MATH. SCAND. 61 (1987), 68-92

PARACOMMUTATORS OF SCHATTEN -
VON NEUMANN CLASS §,,0<p <1

PENG LIZHONG

1. Introduction.

In their paper [3], Janson and Peetre consider the paracommutator defined
by

4y () €)= @n)~* JB(G —mAQ, n)EFinl'f (n)dn
Rl

and obtain a series of results on I’-boundedness and S,-estimates for
1 = p = co. In this paper we study corresponding S ,-estimates for 0 < p < 1.
For the notion of the Schatten — von Neumann class S,, sce McCarthy [4].
In the case 0 < p < 1, S, is not a Banach space, only a quasi-Banach space.
For it,

@ 1Ty + oI, < T, +ITSIE,

holds. We shall repeatedly use this fact.
We shall give the assumptions on A(,7n) in terms of V,(E x F) defined
below instead of M(E x F) in [3].

DerFintTion 1. If E, F < RY, then we define

VExF) = {K(&n):K(&n) =Y Afi&)gi(n), f,, g: measurable,
3)
N =1 for {€E, lg:(n) = 1for neF, Y |AfP < oo}

and
”K“V,(Exr) = inf(leal")""
the infimum being taken over all such decompositions in (3).
For 0 <p =1, V,(ExF) is well defined, because ) |4] = (3 |4lP)'7, so

IKllyexF) < © implies that the series ) A;fi(£)gi(n) converges absolutely
and uniformly.
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ReMARK 1. In fact, we may assume that |f(£)] =1 and |g;(n)l =1 hold
only almost everywhere (a.e.) on E and F instead of | f;(¢)] £ 1 and |g;(n)] £ 1
on E and F in Definition 1. The results of Theorems 1-3 below still hold,
provided ¢ —» 0 is along a sequence, and ¢m are replaced by some points
n., Q% But for the sake of simplicity, we prefer Definition 1 in the
above form.

It is easy to see that for 0 <p, S p, =, ¥, c V,, = V|, ¢ M, where V,

is the tensor product I[*(E) ® [°(F) and M(E x F) is the space of Schur
multipliers, see Janson and Peetre [3].
Similarly, corresponding to Lemma 3.1 of [3], for V,(E x F) we have

Prorosimion 1. If (&, n)eV,(ExF) and K(¢n)eS,(ExF). Then
@K eS,(ExF) and
“) lleKlls,&x ) = llollyExpliKlls,Exry, 0<p=1.
Proor. For any ¢ > 0, let (&,n) = Y A, (&)gi(n), where
OIS L gl =1, YIAP = (lellyexr +e)F-
Then we have
KIS, &x Fy Z LIAPIAEKE Mg & x F)
SYAP “Kug,(ExF)
= (||¢||V,(Exr)+8)’||K||§,(Exr)-
So (4) holds.

Remark 2. V,(E x F) is a quasi-Banach algebra but not a Banach algebra,
as S,(E x F) is a quasi-Banach space but not a Banach space, for 0 < p < 1.
il I|‘;’,' induces a metric as || - ||§' does. So the results analogous to Lemmas
3.3, 34, and 3.11 in [3] do not hold for ¥, when 0 < p < 1.

As in [3], let 4, denote the set {¢eR?:2*< ¢ <2**!'} and 4,
=A;_; U 4, U 4;+,. Now we list some assumptions on 4 which will be used
in the theorems below.

AOQ: There exists an r > 1 such that A(r&,r) = A(&,n).

A,l: "A"Vp(‘jjxdk) s C, for all j,keZ.
A,3(x): There exist « > 0 and 0 < < 4 such that

NAlly,@x5) = CO/1Col)

for every ball B = B(&,,r) with the centre £, and radius r < 8|,|.
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A4}: For every &, # 0, there exist noeR? and & > 0 such that, with
By = B(&o +10, 0|¢0l) and Dy = B(n, d|&ol), A(S, 'I)_l € Vp(Bo x Do)

A9(ap): A(, n) satisfies A 1 and A, 3(«x). Furthermore, for every ¢ > 0
small enough, let {Q%}.z+ be a family of disjoint cubes with centres ¢m
and sides ¢, let 0%, = 3Q%, and let

Aa(ca '7) = Z A(C’ sm)XQ‘_(r’ ) K:(§$ ”) = A(59 7])— Ae(é’ ")

me2Z¥
0¢ 0,
Then
K elly, 4% 4, = Cle/2*), for every | €Z, k > log, ¢,
and

Ky, xB) = C(e/|Eol)*(r/IEol)* =%, for every B = B(Zo,r)
with ¢ < r < §|&y.

A10(x): For any 0 # 0 € RY, there exist a positive number § < } and a subset
V, of RY such that if N, denotes the number of integer points contained in
Vs n B,, where B, = B(0,r), then

— N
'hm —

> 0,
- a0 r

and for every ne ¥,

1

S S < Clnl =
“)4(-+n+9,-+n) =< Cin|*, where B B(O,é).

