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INTEGRAL REPRESENTATIONS ON CONVEX
SEMIGROUPS

PAUL RESSEL

0. Introduction.

Integral representations, especially if they are unique, play an important
rOle in many parts of analysis. When collecting examples one realizes the
existence of at least two larger subsets of theorems in this area, one dealing
with the representation of positive definite (and related) functions on semi-
groups as mixtures of (semigroup-) characters, as f.ex. developed in great detail
in [1], the other having to do with the representation of positive linear
functionals as mixtures of multiplicative linear functionals. It is the purpose
of the present paper to show how theorems of the latter type may be deduced
straightforwardly from the main results of the former one. The key observation
— enabling this reduction — is the fact that any affine moment function on
what we shall call a convex semigroup (i.e. a semigroup with a compatible
convex structure), is already a mixture of affine characters (Theorem 1).
Combined with the fundamental theorem of Berg and Maserick about
exponentially bounded positive definite functions, many important results for
convex semigroups with neutral element become easily available ; in particular
a new — and as we believe very natural — proof of Riesz’s representation
theorem on compact spaces is obtained in this way.

In the last paragraph we generalize the notion of an exponentially
bounded positive definite function to semigroups without neutral element and
extend the Berg/Maserick theorem to this situation (Theorem 4). Applied to
an algebra (as a special case of a convex semigroup) this yields the Plancherel-
Godement representation for bitraces. Some examples treat different versions
of Riesz’s theorem on locally compact (non-compact) spaces.
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1. Affine moment functions as mixtures of affine characters.

Let H = (H,-,*) denote an abelian *-semigroup, i.e. H is a set equipped
with an associative and commutative composition, written here as multi-
plication, and *:H — H is a map with (xy)* = x*y* and (x*)* = x for
x,y € H. We do not require at the beginning that H has got a neutral element.

We will say that H is a convex semigroup if H is a convex subset of some
(real or complex) linear space in such a way that the semigroup multiplication is
compatible with the linear structure in the sense that x(ay + fz) = a(xy)+ f(xz)
and (ax+ By)* = ax*+ py* for x,y,ze H and 0, 20, a+f = 1. We call H
a multiplicative cone in case H is even a convex cone and the two equations
just given hold for all ¢, 2 0. Finally H is a real (complex) algebra — always
commutative! — if x(ay + fz) = a(xy)+ B(xz) and (ax + By)* = @x* + fz* for all
x,y,z€ H and a, € R(C). The set

H* :={¢:H -~ C|o# 0, o(xy*) = o(x)o(y) for all x,ye H}

of all characters (i.e. *-homomorphisms into (C,-, —)) is a completely regular
Hausdorff space with regard to the topology of pointwise convergence; in
case H contains a neutral element e, we have g(e) = 1 for all ge H*. The
closed subset H® of all affine characters — ie. those ge H* for which
glax+(1—a)y) = ag(x)+ (1 —a)o(y) for x,yeH, ac[0,1] - will be of
particular interest for us. With slightly imprecise notation, in case H is a
multiplicative cone, H® will denote all additive and positively homogeneous
characters, and if H is an algebra, H® will be the set of all linear characters.
A function ¢: H — C is a moment function if there exists a Radon measure p on
some subspace A of H* (in symbols: ue M , (4)) such that ¢(x) = [4e(x)du(e)
for all xeH in which case we say that ¢ is represented by u. Here
{alo(x)ldu(e) < oo is assumed for all xe H; if H contains a neutral element,
then pu(A) < oo and therefore u can be thought of as a (finite) Radon measure
on H*

THEOREM 1. Any affine moment function ¢ on a convex semigroup is a mixture
of affine characters. This holds also if we on}}z assume that ¢(x,y) := @(xy*)
is bi-affine, i.e. ¢ is affine in one variable while the other remains fixed.

More generally let pe M ,(A) be such that [|o(x)*du(e) < o for all xe H
and assume that

?.(x,y) := [e(xy*)le@)*du(e)

is bi-affine for each z € H, then already y is concentrated on the affine characters
in A.
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A corresponding statement holds on multiplicative cones, respectively on

algebras, if we replace “affine” by “additive and positively homogeneous”,
respectively “linear”.

