THE RESTRICTION ALGEBRA $A(\Gamma)$ FOR CURVES $\Gamma \subset \mathbb{R}^n$

ENJI SATO

Let $E \subset \mathbb{R}^n$ be a compact set, $A(\mathbb{R}^n) = \mathscr{F}L^1(\mathbb{R}^n)$ the Fourier algebra on \mathbb{R}^n , and $A(E) = A(\mathbb{R}^n)/I(E)$ with the norm $\|\cdot\|_{A(E)}$, where I(E) is the ideal in $A(\mathbb{R}^n)$ of all functions, vanishing on E. Also let $\psi = (\psi_1, ..., \psi_m)$ belong to $C^{\infty}(\mathbb{R}^n, \mathbb{R}^m)$, for $\eta, \xi \in \mathbb{R}^m$, $\eta \cdot \xi$ denote Euclid inner product on \mathbb{R}^m , and correspondingly $\eta \cdot \psi(x) = \sum_{j=1}^m \eta_j \psi_j(x)$. Further let $|\eta| = (\sum_{j=1}^m |\eta_j|^2)^{1/2}$ for $\eta \in \mathbb{R}^m$.

Now for n = 1 and a compact interval $I \subset R$, D. Müller [3] investigated the asymptotic behaviour of

$$\int \theta(x) \exp(2\pi i \eta \cdot \psi(x)) dx$$

as $\eta = (\eta_1, \ldots, \eta_m)$ tends to infinity for $\theta \in C^{\infty}(I, \mathbb{R})$ and supp $\theta \subset \text{int } I$. Then he obtained the following result.

THEOREM 1 (cf. [3, Corollary 1]). The following conditions are equivalent:

- (i) For each compact interval $J \subset \text{int } I$, there are constants $C_1 > 0$, $C_2 > 0$ such that for all $\eta \in \mathbb{R}^m$ $C_1(1+|\eta|)^{1/2} \leq \|\exp(i\eta \cdot \psi)\|_{A(J)} \leq C_2(1+|\eta|)^{1/2}$.
- (ii) $\psi_1, ..., \psi_m$ are linearly independent modulo affine linear functions on every nonempty compact subinterval of int I.

We shall give a generalization of the above result by the method of Y. Domar [1], [2].

DEFINITION 2. Let $I \subset \mathbb{R}$ be a compact interval with int $I \neq \emptyset$. Then we define a curve

$$\Gamma_I = \{ \gamma(x) = (x, g(x)) | x \in I \} \subset \mathbb{R}^n$$

with $g \in C^{\infty}(I, \mathbb{R}^{n-1})$.

DEFINITION 3. For $\psi = (\psi_1, ..., \psi_m), \psi_1, ..., \psi_m$ are linearly independent modulo affine linear functions on Γ_I , if

$$\eta \cdot \psi(\gamma(x)) = c_1 g_1(x) + \ldots + c_{n-1} g_{n-1}(x) + c_n x + c_{n+1}$$

Received April 20, 1986.

on I, where $\eta \in \mathbb{R}^m$, $g = (g_1, ..., g_{n-1})$, $c_j \in \mathbb{R}$, j = 1, ..., n+1 implies $\eta = 0$ and $c_j = 0, j = 1, ..., n+1$.

REMARK 4. Under the notation of Definition 2, the next results are equivalent:

- (i) $\gamma'(x), \ldots, \gamma^{(n)}(x)$ are linearly independent for all $x \in I$.
- (ii) The torsion $\tau(x) = \det(g_j^{(k+1)}(x))_{k,j=1,...,n-1} \neq 0$ for all $x \in I$.

THEOREM 5. Let I be a compact interval, and

$$\Gamma_I = \{ \gamma(x) = (x, g(x)) | x \in I \},$$

where $g \in C^{\infty}(I, \mathbb{R}^{n-1})$, and $g = (g_1, ..., g_{n-1})$. Also we assume

$$\tau(x) = \det(g_j^{(k+1)}(x))_{k, j=1, \dots, n-1} \neq 0$$

for all $x \in I$. Then for any $\psi \in C^{\infty}(\Gamma_I, \mathbb{R}^m)$ (i.e. each component of $\psi \circ \gamma$ is a C^{∞} -function on I), there exists a constant C > 0 such that

$$\|\exp(i\eta\cdot\psi)\|_{A(\Gamma_t)} \le C(1+|\eta|)^{1/(n+1)}$$
 for all $\eta\in\mathbb{R}^m$.