M(B x B)

Remark 3. The assumption AO is about the homogeneity of A. The
assumption A,l is about the boundedness of A4 just like Al in [3]. A,l
implies Al in [3] and hence it implies that 4 e [*(R?¢). The assumption
A,3 is about the order of the zero at the diagonal {£ =#} of A4 just like
A3 in [3]. The assumption A4} is about non-degeneracy of A just like
A4} in [7]. It is stronger than A4 in [3] but weaker than the one in
Timotin [10] and [11]; for example, the kernel A(£,n) of commutator, see
Example 2 below, satisfies A, 44 but 4 ¢ C*(R?\{0}). The assumption A9
is about the smoothness of 4 on all of R?. It is not necessary for the S,-
estimates if 1 < p < oo, but when 0 < p < 1, we need an assumption such as
A,9. The assumption A10(x) again is about the order of the zero at the
diagonal {¢ = n} of A. A,3(x) says that the order is 2 a, A10(x) says that
the order is = a. A10(x) will be used to characterize the “Janson-Wolff



PARACOMMUTATORS OF SCHATTEN - VON NEUMANN CLASS §,, 0 < p < 1 71

phenomenon”. It should be noticed that in the assumption A10(a), we use
M(B x B) regardless of p. '

Sometimes we write T3 (A4) to emphasize the kernel A.
The main results of this paper are the following four theorems.

THeEOREM 1. Suppose that 0 <p <1, st> —d/2, a>s+t+d/p and

suppose further that A(,n) satisfies A1 and A 3(x). Then be By*'* P implies
that Ty €S, and

() IT3lls, < Clibllggrevar.

THEOREM 2. Suppose that 0 < p < 1, s,t > —d/2 and suppose further that
A(&,n) satisfies AO, A,1 and A 43. Then the a priori inequality

(6) bllgyereer < CIITHls,

holds for every be B*'*dlp,

THEOREM 3. Suppose that A(E,1n) satisfies A0, A1, A3(x), A,45, A 9(ap)
and suppose further that « > ay > 0,0 < p < 1,5t > ~d/2and s+t+d/p < .
Let

AAEm =) A sm+0))xg,,0).
me2*

0¢du

Then for beS'(R) with b with compact support = R‘\{0}, Tie S, and
¥(A?) e S, uniformly in ¢ < ¢, and |0] < \/3/3 imply that b e B3*'* %P and that
(6) holds.

THEOREM 4. Suppose that A(£,n) satisfies A10(a) and suppose further that
0<p<=d/f(a—s—t), beS(R") with b with compact support = R* such that
3 €8,. Then b must be a polynomial.

ReMark 4. The results of Theorems 3 and 4 are not as good as one would
like. This is mainly because the analogue of Lemma 3.3 in [3] is false for
V,, when p < 1, so the restriction that b has compact support = R*\{0} or
R? cannot easily be removed. But from the proof of Theorem 1, see section 4
below, we see that under the hypotheses of Theorem 1, with by = Y Y yb * y,,
we have Ty €S, and T - Ty in the norm S,. Let us define Ty"€S, in
this way for b € §'(RY), of course, this is different from the natural definition of
T;'eS,, and let us denote T;'eS, strongly. Then, using Corollary 2 in
section 4, we obtain formally good-looking results as follows.
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CoROLLARY 1. Suppose that A(&,n) satisfies AO, A, 1, A,3(a), A,43, A 9(x)
and A10(x) and suppose further that a Z a5 >0, 0 <p <1, st > —d/2,
o> s+t. Then

1) if p>d/(a—s—t), T;' €S, strongly and T;!(A]) € S, strongly and uniformly
in ¢ < & and 0| < /d/3 if and only if be B3P,

2) if p=d/f(a—s—t), T;'€S, strongly if and only if b is a polynomial.

These theorems and corollary look somewhat complicated, but they cover
at least paraproducts, higher order commutators of singular integral operators
and some pseudo-differential operators, which are the cases of main interest.
For Hankel operators, or equivalently for the one-dimensional commutators
[b, H], Peller [6] and Semmes [9] have obtained S,-estimates, for 0 < p < 1.
So our results are generalizations of their results. In fact, our methods for
proving Theorem 2 are close to those of Peller [6] and Semmes [9].
Their results can be obtained from Theorems 1 and 2. More generally, we
consider T;* = D*[...,[b,H,],..., H,]D', where b is a function on R%, H; is
defined by

L[ e Xim 13 Vs Xit 15 - 0 X4)
H; = p.v. — : 2 Sis
Jx)=p 2nf Xi=JYi Do 1SPSd
R

It has the Fourier kernel
d
A =C [] ¢ >0>n)-1( <0 <ny)).
i=1

This kernel satisfies A0, A,1, A 3(c0), A,43. So the conclusions of Theorems
1 and 2 hold for it. Using an argument of Semmes ([9, pp. 261-265]), we get
thatif 0 < p < 1, s,t > —d/2, then

D[...[b,H,],... H]D €S,

if and only if be B**'*¥? and furthermore, ||D*[..,[b,H,],..., H/D's, is
comparable to [|bl|g;++ar. Here D[...,[b,H,],...,H,] €S, is defined in the
natural way.

The phenomena of Theorems 3 and 4 do not appear for Hankel operators
or one-dimensional commutators but they appear for general kernels A(&, n).
Thus we need other methods to deal with them. Our method to deal with the
“Janson-Wolff phenomenon” in Theorem 4 is close to that of [2].

The proofs of Theorems 1, 2, and 4 are given in sections 4-6, respectively.
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We omit the proof of Theorem 3, referring Peng [8]. In section 2 we
examine some examples and in section 3 we present some lemmas which will
be used in sections 4-6.

Results similar to Theorems 1 and 2 have also been given by Timotin [11].

2. Examples.

To show that a function belongs to V,(E x F), the Fourier series expansion
is often an efficient tool.

PropoSITION 2. Let T!=[—nn]% u=[dQ2/p- 1)]+1. Suppose that
AeC*(TxTY) and supp A = Int(T! x T¢).
Then A€V, (T'xT) and

M I4lly,rex S C Y, suplDiDjA.

Os|a|+|flsu

Proor. Use the Fourier series expansion

AEn) = Y Amnm)e™ e, EneT

(m,m)e2*

Thus

IAlIgmxr S Y |Amn)?

(m,m)ez

pl2
é{ > (l+IMI2+InI2)"|3(m,n)I2} :

(m, »)

2-p)2
{ z (1 +|m|2+|n|2)_“(’)/‘2"’)}

(m, m)
p/2
_ c{ s ,uDngAu;} .
0<|a|+|flsu

Therefore

Illy,mexmy S C Y, suplDzDIA|
05 lal+|flsu

Using Proposition 2, we can obtain the following three propositions.
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PrOPOSITION 3. Let A€ C*(4, x 4;). Then

(®) NAlly,4,xa) =C  sup  sup [E*nl’|DEDFAC, ).
Oslal+IBisu g7,
ned

ProrosiTION 4. Let B = B(&y,r). Then

)] l4llyBxs S C  sup rei+Bl - sup  |DDEA(E ).
0s ol +|Blsu &€ B(So, 2r)
PROPOSITION 5. Suppose that k = 1 and m 2 max(u, k). Suppose further that
r<3lE&| and AeC™B(Ey,2r)x B(Ey,2r)) with D*A(Ey, &) =0, when
|| £ k—1. Then

l4lly,x8) = Cr/iCol) sup  sup  [£oI*ID*A(&, n)l.
lef £m & neB(&o,2r)

Now we examine some examples.

ExaMpLE 1. Nth order commutators of singular integral operators. When
d = 1, the singular integral operator K is a scalar multiple of the Hilbert
transform, so the Nth order commutator has the kernel.

AEm) =CUE > 0> -1 <0 <)

(I(...) denotes the indicator function, see [3].) It is clear that in this case
A(&,n) satisfies AO for any r > 0, A,1, A 3(c0), A,43, A,9(1), but not A10
for any a > 0. So the conclusions of Theorems 1 and 2 hold for it, and the
results of Semmes [9] can be easily obtained. The “Janson-Wolff phenomenon”
described in Theorem 4 does not appear for it.

When d 2 2, let K; denote a Calderén-Zygmund transform, i.e. the principal
value convolution with a kernel K; whose Fourier transform K; is
homogeneous of degree 0, C*(R*\{0}) and has vanishing spherical mean
values. The Nth order commutator [K,,...,[Ky,]...] has its kernel
A&, n) = [N i [Ri(&)—Ki(n)] It is easy to check that in this case A(&,7)
satisfies AO for any r > 0, A 1, A,3(N), and A, 9(1). If A4 satisfies the non-
degeneracy condition:

(*) if [N] (Ri(&+0)—Ki(¢)) = 0 for all £ then 6 = 0, then A satisfies A 44.
i=1

i=

If A satisfies the non-degeneracy condition:
N
(=) if J] DyR;(£) = 0 for all ¢ then 6 = 0, then A satisfies A10(N).
i=1

It is obvious that (**)=(*), so if A satisfies (**), then A satisfies
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A, 4% and A10(N). In this case, all of the conclusions of Theorems 1-4 and
Corollary 1 hold.

ExaMPLE 2. Paraproducts. The name “paraproduct” denotes an idea rather
than a unique definition ; several versions exist and can be used for the same
purposes. For example, consider the paracommutator with the kernel

A(G ) = (IS —nl),

where ¢ € C*(0, w0), ¢ = 1 on (0,4) and ¢ = 0 on (1 -9, o) for some 6 > 0.
It is easy to check that in this case A(¢,n) satisfies AO for any r > 0, A1,
A,3(0), Ads, A9(1), but does not satisfy A10 for any « > 0. So the
conclusions of Theorems 1-3 hold and the “Janson-Wolff phenomenon”
described in Theorem 4 does not appear for it.

ExampLE 3. A(, 1) smooth. Suppose that 4 € C*(R?*¢\{0}) and that, for each
multi-index a, there exist a constant C, such that

ID*A(&, M| = Col8]+ Inl) ™
and a positive integer N such that
D*A(¢,n)=0 for |aof = N-1.

This is a kind of pseudo-differential operators studied by Coifman and Meyer
[1]. Using Propositions 2-5, it is easy to check that A(,n) satisfies A,l,
A,3(N), and A,9(1). If A(,n) satisfies AO for some r > 1 and A4 (see [3]),
then it is not too hard to check that A(¢,n) satisfies A, 43. If further A(&,7)
satisfies

(A) for each 0 # O there exists &, # 0 with Df A(£;, &) # 0,
then A(&, n) satisfies A10(N).

So the conclusions of Theorems 1-4 and Corollary 1 hold for such para-
commutators.

3. Some lemmas.
Lemma 1. If 0 < p <1, T,S€S,, then
IT+SI, < ITIE, +1ISIE,,

and equality holds if and only if T*TS*S = 0. (Cf. McCarthy [4].)

LEMMA 2. If {E}kez> {Fi}xez are sets of disjoint subsets of R* such that
ExnF, =% for k# 1, let Qy, P, denote the projections from I*(R%) into
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I3(E,), I2(F,). Then

(10) ) QkTPk

kez

= T TPy,
S, kezZ

holds for T € S, (R x R*).
This is a consequence of Lemma 1.

Lemma 3. If Fy nFy; =9, Ae V(ExF,), A€ V,(ExF3). Then
AeV,(Ex(F, uF,))and

(11) NAlly,Ex @, o Fy S CUAllyExF,) +I14llyExF,))-
This is obvious.

LemMMA 4. Let y e CF(R?), suppy < 4o, x(&) = 1 on A4y, and N be a fixed
integer. Then

X =My a,x a9 S CN) for kI S N
and

lx(€—mlly,exp) = C(r) for all B = B(¢o,r).
These are consequences of Propositions 3—4 in section 2.

LeMMA 5. Let Q be a compact subset of R%, 0 < p < 1. Then, for every r < p,
there exists a constant C such that

lp(x—2)|

12
( ) zeR* 1+||‘/’

s C[Miol(x)]*"

holds for all e I, = {p € I?: supp ¢ < Q}. (Cf. Triebel [12, p. 16 and p. 22].)

LEMMA 6. Let 0 < p < o0, a > 0. For any a' > a, there exist two positive
constants C, and C, such that

1/p

Y
(13) ¢ (kzz‘ I¢(k/a’)l”) " S lell, = C, (RZZ‘ I(P(k/a')l") ’

holds for all p€{@eS': supp@ = B(0,a)}.
This is the theorem of Plancherel and Polya, see Triebel [12, p. 19-20].

LemMma 7. Let be B ®? 0 < p <1, and let (b).(¢) denote the periodic
extension of b(£) with the period 2nR. Then

(14) NBYe(& —Mlly,mexrey < RY2=4b]l,.
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Proor. By the homogeneity, it suffices to show (14) for R = 1. In that case,

suppb < B(0,3), and we extend b(¢) to a periodic function (b),(¢) with the
period 2n and expand it into a Fourier series

(}).(&) = Y blk)ek <.
keZ’
Thus

(B)e(é —'ﬂ) = kZ‘ b(k)e'k f.—l’"'r]'

eZ

Since |e*¢| = [e=* 1 = 1 for £€ R, neR?, by Lemma 6,

1/p
(.5 o) " s cupn,

Hence (14) holds.

4. Proof of Theorem 1.

Let y € S(R*) be such that suppy < J, and if & # 0, then Y;°_ _ ¥, (&) =1
with (&) = ¥(27*¢). Thus we have

b= z b*ll/k.

k= — o0
Let y € C2(R%) be such that x(¢) = 1 for (e 4, and
suppy © 3—e S |¢| S 2+¢} for soxﬁe 0<e<i.

Put y,(¢) = x(27%¢). By Lemma 1, we have

a0

(15) TS, £ X 1T,

k= -

Note that (b*y,) (E—nAE 1) = (b *y.) (& —mu&—nA( n). By Propo-
sition 1, we get,

T4y, 15, = IO * i) o€ —mxal€ —mAE, mIEFInlll,
= (b * wi) (&~ I, e rey el —MAC, mIEFInlls,-

By Lemma 7, we know that

N * i) & =Ml e x sy = C2C7PlIb # gl



78 PENG LIZHONG

It suffices to show that

(16) X —mAE, mIEFmIII§, S C20kp* sk ke,

In view of the homogeneity of the assumptions on A, it suffices to show (16)
for k =0, ie.

17) IX(€ —mAE, mIEFmIE, = C.