Proor. We begin by assuming ¢ to be bi-affine. Let ¢ be represented by
peM,(4), ® + A S H* Then for any {x,...x,} € H, {41,...,4,} £ C the
function

2 n
= Z Aj}:kg(xjxl?)

Jjk=1

[ Bad

Z le(xj)

is p-integrable. Specifically for (a,f)e {(a,b)eR%|a+b = 1}, respectively
(¢, /)e RE(R?,C?) and x,y e H we get
o > fle(ax+ By)—ae(x)— Be(y)*du(e)
= [{le(ax +By)* + lal*le(x)1* + 18I le () +
+2Re[ — g(ox + By)ae(x) — o(ox + By)Be(y) +ae(x)Be(y) 1} du(e)
= ¢p(ax+ By, ax+By)+lol*p(x, x) + 1B ¢ (y. y) +
+2Re[ —ag(ox + By, x) — B (ox + By, y) +aBo(x, y)]
= 2lal*¢(x, x)+2IBI> ¢ (, y) + 2B (x, y) + B (y, x) +

+2Re[ — o> @(x, x) =GB (y, x) — aBo(x, y) — B> (¥, ¥) + aBo(x, y)]
=0.

The open subset

Gypixy 1= {0 € Al o(ax+By) # ag(x)+Bo(y)}

of 4 has therefore u-measure zero, and so has — u being a Radon measure -

G:= U Ga,ﬂ;x,y
a, B
x,y
where the union is taken over all x,ye H and the respective set of pairs of
scalars. Since 4 N H® = 4 \G we are done.

Suppose now that only all the ¢,’s are bi-affine. By what has been shown
so far we get

f|0(z)|2dﬂ(0) =0
G
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for all z e H, hence, denoting 0, := {9 € H*|o(z) + 0}, u(G n @,) = 0 for all z
and therefore u(G) = 0, since H* = (), 40.,.

2. Convex semigroups with neutral element.

We will begin with a few notions from harmonic analysis on semigroups.
Let S =(S,-,* e) be any abelian *-semigroup with neutral element e. A
function ¢:S — C is called positive definite if

Z ciCp(s;sk) 2 0

jk=1

for all neN, {sy,...,s,} €8 and {c,,...,c,} £C. A function «:S —» R, is an
absolute value iff a(e) = 1, a(st) < a(s)a(t) and a(s*) = a(s) for all s,t€S.
We say that ¢ is a-bounded if |p(s)| = Ca(s) for some CeR, and all
s€S; ¢ is exponentially bounded if it is bounded with respect to at least one
absolute value. Let 2(S) denote the set of all positive definite functions
on S, 2%(S) the subset of all a-bounded positive definite functions and #(S)

the set of all moment functions. It is immediate that S* & #(S) & #(S), and
in general S (S) # 2(S), but nevertheless the following very satisfactory and

far reaching integral representation theorem holds (cf. [1, Theorem 4.2.6]):

TueoreM (Berg and Maserick). If ¢ : S — C is positive definite and a-bounded
then there exists a uniquely determined Radon measure pue M . (S*) such that
o(s) = jg(s)du(g) for s€S. Furthermore the measure u is concentrated on the
compact subset

§*:={oeS*|lol < a}
of a-bounded characters.

If again S is a convex semigroup (respectively a multiplicative cone,
respectively an algebra) we denote by S® := §* ~ S® the compact set of all
a-bounded affine (respectively additive and positively homogeneous, respec-
tively linear) characters. We get the important

CoROLLARY 1. Let ¢ € #*(S) be affine (linear). Then the unique measure on
S* representing ¢ is concentrated on s®.

As a first application we shall derive a slight generalization of Raikov’s
theorem. Let § be a commutative seminormed algebra with unit e and an
involution such that ||s*|| = ||s]|.
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THEOREM 2. Any continuous positive linear functional on S (positivity meaning
L(ss*) 2 0 for all s€8) is a unique mixture of continuous linear characters.

Proor. Given sy,...,s,eS and c,,...,c,eC put s:=27=,c,-s,-, then
Y c;CL(s;s¥) = L(ss*) 2 0,

ie. L is positive definite. Since a(s) := ||s|| is an absolute value on S and
IL(s)| = C|ls|| for some C = 0 and all se S, L is a-bounded. The result now
follows from Corollary 1.

ExampLE 1. (Riesz’s representation theorem). Let § = C(X) be the algebra of
continuous real-valued functions on a compact Hausdorff space X. An easy
direct argument, using only the very definition of compactness, shows that any
linear character on § is a point evaluation on X, and this identification of S®
with X is even a topological one. If L:C(X)— R is a positive linear
functional, it is automatically continuous (IL(f)] < L(l|f]|- 1) = ||f]|- L(1)), so
L(f) = [ f(x)du(x) for a unique Radon measure y on X.

It should be noted that this is really a new proof of Riesz’s theorem which
therefore may be considered as a special case of the integral representation
of positive definite functions on semigroups. The proof of Berg and Maserick’s
theorem is based essentially on Krein-Milman’s theorem and there the
compactness of M’ (X), the Radon probability measures on a compact
space X, is an important ingredience in the proof. Of course this compactness
is an immediate consequence of Riesz’s theorem, and so it is usually presented
in the literature. Some years ago Masani [7] pointed out that “the placement
of the Riesz Theorem ahead of the Krein-Milman in the mathematical edifice
is an architectural blemish” and gave an independent measure-theoretic proof
of the compactness of M* (X) for compact X. Much shorter is the following
argument: let X be compact and let (u,) be a net in M%(X), then for a
suitable subnet (a;) the limit

v(B) := lim ua,(B)
8

exists for every Borel set B S X, and v is a finitely additive probability
content. Lemma 2.1.9 in [1] shows that

A(C) := inf{¥(G)| C € G, Gopen},

defined for all compact subsets C S X, is a Radon content, which Kisynski’s
fundamental measure extension theorem (cf. [1, Theorem 2.1.4]) extends
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(uniquely) to a Radon measure p on X. Since X itself is compact we have
w(X)=AMX)=v(X)=1, that is ue M (X), and from v(G) = u(G) for open
subsets G & X we deduce that Hoy = 1 weakly (= vaguely); hence M (X)
is compact.

ExaMpLE 2. Let S = C®(X) be the algebra of bounded continuous real-
valued functions on an arbitrary Hausdorff space X. There is a canonical
mapping 7: X — $® defined by y,(f) := f(x), which is obviously continuous
and which is one-to-one if and only if X is completely Hausdorff (i.e. S
separates the points in X); y is a homeomorphism onto its image iff X is
completely regular. The following interesting result we found in (unpublished)
lecture notes of Bierstedt:

Lemma 1. For every Hausdorff space X the image y(X) is dense in S®.

Proor. We show first that o(f)e f(X) for ¢ S®, feS. If o(f) = 0¢ f(X)
then 1/feS and o(f)e(l/f) =1, a contradiction. In general we have
o(f—o(f) =0, so Oeﬁ)—(_)—g(f) or Q(f)e?—(ﬂ; in particular we see
le(f)l £ lIf]l, showing S® to be a subset of the unit ball in the dual of the
Banach space S.

We have also o(f) 20 for f =0, therefore o(|f]) 20 and (o(f]))? =

(e(f))* = e(f?), hence o(If]) = le(f)I.
Let now U be a neighbourhood of g, € S®, then for suitable f,...,f,eS

and ¢ > 0

{elle(f)— el <&l < j<n}SU.

Put

9= % U= eses;

then go(g9) = 0eg(X), so for some xe X we have g(x) < e, in particular
|fi(x)—eo(fj)l <efor j=1,...,n, which means y, e U.

COROLLARY 2. Let X be a Hausdorff space and L: C*(X)— R a positive
linear functional. Then there is a unique Radon measure p on y(X) = (Cb(X )®
such that L(f) = | o(f)du(e), f € C*(X).

Remark. If X is completely regular, S® equals BX; for let f e C*(X) and
define 7:5® — R by f(¢) := o(f), then J e C(S®) and f(y,) = f(x) for all
xeX.
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ExampLE 3. (Integral representation of t-positive functions.) Let S be any
real or complex commutative algebra with unit e. A subset 1 £ § is called
admissible if

(i) t*=tforallter,

(ii) e—tecone(8(t)) for all te1 (where S(r) denotes the (multiplicative)
semigroup generated by t, and cone (A) is the smallest convex cone
containing A),

(iii) S = lin(S(7)).

A linear functional L on S is t-positive iff L|S(z) 2 0.

LEMMA 2. Any t-positive linear functional is positive, i.e. L(ss*) 2 O for each
seSs.

This has been shown (without using integral representations!) by Maserick
and Szafraniec [9]; their proof, involving Bernstein polynomials in two
variables, is reproduced in [1, p. 125/126].

We define a function o on S by

afs) := inf{}|4;l|s = Y 2;t;,t;€ S(v)}

which is finite by assumption. A routine argument shows a(st) < a(s)x(t) and
even that « is a seminorm; if « # 0 then a(e) = 1. Put

4 := {ge5®| ¢ is t-positive}.

We have ¢(t) 2 0 and g(e—1t) 2 0 for ge 4 and ter, hence g(t)€[0, 1] for
all te S(t) and therefore 4 is a compact subset of $®.

TueoreM 3 (Maserick, 1977). Any t-positive linear functional is a unique
mixture of t-positive linear characters.

ProoF. Let L: S — C be linear and t-positive, then by Lemma 2, L is positive
definite. It is easy to see that e—tecone(S(r)) holds also for elements
t e S(r), implying |L(t)] £ L(e) for all teS(r). So if s =Y A;t; with t;€ S(r)
we get |L(s)| < L(e)- Y|4;, hence is a-bounded. By Corollary 1 there is a
unique measure pe M, (S®) so that L(s) = f e(s)du(g), s & S. It remains to see
that supp(u) & 4.

Now for fixed te $(t) the functional s ~ L(st) is also t-positive and o-
bounded, so that

L(st) = [e(s)du(e) = [e(s)et)dule), ses,
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where 4, € M ,.(S®), implying dp,(e) = e(t)du(e) and

0= (u+u~){elRep(t) < 0})=2Re j o(t)du(e),

{elRe (1) < 0}

hence u({g|Reg(t) < 0}) =0 for all te $(z), and finally, 4 being a Radon
measure,

#{ U {elReelt) < 0}) =0.

e8(1)
If, however, Reg(t) = 0 for all te S() then already ¢(t) 2 0 for te S$(z), so
that indeed u is concentrated on 4.

Let us mention a typical application of Maserick’s theorem. If S is the
algebra of polynomials in k real variables, then linear functionals L on
S are in one-to-one correspondence with functions

f:N¥ R via L(x") = f(n), neN.
The set

k
T.= {XI,XZ,...,xk,l— Z x,}

i=1

is admissible and ge 4 is equivalent with ¢(x") = a" = [1d} where
ay,...4, 20 and 1-Y a; 20, so t-positivity of L ~ f characterises the
moment functions on the simplex

K:= {a_e Rk

ExampLE 4. Let T be an abelian *-semigroup with neutral element and
consider § = Mol (T), the set of all probability measures on T with finite
support. With respect to convolution and the induced involution ¢* := image
of ¢ under the given involution on T, S becomes a convex semigroup. Let
0€S® and put n(t) := g(¢,), te T, ¢ denoting the Dirac measure in t. Then
neT* and g(c) = [ndo for ceS, so that S® may be identified with T*.
Our main result implies that any positive definite bounded affine function
¢:Mol%(T) — C has a unique representation

¢(0) = J( I nda) du(n)
T T
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where pe M, (T), T denoting the set of all bounded characters on T. If for

example T = R, and ¢ is furthermore continoous, then ¢ has a unique
continuous extension to M% (R, ), given by

¢(0) = j
0

where u is a finite measure on R, .

e Mdo(t)du(d), ce ML(R,)

°‘———>8

ExaMPLE 5. Let o/ be an algebra of subsets of Q + @. The set
S:={f:2-[0,1]|1f(Q) < o0, {f =x}e o forall xe[0,1]}

of elementary [0, 1]-valued &/-mieasurable functions is a convex semigroup.
A finitely additive probability content (charge) v induces the affine positive
definite function ¢(f) = [ fdv on S. Since ¢ is bounded, it is a unique mixture
of multiplicative charges; equivalently

v(4) = JQ(A)du(Q), Ae o

M

where M := {¢: o/ - [0,1]|l¢ is additive, ¢(4 N B) = g(A)e(B) for all
A, Bed, o(@) = 1}.

3. Convex semigroups without neutral element.

Let H = (H,,*) denote an abelian *-semigroup without neutral element,
written multiplicatively, however, without assuming for the time being any
additional linear structure. Motivated by the notion of a bitrace on an
algebra we shall say that ¢: Hx H — C is a positive definite bi-function if ¢
is a positive definite kernel with the property ¢(xy,z) = ¢(x,y*z) for
x,y,ze H. If a is any absolute value on H (that is a: H — R, is submulti-
plicative and a(x*) = a(x) for all x € H) then ¢ is called a-bounded if for some
nonnegative function b on H we have

1) V Oy, xy) £ a(x)b(y), x,yeH.

(Note that in case H contained a neutral element e, we had ¢(x, y) = @(xy*)
with @: H — C defined by ¢(x) = ¢(x, e), and because of

lo(x)| = [o(x, x)p(e, e)]'* = ble)[ e, )] au(x),
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@ would be a-bounded in the sense defined before.) Again we will say that ¢
is exponentially bounded if ¢ is a-bounded for at least one absolute value a.
With some symbol e¢ H we put S := H U {e} and make S to a semigroup
with neutral element by the obvious definitions ex = xe = x, ee = e* =e.
Any absolute value @ on H extends to one on S by afe) := 1, so that S*
again is a compact subset of S*, containing the special character 0 := 1,
which by the way is an absorbing element in the dual semigroup S*, that is
0¢ = Ofor all g € S*. The locally compact space H* : = S$* \{0}, consisting of all
a-bounded characters on H, not identically zero, will get importance in the
sequel. Without restriction we shall always assume that the bounding function
b in (1) fulfills b(y) Z [¢(y,y)]"* for all ye H, extending by this device the
validity of (1) to xe S, ye H.

THEOREM 4. For any a-bounded positive definite bi-function ¢ on H x H there
exists a unique Radon measure ye M , (H*) such that

(2) P(xy,z) = [e(xyz*)du(e), xy,zeH.

The inequalities

3) fle(x)*du(e) = ¢(x,x), xeH

and

@ [o(xy, xy)]'? £ a(x)[o(, »)]'?, x,yeH
are fulfilled.

Let K S CH denote the reproducing kernel Hilbert space of ¢ and let
®: H — K be the canonical map given by (®(x))(y) := ¢(x,y). Then if ¢(HH)
is total in K one also has

(5) o(x,y) = [olxy*)du(e), xyeH.
(This holds in particular if HH = H, but is contained in this case already in (2).)

ProoF. Let {x,,...,x,} S H and {c,,...,c,} S C be given. Define ¢:5 - C by

n

Q(s) := Z CiCkP(5Xj, Xy )5

jk=1

we shall see that ¢ € #%(S): for {s,,...,s,} S and {d,,....d,} € C we have
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Y dd0lst) = Y Y cid,cd 06,585 %)

pg=1 j.k=1 pg=1

M=

n
= 2
jk=1p

cidpcrd, (x5, x,5,) 2 0,
1

kY
1

and

lIA

lo(s)| Z lcjllek [ (sx, ij)]l/z[‘P(xk’ x;)]'?

k=1

A

a(s){ Z ch'b(xj)}{ Z |Ckl[¢(xk,xk)]1/2}'
j=1 k=1

By Berg’s and Maserick’s theorem there is a unique measure in M ,($?%)
representing ¢. Applying this fact for n = 1,2 we find families of measures

Py Vi, ys Nx.y € M 1 (8%) such that

P(sx, x) = [o(s)du.(e),
¢(SX, X) + (P(sys y) - (p(SX, y) - (P(S_)/, X) = jQ(s)de,y(Q)’
P (sx, x)+ sy, y)+i[o(sx, y) — @ (sy, x)] = [e(s)dn,,,(e)

for x,ye H and seS.
We define complex-valued Radon measures p, , by

i
ﬂx,y = %(ﬂx+ﬂy_vx,y)+ E (.ux+#y—”x,y)

and obtain
fo(s)dp, () = 3[o(sx, y)+ P (sy, x)] + % (—)Lo(sx, y)—o(sy, x)]

= ¢(sx’ y)?

so in particular u, , = pu,. The equality
(6) folsxy*)du, (@) = ¢(sxy*u,v) = @(sxu, yv) = ¢(suv*x, y)

= [o(suv*)dp, ,(0)
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gives (for x = y, u = v)

le(o)*duu(e) = le)*dule)-
Hence, denoting 0O, := {p € $*|¢(x) # 0},

dp(e) _ dusle)
lo@)*  le(x)I*

0. N0,

Thus we obtain a (unique) Radon measure ue M, (H*) with

_ due)
lo(x)I*

du(e) 0, xeH,

taking into account that {@,|x € H} is an open covering of H*. The equation
(6) for u = v implies o(xy*)du,(e) = lo(u)*du, ,(e), so
e(xy*)du(e) = dp, ,(e)

on 0, all ue H, hence on the whole space H®.
For x,y,ze H we have

o(xy,z) = je(x)duy,z(e) = JQ(X)duy,z(e)

s H*

= JQ(X)Q(YZ*)dﬂ(Q) = Je(xw*)du(e)

H* H*

as asserted.
Inequality (3) follows from

O(x, x) = p(8%) = ({0} + p(H®) Z p(H*) = [le(x)*du(e),

and then

P(xy, xy) = jle(x)lzle(y)lzdu(e) < o?(x) [le)Pdu(e) S ()¢ (v, )
o

which shows (4).
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For {x,,...,x,} £ Hand{¢, .. ¢c,} € Cthecomplex-valued Radon measure
Yk = 1€ Cullx, x, has the Laplace transform Y ¢;G¢(sxj, x,) which is positive
definite, as we saw above. Hence this measure is in fact positive. Therefore

o(x, y)— | e(xy*)du(e) = py y(8*) = px ,(H*) = py ,(10})

is also a positive definite kernel. This yields — generalizing (3) — the
inequality

Q) j

the difference between both sides being )}« - 1¢;Cutty, x, ({6}).
Suppose now @(HH) to be total in K. Let xe H and ¢ > 0. Then for
suitable {x,, ¥1,X2,V2,--»Xm Y} E H and {c,,...,c,} S C we have

2

du(e) =

n

2 cjelx))

j=1

n 2

2 @)
K

i=1

n

D(x)— Y c;P(x;y;)
K

ji=1

< €.

The triangle inequality in normed spaces and (7) give us

|/ [let)2du(e)—/ [IY c;o(x;y;)Pduo)]

<V lex) =Y o(x;y,)du(e) < &

as well as

|\/ (P(x x \/ Z Cjck¢(x]yp xkyk)
J-k

Z c <P(x,y,)‘l ‘ < 6.

ji=1

= lll¢(x)llx

Hence, observing Y c;6.@(x;y; xidi) = (1Y .cje(x;y;)*du(e), we obtain

I/ fle()Pdu(e) — /o(x, x)| < 2.

Since ¢ was arbitrary we get

o(x,x) = fle(x)*du(e),



106 PAUL RESSEL

thatis, u, ({0})(=u.({0})) = 0. Therefore, using once more positive definiteness,
Ux,,({6}) = O for all x,y e H, and we conclude

o(x,y) = folxy*)du(e).

We still have to show the unicity of u. Thus suppose u'e M, (H*) also
represents ¢. Then for x,ye H

o(yx,x) = fe(y)lex)*du(e) = fe(y)le()*du (o),

which implies |o(x)|>du(e) = |o(x)1*du'(¢) on H® Hence p = y’ on O, for all
x € H and so finally p = '

Remarks 1. Equation (5) does not always hold: let H be the additive
semigroup [1, o[ (and S = {0} U [1, oo[). The kernel ¢(x,y) = L5 (x+y)isa
bounded positive definite bi-function for which u, ; = ¢. Here a = 1,

S*=S={exp(—4-)|0 = 1 £ o0} ~ [0, 0]

where § = 1y, corresponds to 4 = o0, so H* = S\{6} ~ [0, oo[. A representa-
tion of the form

P(x,y) = fexp(—A(x+y))du(A)

is, however, definitely impossible. Nevertheless ¢(x +y,z) = 0 is represented
by the zero measure.

2. Although we have assumed H to be without neutral element, no use of
this fact has been made. Therefore the Berg/Maserick theorem is formally
contained in Theorem 4. In case H has already a neutral element H* itself
is compact, 6 being an isolated point in S*

3. The condition HH = H means that H contains no maximal elements
(cf. Choquet [3, p. 262]). This holds obviously if H contains a neutral element.
In many cases this property will be easy to check, but it may also be a non-
trivial fact, as e.g. for H = I}(G) under convolution — G denoting a non-
discrete locally compact abelian group — where the result HH = H is known
as Cohen’s factorisation theorem.