PROOF. Let ε be a positive number. Then we may assume that γ is a function on $[-\varepsilon, 1+\varepsilon]$ and $\gamma([0,1]) = \Gamma_I$. Also we define $f_{\eta} = \eta \cdot \psi/|\eta|$, and we obtain $\exp(i\eta \cdot \psi) = \exp(i|\eta|f_{\eta})$. Then by the method of [1], we can prove the above result. We omit the details.

THEOREM 6. In the notation of Theorem 5, we assume both the condition $\tau(x) \neq 0$ for all $x \in I$ and that $\psi_1, ..., \psi_m$ are linearly independent modulo affine function on Γ_J for all $J \subset I_0$, where I_0 is some subinterval of I. Then there exists a constant C > 0 such that

$$\|\exp(i\eta\cdot\psi)\|_{A(\Gamma_1)} \ge C(1+|\eta|)^{1/(n+1)}$$
 for all $\eta\in\mathbb{R}^m$.

PROOF. We will use the method in the proof of [2, Theorem 2.1]. We define $h_{\eta}(x) = \eta \cdot \psi(\gamma(x))$ for $\eta \in S^{n-1} = \{x \in \mathbb{R}^n | |x| = 1\}$ and $x \in I$. By $\tau(x) \neq 0$ for all $x \in I$ and Definition 3,

$$A_{\eta}(x) = \det \begin{bmatrix} g_1''(x), \dots, g_{n-1}''(x), h_{\eta}''(x) \\ \dots \\ g_1^{(n+1)}(x), \dots, g_{n-1}^{(n+1)}(x), h_{\eta}^{(n+1)}(x) \end{bmatrix}$$

satisfies $A_{\eta}(x_0) \neq 0$ for at least some $x_0 \in I_0$ (cf. [2, Theorem 2.1]). Since $A_{\eta}(x)$ is a continuous function on $S^{n-1} \times I$, there exist two positive numbers ε and δ such that for an arbitrary $\eta \in S^{n-1}$, there exists an interval $J_{\eta}(|J_{\eta}| = 2\varepsilon)$ such that $|A_{\eta}(x)| \geq \delta$ for all $x \in J_{\eta}$.

114 ENJI SATO

Now let ϕ be in $C^{\infty}(I, \mathbb{R})$ with supp $\phi \subset (-\varepsilon, \varepsilon)$, $\phi \geq 0$ and $\int \phi = 1$. For any $\eta \in \mathbb{R}^m$ ($\neq 0$), we define $\eta' = \eta/|\eta|$. So we choose $J_{\eta'}$, with the above property. Also let $\tilde{\phi}$ be a translation of ϕ with supp $\tilde{\phi} \subset J_{\eta'}$, and $d\mu_{\eta'}(x, g(x)) = \tilde{\phi}(x)dx$ in the Borel measures on \mathbb{R}^n . By the definition of $\mu_{\eta'}$

(1)
$$1 = \int_{\Gamma_I} \exp(i\eta \cdot \psi(x_1, ..., x_n)) \exp(-i\eta \cdot \psi(x_1, ..., x_n)) d\mu_{\eta'}(x_1, ..., x_n)$$

$$\leq \|\exp(i\eta \cdot \psi)\|_{A(\Gamma_I)} \|\exp(-i\eta \cdot \psi) d\mu_{\eta'}\|_{PM(\mathbb{R}^n)},$$

where PM(Rⁿ) is the space of pseudomeasures, with the norm defined as the L^{∞} norm of the Fourier transform of its elements. Then it is sufficient to prove

(2)
$$||\exp(-i\eta \cdot \psi)d\mu_{n'}||_{PM(\mathbb{R}^n)} = O(|\eta|^{-1/(n+1)}).$$

Now we estimate

(3)
$$= \sup\{ |\int \exp(i(-|\eta| \cdot (\eta/|\eta|) \cdot \psi(x,g) - ux - v \cdot g)\phi(x)dx | | u \in \mathbb{R}, v = (v_1, \dots, v_{n-1}) \in \mathbb{R}^{n-1} \}.$$