To show (17), we use the analogue of the argument in [3] for p = 1. First
of all, by Lemma 4, we have

(€ —mA(, n)lél‘lnl'll?,(a,x 4)
= 1€ =m0 x apllAE MUY, 4, x ap 1IN (4, x 4

14
= CNIEFIGaplinl 1 Ezqa,y
é C2kp(s+d/2) 2lp(l+d/2)

(18)

for k,l < N.
For keZ’ let Q, denote the cube with centre 4k and side 4, and let
0, be the concentric cube with side 9. Note that if suppf < Q,, then

supp Ix(ﬁ —mAE nIEFMI  (n)dn < Oy
Thus we have

(€ —mAE MIEPIN 2o, NG e x rey = 11X —mAE, MIEFIMIIIS 3, x 0)-

When |k| > 3,/d/45, where & is as in A,3(a), by Lemma 4 and A,3(x), we
have
1X(€ —mAE IS, x 04)

(19) = 11x(€ = mlIF, @, x gl A& MIF, g, x g1 1EFIE @ N0y
é Clkl —pa+ps+pt.

When [k| < 3,/d/45, note that (, < (J¥ 4., where N is an integer
depending only on 6 and d. Thus we have

(€ —mAE, nIE I, 3, x 04)

N N

s k;_: ' 2 & —=mAE mIEPInIE 4, x 4

=-ow
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Using (18), we get

1x(& =m)AE mIELINIIE 3, x 04)

N N

(20) < 2 Z 9kpls +d/2) 91p(t+d/2)

k=-w Il=-o

=C.
Since « > s+t+d/p, we have

k| TR < o,
k| > 3./d/aé

Therefore (19) and (20) imply that

(& = A IEFINE g e
S X €= mAG mierinl, g0

é C Z' Ikl—pa+ps+pt+ Z_ C
k| > 3./d/as Ikl < 3./d/46

= C.

This completes the proof of Theorem 1.

CoROLLARY 2. Under the same assumption as in Theorem 1.
If be B3+ ¥? with suppb < R*\{0}, then T;"(4%)€ S, and

T (ADlls, < Clibliggsvas

holds uniformly in ¢ < ¢, and 0] < \/2/3, for some ¢y > 0.

Proor. We may assume that suppb < {|¢| 2 27 No}, for some large number
No > 0. Let & < gy = 2~ No/ /d. By the proof of Theorem 1, it suffices to

show that A4? satisfies A 1 and that for B = B(&,,r) with 27N <1 < §/218),
holds
142Ny, 8 8) = Cr/IEol)

In fact, if 2¥*! < ¢/2,

||Af||v,(a,x4.) =0;
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if 241 2 ¢/2,

ANy, 4, % 20 = ” > A(&, e(m+0))xg: ., ()
meZ’ V(4% 4y)
4N Qe+ P
gl S AGem+ )., ()
mez! Vi(dix &)
A NQhu P
= ||l Ally,4,x3,) = C (by Lemma 3).
So A? satisfies A, 1. If 27 No < r < d/2|&,|, then
||A2”V,(x3) = ” Y A, e(m+0))xge, ,(Mlly,BxB)
meZz!
BnQa,+9
g“ S AGem+ O, )
meZ¢
B QL. +9

(where B = B(&, r+s\/a))

= |14y, x 5)

2—N a a
< C(Lt__) < C(L) (because r+2-No < 2r < Bl&,|).
%ol ol

5. Proof of Theorem 2.

For the sake of simplicity, we assume that r = 2 in AOQ. It is easy to show
that A 44 is equivalent to the following statement.

For every &, #0, there exist moeR? and 8 >0 with no¢{0, —&o}
and 6 < imin(|&y+nol, Ineh 1) such that, with By = B(£q+10,6lE0]) and
Do = B(o, 6l¢ol), A& 7)™ "€ V,(Bo x D).

By the compactness of 4,, there exist finite sets of points {¢§}{-, in 4,
and {n§"}]-,, with corresponding open balls B(({’, 6”) and B(r§, &),
such that nf + 0, n§ +# ¢,

C~

B, 69) = 4o, 69 < imin(iE§ +n§, In§, 1)

j=1

and, with B; = B(&{ +nf), 6) and D, = B(n§, 6),
A"'eV,(B,xD)).
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We choose the positive functions h}({) and hy(n) such that hj, h;e C§(RY),

S L]

supp h; = Bj, hj(£) > 0 on B, supph; = D; and hj(n) > 0 on D;. Let

J
@D v = _Zl fIé+rll’l'1|’h}(é+n)hj('1)d'1-

Then e CP(RY), suppy < {3 < |¢] £ 244} and W(£) = C > 0 on 4,. Thus
y can be used to define the norm of B3*'*/».

Let y' € C@(RY) with support < {4 < |£| <4} and y'(£) = 1 on {} < |¢| £ 3).
Thus y’ can be used to define the norm of B3***%? also, and

" N |IB.;+HJ(p(w) ~ " * "B:'ﬂ*llp(w').

Let y, (&), Yi(€) denote y(27%&), y'(27%¢) respectively.
For n§ #+ 0, Y +n§’ + 0, there exist r; and r, with0 <r, <r, <r, < ©
such that

re S Q) 1P +nPl S, j=1,...J.
For the sake of simplicity, we assume that 3/4 < |n§|, |EY +n{| < 2}, thus
supphj, supph; = {} S /¢| S 13} = 4,, for j=1,...,J.
The proof of the general case is similar.

We fix a positive integer M, which is large enough and whose choice will
be specified later. We define operators T;,i = 0,.., M —1, by

(TN
22) =™ Yy X JB(C—W)A(é,n)lél’l'll'xz,.m(é)xzi,,,,,.('1)f (n)dn,

l=—w k=-wo

where 4, = 24,. Note that ||T]ls, = ||T;"|ls,, so we have

M-1

23) Y. IITIE, = MIT,.
i=0

We put

(24) =T+,

where TV is defined by
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(1))
(25)
= (2n)™¢ k_Z b(&—m)AE MIEFII X4, , (. (] (1)dn
and T® by
(TPf)1¢)
(26)

) k-1
=@en)™* Y Y | BE-—mAE)ErInYE,, . X4, (0] (1)dn +

k=—-wo l=-o®

-] -1
+e0 Y Y | BE-mAE IS, (EXa., (DT ()dn.

l=—w k=-wo

We estimate the “S,-norm” of T’ from below and the “S,-norm” of T*) from
above separately. First of all we have

where (¢ 1(¢) is the characteristic function of {l&| = b}. If M is large
enough, then

Vim+iE—n) =1 on {|& S 27¢"DMH*2 5 Anae

Thus we have

k-1
{ DI N (4 )} b —mAE mIEFInl 2z, (1)

I=—-w

14
Sy

< X0, 20~ v+ (E)BE = M)A MIEFINI A, (NG,

10, 20 1+ i+ 27 (EYB(E =) A(E, MIEP I X 4,,,,., (MIIE,

= [0, 20~ me+i+2)(E)B(E —M)Wkna +4(& = MAE MIEF I 1, IS,
= X0, 20~ w1+ 21 ()b * Wien +0) o(E —MAE, mIEFInI'x a3, (DIIE,

S Clib * Yiag + lI525M* 2972 g u-mmvis 21 () A& MIEFInl' 24, (NI,

(by Proposition 1 and Lemma 7).
We claim that

(0, 20~ e+i+21(E)A (S, MIEF NI 2 4,,,., (I,
@7

< C2(kM+ iYsp+tp+dp) 2—MP(s+d/2)
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In fact, to show (27), by homogeneity of A(£, n), it is sufficient to show it
for k = 0, i = 0. In that case we have

10, 2-2+ 23 () A&, mIEFInl' xa (NI,

-M+1
Z 2 NAE m)IEFInNE (a,x 4,)
k=-1 =~
1 -M+1
é Z Z 2lp(s+d/2)2kp(t+d/2) = C2—Mp(s+d/2)’
k=-1 I=-o

i.e. (27) holds.
Thus we obtain

“{ Z x;;,m,(é)}ﬁ(é mA(, ﬂ)lél‘lnl'mm,(n)

=~

P

~ Mp(s+d/2) (kM +i)sp+tp+d
S C27MperdnQEMEDEP T DY b % yrpy 4|5

Similarly, we obtain

xz,,m(é)B(é—n)A(C,n)ICI‘MI‘{ Z x;.,m(n)}

k=-w

’
é Cz—Mp(l+d/2)2(lM+i)(sp+tp+d)”b * ‘//;MH”‘;-

Hence we get the estimate of the “S,-norm” of T;¥ from above

“T(Z)"P < C[2 Mp(s+d/2)+2 Mp(t+d/2)] Z 2("M+l)(sp+'p+d)”b*'l’kM-H”p

k=-o
Consequently,
M-1 2
(28) _Zo TG, = C[27Mper 4 4 27 MPC A2 1b||Brvsvanyy.
i=

Now we are going to estimate the “S,-norm” of T") from below. By Lemma 2

I8,

e}

=)™ ¥ 3. (BE ~mMAC MIEFInLs,,, (I,

k=—o
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We claim that when M, is large enough
X, (EBE —MAE MIEFII L4, ., (DIE,
(29)
2 CM20M+ NPt D \lbaysypp o i[5 — My NPllb*yin 1 ill2]-
In fact, by the homogeneity of A(& n) it is sufficient to show (29) for
k=i=0.
Since supp hj = Bj and supph; = D;, A4} gives that

16¢ —n) Z ZFInl B E A IS,

p J
é( max IIA"IIV,(B,xp,)> .; 1B —mAE, MIEPInI YN n)IIE,

1sjsJ

J
=C Z 1B —mAE, mIEFInIBHEA IS, -

Note that supp hj, supp h; = 4,. We therefore get

J
6(&—n) ‘Zl [EFImIth(& )hj('l)”’s’,
i<
< ClIB(E—n)A(E, 'I)lfl’ml'lz.,(f)XZo(qmg'.

We consider the operator defined by

()& = |bE—n) ; EFInl" By (E)hjn).f (n)dn

as an operator from I?((3T)%) to ‘I2((3T)%). It is clear that the family

{eu(n)}n €z = {(67[)_‘/28‘" ’ q/S}" ez’

forms a complete basis of I>((3T)Y).
Thus we have

(30) Sf = Z 2 (f’eu)(seme-)e-'

neZ' me2*

Let M, be a positive integer, large enough. Let P, denote the orthognal
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projection from I*((3T)?) onto

span{ey . ktnezs ke€{0,.., M, -1}

Thus we have

(31 1= ® Py
ke{o,.. .M, -1}

and

(32) Y PSP < MYISIE.
ke{0,... M, -1}

We put

(33) PSP, = S{V+ S

where

S&”f = z‘ (f’eM,lH—k)(SeM,vH—beMln+k)eM,u+k
neZ

SPf =% Y (fremumsk)(Sr n+ks €M, m+k)EM,m+k-

neZ’ me2
m+n

For S{V, since

(SeM‘n+k’ eM,n+k)

J
= ﬂﬂﬁ—'l) 2 P B e n+ k(1) n 4 k(= EAndE
i=1

(by changing variables & — ¢ +1)

3
= IIE(E) X 1E+nlinlhiE +nhjmey,n+x(— E)dndE
=1

=C IB({)ﬁ(é)e—i(M,n+k)~ EP R

= Cb*y(—(Mn+k)/3),

85
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we have
ISEOUS, = X 1(Semn+hs emmsi)” = C 2 lb*y(—(Mn+k)/3)”
nez' nez’
and
Y SIS, = € Y Y Ibxy(—(Mn+k)3)P
34) ke{0,.. .M, —1}¢ ke{0,...M,—1}¢ ne2’
(

=C Y |bxy(n/3)|" 2 C|lb*y||> (by Lemma 6).

ne2!
For S{, we estimate its “S,-norm” from above,
2P
S$lls,

-4 Z Z l(seM,n+k’eM1m+h)|p
nez’ me2!
m¥+n

HB(C n) Z PR )er m + k()ert m k(= é)dédrl

mez‘
m#n

. jB(ékM m+k(— f)jz & +nlInl"h(E +m)hj)em -
neZ‘ me2*
m¥n

Let I(¢,n) denote }:/_ | +nlInl'hi(E +n)h;(n), and write

¢, z) = fl(é,n)e-"'"dn, 1My, z) = fl’(c,z)e-"y'fdc.
Then
INRE
=C ) X

neZ' me2
m#n

=C Y Y |bxy' *I"2(=(Mn+k)3, M;(m—n)/3)"
neZ2' mez2*
m+n

=CY X
nez’ me2’
mEn

f BEW' (©em,m+k(—ENEM

Jb*!l/'( — (Myn+k)3 =)y, My (m—n)/3)dy "
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Since I1(¢,n)e C§, for every fixed N > 0,

1%y, z)| £ C

A

Let Q, denote the cube with centre —1/3n and side 1/3. We choose r < p
and N sufficiently large. For x € Qs+, by Lemma §,

! f bey'(— (Mym+k)/3 — ))12(y, My (m—n)/3)dy

|bry'[x — (y+x+ (M n+k)/3)]|

<
=C 1+|y+x+ (M n+k)/3|%r

1+|y+x+ (M n+k)3|4"
L+|y¥

< C[Mb*y/(x)]""M; *m —n| .

dyMiNm—n|~"

Integrating over x € Qjy »,x» WeE get

14
l fb*-//'( — (M n+k)/3=y)[12(y, M,(m—n)/2})dy

S CM[NPim—n|~Nr J(Mlb#w’|'(x))”/'dx.
[ /RN

Finally, we obtain

ISPlg = CM™ Y (Mb*y'I (x))?"dx.
neZ!
[0/ VI

and

T lsPug

ke{0,.. .M, -1}*

(35) S CM7Yr f(M lby'I"(x))""dx
R

S CMV||bsy/|l5.
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Combining (32), (33), (34), and (35), we obtain
M1IISII§, Z (Cllb*ylls— CM [ M?|lby/||5)

i.e. (29) holds.
Combining (28) and (29), we obtain

MIIT 2,
Z CM“[lbllyese sy — M VPIIbl Gy rvamy ] -
—C[Z‘M""+"/2’+2‘M”“*"/2’]||b||”3;+..4/.(,,1)
2 CM7 [11bllfyersar — M VP|Ibllfyoivan] —
— C[Z—Mp(s+d/2)+2—Mp(t+d/2)]"b"%lrﬂuw_
We now choose M; and M large enough. Thus we finally obtain
CT I, 2 [bllfevrsar.
Theorem 2 has been proved.