4. 1If ¢(x, y) = @(xy*) for some positive definite function ¢ : HH — C, then ¢
is a positive definite bi-function, since

d(xy, 2) = @(xyz*) = @(x(y*z)*) = ¢(x, y*z).
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Theorem 4 shows in particular that in case ®(HH) is total in K, any
exponentially bounded positive definite bi-function is obtained in this way
(that is ¢(x, y) = ¢(u,v) if xy* = uv*), a property not clear at the outset.
In general there are positive definite bi-functions not factorisable over a
positive definite function, cf. [4, probleme XV.9.2]).

5. The measure p in the representation of Theorem 4 is finite if and
only if ¢ has a positive definite a-bounded extension to S, ie. there is
some ¢ € Z#%(S) such that ¢(xy, z) = @(xyz*) for x,y,ze H.

6. The first version of Theorem 4 has been given in [10], however only
for semigroups with identical involution and only for the special absolute value
a = 1; cf. also Chapter 8 in [1], where functions bounded with regard to this
a were called quasibounded. Stochel [11] proved the representation (5) under
the stronger boundedness condition ¢(xy,xy) < c(x)¢(y,y) for some non-
negative function ¢ on H. Defining

a*(x) := min{B = 0| p(xy, xy) < Bo(y,y) for all ye H}

it is immediately seen that « is submultiplicative, and ¢ is a-bounded with the
special bounding function b(y) = [¢(y, y)]"/%. It is a non-trivial fact that as a
consequence of Theorem 4 any a-bounded positive definite bi-function ¢
allows finally this bound. Stochel's proof is based on a general spectral
theorem.

From now on we shall again assume that H denotes a convex semigroup,
without neutral element.

THEOREM 5. Let ¢ be an a-bounded bi-affine positive definite bi-function on
H x H, where H is a convex semigroup. Then the unique measure uye M , (H®*)
representing ¢ is concentrated on H®, the non-zero affine a-bounded characters
on H.

A corresponding result holds for multiplicative cones and for algebras.

The proof is an immediate consequence of Theorems 1 and 4.

In case H is a commutative algebra, a kernel ¢ with the properties stated
in Theorem 5 is usually called a bitrace (sometimes with the additional
requirement ¢(y*, x*) = ¢(x, y) which holds necessarily, as the above proof
shows), and in this case the representation of Theorem 5 in the form of
equation (5) is known as the Plancherel-Godement theorem, cf. [6] or [4,
Théoréme 15.9.2.]. Bauer [2, Satz 2] was the first who proved a special case
of Theorem 5 in the form of equation (2), for point separating real sub-
algebras of C°(X), X denoting a locally compact space. I am indebted to him
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for pointing out his result, which gave me the idea to prove the representation
(2) for general abelian semigroups without any further assumption.

In the examples which follow some other versions of Riesz’s representation
theorem will be derived in a straightforward manner.

ExaMmpLE 6. Let X be locally compact and non-compact and consider the
algebra H = C°(X) of all real-valued continuous functions on X vanishing
at infinity. Here, as in the next two examples, the involution is the identity.
We have HH = H, since e.g. f = \/W(\/U’l sgn(f)).

Let L: H — R be a positive linear functional. Then L is positive definite and
because of L(f2g?) = |lgll>L(f?) it is also a-bounded with a(g) = ||g||. There-
fore

L(f) = [e(f)du(e), fe€H,

for some e M, (H®) by Theorem 5. Let ¢ € H®. Then ¢ is a non-zero multi-
plicative linear functional on H. Denote by Y := X U {w} the one-point
compactification of X and define §: C(Y) — R by

o) := o(FIX ~J (@) +] ().

An easy calculation shows g to be multiplicative and linear, too, so for some
yeY we have §(f) = f(y) for all f € C(Y). The case y = w is ruled out, since
o is not identically zero. Therefore y e X, and in this way we have identified
H® with X, ie.

L(f) = If(X)du(X), feH,
X

where pue M, (X). Since L is finite on all functions in C%(X), it is easy to
see that u(X) < oo.

ExampLE 7. Instead of C°(X) let us consider H = C(X), the continuous
functions with compact support. Here again HH = H and a positive linear
functional L on H is automatically a-bounded, again with a(g) = |lg||. We will
see that any ¢ € H® has a unique extension § e (C°(X))®. Indeed, given f € C°(X)-
there is a sequence {f,} £ C°(X) converging uniformly to f. Then

le(f)—e(fm)l = le(a=full S Nfo—full = 0
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as n,m = 0, so §(f):=limg(f,) exists (and is independent of the chosen
sequence {f,}), and certainly g is also multiplicative and linear. Again we may
therefore identify H® with the given space X and get the well-known and
important representation

L(f) = [ fdu, [eC(X),

where this time the Radon measure e M, (X) may of course be unbounded.

Our last example will concern the algebra C(X) of all real-valued continuous
functions on some Hausdorff space X. This is of course a semigroup with
neutral element but we have to use some of the preceding results of this
paragraph as well. To begin with we will give a general result whose proof is
due to J. P. R. Christensen.

THEOREM 6. Let S be any algebra of real-valued functions such that f €S
and he C(R) implies ho f €S. Then any positive linear functional on S is
represented by a unique Radon measure with compact support on S®.

PrOOF. Let us first consider the case S = C(X), X denoting a locally compact
and g-compact Hausdorff space. From Example 6 we know that the restriction
of a given positive linear functional L on § to C%(X) is given by a bounded
Radon measure u on X. If feC,(X) and K & X is compact, choose
g€ C(X) such that 1, £ g £ 1. Then

{xfdu = [fgdp = L(fg) = L(f),

hence |fdu < L(f) < 0. Since X is o-compact there is a strictly positive
function pe C°(X). For ¢ > 0 there is a ge C*(X) such that 1,,, =g =1
implying :

L(f) = L(f9)+L(f(1—g)) = [ fgdu+L(f(1—g)) < | fdu+eL(f/p),

whence L(f) £ [ fdpy, that is L is indeed represented by u. Using once more
the g-compactness of X the support of u turns out to be compact, cf. [4,
13.19.3].

Let now S be any algebra of real functions, stable under the composition
with continuous functions on the real line. We must show that a given positive
linear functional L on S is exponentially bounded. Fix f €S and consider
@;:C(R) - R, defined by ¢,(h) := L(ho f). Since the real line is g-compact,
there is a measure u, € M, (R) with compact support representing ¢,. Put

a(f) := sup{jt|| t € supp(u,)}.
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With h,(t) := t* we have for fgeS

a(fg) = lim 3 [ >"dp, (1)

n— o

I

lim {YL(hz,° (f9))

n— oo

lim 27/L(f2n . an)_

n-— o

lim $Y/L(f*") YL@*)

n-— o

A

= a(f)alg)

where we used the Cauchy-Schwarz inequality for L as well as the fact, that
IP-norms approach the [*-norm on any finite measure space. Furthermore
us(R) = L(1) for all feS and

R0

j ltldpus(t) = L(Da(f).

e )

A

IL(/) = |L(hy o ) = l J tdpy(1)

We see that « is an absolute value on § with respect to which L is bounded.
The proof is finished by an application of Corollary 1.

ExampLE 8. Consider S = C(X), X denoting some Hausdorff space. Again
y: X - S® denotes the canonical map associating with a point xe X the
corresponding evaluation, i.e. y,(f = f(x). Just as in Example 2, y(X) is dense
in $®, and this even in a stronger sense: imitating the proof of Lemma 1
one gets go(f)e f(X) for 0€S® and feS, and given some ge S® there is
for any sequence f;, f5,...€ S a point xe X with o(f}) = fi(x), j=1,2,....
In case X is completely regular, S® may be identified with Hewitt's real-
compactification vX of X — up to a homeomorphism the unique real-compact
space containing X as a dense subset to which every feC(X) may be
continuously extended (by f () := o(f) of course); cf. [5, 3.11 and 3.12]. As
a corollary of Theorem 6 we may state that any positive linear functional L
on C(X) is represented by

L(f) = f T (x)du(x)
vX

where p is a Radon measure with compact support on vX.

Thanks are due to the referee for some valuable hints and suggestions.
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