).

ProofF. By (3.12), there is a complete tripotent e in U such that p is an
e-projection. The central carrier of p in the JBW*-algebra (U, (e), o, *) equals
e and z - zo p maps the center Z of (U,(e),e, *) isomorphically onto U,(p)
by [13,5.2.17]. So there is an orthogonal family (z;);c; of central e-projections

with p; = z;e p. Clearly, Uz;) = U(p;) and by (4.2) and (4.5), the result
follows.

A JBWH*-algebra is of type I if its self-adjoint part is a JBW-algebra of
type I ie., if there is an abelian projection with central carrier 1. This is
equivalent to the existence of an abelian projection which generates the
JBW*-algebra as a w*-closed ideal. In analogy to these notions one defines

(4.11) DeFmniTioN. A JBW*-triple U is of type I if there is an abelian
tripotent p in U with U(p) = U.

(4.12) LEMMA. Every w*-closed ideal J of a JBW*-triple U of type 1 is
of type 1.

ProoF. Let p be an abelian tripotent in U with U(p) = U. Then the

canonical projection of U onto J (4.2)(4) maps p onto an abelian tripotent g
with J = J(q).

(4.13) ProrosITION. Let U be a IBW*-triple. Then there is a unique decompo-
sition U = Uy @ Uy where Uy and U, are ideals in U such that U, is of type 1
and U, contains no non-zero abelian tripotents.

Proor. By Zorn’s lemma, there is a maximal family (p;);c; of abelian
tripotents in U such that the ideals U(p;) (ieI) are pairwise orthogonal.

U= Y Ulp) = U(Z p.-)

iel iel

is of type I and by maximality, U, := U;* contains no abelian tripotents.

Suppose U = ¥V @ W where V is of type I and W contains no non-zero
abelian tripotents. Then Uy = (Uy N V) @ (Uy n W) by (4.2)(5). By (4.12),
Uy NV =0, thatis, U, = W. By the uniqueness of the complement in (4.2)(4),
also U; = V.

Remark. U, is isomorphic to a JW*-triple, i.e., an ultra-weakly closed
J*-algebra in the sense of [14]. It will follow from this, together with the
classification of JBW*-triples of type I, that U can be uniquely decomposed
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into a special and an exceptional part. These facts cannot be proved at this
stage, however, and will be shown in forthcoming papers.

(4.14) ProrosiTiON. Let U be a JBW*-triple. Then the following conditions
are equivalent

(1) U is of type I,

(2) every non-zero, weak-*-closed ideal of U contains a non-zero abelian tri-
potent,

(3) there is a complete tripotent e in U such that U,(e) is a JBW*-algebra
of type L.

Proor. The equivalence of (1) and (2) follows from (4.13) and (4.12).

(1) implies (3)": Let p be an abelian tripotent in .U with U(p) = U, let e
be a complete tripotent in U such that p is an (abelian) e-projection (cf. (3.12)).
By (4.2), the w*-closed ideal generated by p in the JBW*-algebra U,(e) is
U, (e), so (3) follows.

”(3) implies (1)": Let p be an abelian projection in the JBW*-algebra
U,(e) with central carrier e. Then p is an abelian tripotent in U with
U(p) = U by (4.2).
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