6. Proof of Theorem 4.

We give the proof of Theorem 4 only in the case p < 1. For the case p 2 1,
Theorem 4 can be improved, see Corollary 3 below.

If b is not a polynomial, there exists 0 # 0  supp b. Without loss of generality,
we assume that |6] = 1. By A10(«), we find § > 0 and a subset ¥, of R? such that

— N
(36) lim 7} >0

and for every ne V,,

1
A( +n+0, +n)

(37 < C|nl*, where B; = B(0, ).

M(B‘ X B‘)

Let a, denote sup|{T;'y ¢ ¢)|, where ¢ and y range over all functions
with |loll2, W]l S 1, suppp <= B(n+6,5) and suppy = B(n, §).

If g and h are C® functions with |lg|l, = 1/C,, ||hll, = 1/C, (C, > 0 depends
on S, C, > 0 depends on t; see below), suppg, supp h = B(0, 6), then we have,
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for any fixed n eV, with |n| > 6,

j b(E+0—n)(g(&)h(n)déd

Since A(E+n+6, n+n)"' e M(B; x By), it has the representation

B(E+0—nAE+n+0,n+n)E+n+0FIn+n- AE+n+0,n+n)" ! x

X [£+n+01""ln+n|"'g($)h(n)didn.

AC+n+06, n+n)" xp,(E)xp,0n) = jﬂ(é, )y, w)dp(w)
Q

where
Bll=8, x ) W=, x 2y = 1, () = Cln|*.

Let

B, w) = B¢, w)lE+n+0|"°(In| -2,

Y' (1, @) = y(n, ®)n+n|""(In| -2)".
and

K (@) = p(w)(n|-2)"*""

Then

BN, x2) = Coo IV =8, x2) = Co» W(R) = Cylm|*™*7".

Thus we obtain

' f b +6—n)g(&)hin)ddn|
_ l f j BE+0—mA(E+n+0,n+)E+n-+0ln-+nlg(OB € whin) x
Q

+ v w)déd'ld#’(w)‘
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s Jd#’(w) ‘ J]ﬂé —mAE IEFInl (hy)(n —n, ©)(gB)(n—n —6, w) dldn
Q

Su@  sup 1T, )| = W (Q)ay = Cyln*~*""a,,

llollz, liwll, < 1
suppy < B(n+90,4)
supp ¢ < B(n,d)

Since 8 e suppb we can find g and h such that

j b(& +6—ng(&)h(n)dedn| > 0,

thus we get
a, = C|n|™****" for neV, and |n| > 6.

We claim that

(38) ITM5, 2 C ¥ ak

neV,

Then, by (36),

IS, 2 C ¥ Inf et = o
nel,
Im| > 6

this contradicts T;" € S,. This contradiction shows that b mus be a polynomial.
To show (38), we assume that suppb < {|¢| £ M —2}, where M > 2 is a
positive integer.
Let V, = {neV,:n= Mk+r} for re{0,1,..,M—1}4 let P® denote the
projection from I?(RY) to I?(B(Mk +r, 5)), let Q® denote the projection from
I}(RY) to *(B(Mk+r+6,5)), and write

P,. = Z P(r.)v
Mk+reV,
0.= Yy ov.
Mk+reV,

Then we have

S IQTIPIE S MU,
ref{0,...M—-1}*
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We note that

(39) O.T'P,= ) QWTPY,
Mk+relV,

because when k # j, Mk+reV,and Mj+reV,,

OO TFPY £)(6)
= jXB(Mk+r+9, HEBE—MAE MIEFII LB+, 5m) ] (n)dn.

Also if £ B(Mk+r+0,3), ne B(Mj+r,J), then
[E—nl =1&—(Mk+r+0)—n+(Mj+r)+0+Mk- j)
= Mlk—jl—10|—26
>M-2.
Thus, since supp b < {|¢] £ M —2}, we have
QMT'PY = 0.
Therefore, by Lemma 2, we have

10, TP,I%,

= ¥ IgMTPOIE

Mk+reV,

= Y 6E—mAE MIEFIN X pmk+r+0,8/EXBME +, &)(ﬂ)||§,
Mk+reV,

2 Y BE—mAE MIEFMIIE BME-+r+6, 6)x BME+r, 5))
Mk+reV,

= Z agfk+r'

Mk+reV,

Finally, we get

91
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"'I;:s'"’s,, 2N Z Z B, =M™ Z ag,

re{0,...M—1}* Mk+reV, neV,

i‘e. (38) holds.
This completes the proof of Theorem 4.

CoroLLARY 3. Suppose A(,n) satisfies Al0(a), 1 < p S df(a—s—t) and
beS'(R?) such that T;'€ S,. Then b must be a polynomial.

Proor. When p 2 1, (38) always holds. Noting that the argument in the
proof of Theorem 4 up to (38) does not need the assumption that b is such
that b has compact support, it follows that Corollary 3 holds.
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