Let $\eta \neq 0$ be fixed, $s = |\eta| + |u| + |v_1| + ... + |v_{n-1}|$, and

$$\tilde{k}(x) = -|\eta|/s \cdot \eta' \cdot \psi(\gamma(x)) - u/s \cdot x - v/s \cdot g(x)$$

on $J_{\eta'}$. Also k(x) be a translation of $\overline{k}(x)$ such that supp $k \subset (-\varepsilon, \varepsilon)$. Then we obtain

$$\int \exp(is\tilde{k}(x))\tilde{\phi}(x)dx = \int \exp(isk(x))\phi(x)dx.$$

On the other hand, since we get that

$$k'' = -|\eta|/s \cdot h''_{\eta'} - v/s \cdot g'', \dots, k^{(n+1)} = -|\eta|/s \cdot h^{(n+1)}_{\eta'} - v/s \cdot g^{(n+1)},$$

we obtain

$$\begin{bmatrix} g_1'', \dots, g_{n-1}'', h_{\eta'}'' \\ \dots \\ g_1^{(n+1)}, \dots, g_{n-1}^{(n+1)}, h_{\eta}^{(n+1)} \end{bmatrix} \begin{bmatrix} -v_1/s \\ -v_2/s \\ \dots \\ -v_{n-1}/s \\ -|\eta|/s \end{bmatrix} = \begin{bmatrix} k'' \\ \dots \\ k^{(n+1)} \end{bmatrix}$$

Therefore it is easy that there exists an absolute constant C such that

$$|v_1/s| + \ldots + |v_{n-1}/s| + |\eta/s| \le C\{|k''(x)| + \ldots + |k^{(n+1)}(x)|\}$$

for all $x \in (-\varepsilon, \varepsilon)$. Moreover it is established that

$$|k'(x)| + \dots + |k^{(n+1)}(x)| \le |\eta/s|(|(\chi \circ \gamma)'(x)| + \dots + + |(\psi \circ \gamma)^{(n+1)}x)|) + |u|/s + |v/s|(|g'(x)| + \dots + |g^{(n+1)}(x)|)$$

for all $x \in (-\varepsilon, \varepsilon)$. Hence there exist two positive numbers C_1 and C_2 such that

$$0 < C_1 < |k'(x)| + \ldots + |k^{(n+1)}(x)| < C_2$$

for all $x \in (-\varepsilon, \varepsilon)$, and C_i (j = 1, 2) are independent from η .

Then by a result of J. E. Björk (cf. [2, Lemma 1.6]), there exists a positive number C such that

$$\left| \int \exp(isk(x))\phi(x)dx \right| \leq C(1+|\eta|)^{-1/(n+1)}$$

for all η , and C is independent from η .

Hence we obtain

$$\|\exp(i\eta \cdot \psi)\|_{A(\Gamma_t)} \ge C(1+|\eta|)^{1/(n+1)}$$

for all $n \in \mathbb{R}^m$.

By Theorems 5 and 6, we can clearly prove the following result.

COROLLARY 7. Under the conditions of Theorem 5, the following two conditions are equivalent:

(i) For an interval $J \subset \text{int } I$ there exist two positive numbers C_1 and C_2 such that

$$C_1(1+|\eta|)^{1/(n+1)} \le ||\exp(i\eta \cdot \psi)||_{A(\Gamma_t)}$$

$$\le C_2(1+|\eta|)^{1/(n+1)}$$

for all $\eta \in \mathbb{R}^m$.

(ii) $\psi_1, ..., \psi_m$ are linearly independent modulo affine linear functions on Γ_J for every closed interval $J \subset \text{int } I$.

ACKNOWLEDGEMENT. The author wishes to thank the referee for his kind suggestions.

REFERENCES

 Y. Domar, Estimates of ||e^{itf}||_{A(Γ)}, when Γ ⊂ Rⁿ is a curve and f is a real-valued function, Israel J. Math. 12 (1972), 184-189. 116 ENJI SATO

- 2. Y. Domar, On the Banach algebra $A(\Gamma)$ for smooth sets $\Gamma \subset \mathbb{R}^n$, Comment. Math. Helv. 52 (1977), 357-371.
- 3. D. Müller, Estimates of one-dimensional oscillatory integrals, Ann. Inst. Fourier (Grenoble) 33 (1983), 189-201.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN