MATH. SCAND 61 (1987), 17 38

TWO-SHEETED COVERINGS OF THE DISC

FRANK FORELLI

1. Introduction.

Let X be a Riemann surface in which there is a holomorphic map ¢ to
the open unit disc D with ¢ of constant valence 2. One says that X, or the
pair (X, @), is a two-sheeted covering of D. Let N be the number of branch
points of ¢. Then 1 £ N = co. We will prove that if N > 2 and if ¢,, like
¢, is a holomorphic map of X to D with ¢, of valence 2, then ¢, = A(p),
where A is an automorphism of D. This means in part that ¢, and ¢ have
the same branch points, and thus one may speak without ambiguity of the
branch points of X. (This is not possible if 1 = N =<2 Then X is,
conformally, an annulus or the disc, and one finds that ¢, = A(¢(B)) with
BeAutX.) It is a corollary of “¢, = A(p)” (or for that matter of

“@, = A(p(B))’) that if (X,¢,) and (X,, @,) are two-sheeted coverings of
D, if

A, = {@i(x): x is a branch point of ¢},

and if X, and X, are conformally equivalent, then 4, = A(4,) with 4 e Aut D.
This should be new if N is infinite. (The converse holds, i.e., X; and X,
are conformally equivalent if 4, = A(4,) with 4eAut D, but I would guess
this is not new.)

The theorem that gives ¢, = A(p) if N >2 is in part 2. If N = oo,
the theorem gives more. Then it identifies the holomorphic maps, of X to D,
of constant, finite valence, not just those of valence 2. Then in part 3 we use
the theorem to study the proper holomorphic maps of X to itself. E.g., we
will prove that if f € Prop X but ¢ Aut X, and if f fixes a point, then the point
is a branch point of X.

2. The main theorem.

A mapping ¢ : X = Y of topological spaces X and Y is said to be proper
if inverses of bounded sets are bounded, ie., if {¢ € E} is bounded in X
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whenever E is bounded in Y. A set is bounded if it is contained in a
compact set.

Let X be a Riemann surface in which there is a holomorphic map ¢ to
the open unit disc D with ¢ of constant, finite valence m. That is, |¢| < 1,
while if |{] < 1, then the set where ¢ = ¢ consists of m points counting
multiplicities. In other words, if d(F,w) is the order of vanishing of F at w,
then

@1 Y. (1+d(¢',x)) = m.
o(x)=¢
One says that X, or the pair (X, ¢), is an m-sheeted covering of D. Let N
be the number of points, in X, of branch order m—1. Then 0 £ N £ 0.
(The branch order of x is d(¢’, x).)
Let ¢,, like ¢, be a proper holomorphic map of X to D. Put m, = the
number of times ¢, vanishes counting multiplicities. Then m, < oo,

THEOREM 1. If m; < N, then

(1) m divides m, ;

(ii) @, = g(p), where g is a proper holomorphic map of D to itself of valence
m,/m, in other words, g is a finite Blaschke product that vanishes m,/m times
counting multiplicities.

Thus if the number of points of branch order m— 1, namely N, is infinite,
then every proper holomorphic map of X to D is of valence zero mod m,
and is obtained from ¢ by composing with a finite Blaschke product.

2.1. THE PrOOF OF THEOREM 1. Our proof is elementary. Its main ingredient
is an old lemma. If f € O(D), let N(f) be the number of times f vanishes
in D, counting multiplicities. Then the lemma is this:

LemmMmA 1. Let f be a finite Blaschke product. Let A be holomorphic in D
and bounded by 1 there. If N(A—f) > N(f), then A = f.

Proor. (i) Let N(f) = 0. Then f is a constant of modulus one, hence by
the principle of maximum, 4 = f.

(ii) Let N(f) > 0. Because N(4 —f) is positive, there is, like in (i), a point
g in D with A(&) = f(&), but here |f (&) < 1. Let { = f(&), and put

_{-4 f_C—f ~z
14 P =g T1-&°

Then A, = wA,, f; = wf,, and
(A-TAA =T A= fo)w = (L= 1)(A=1).

A,
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The identity gives

1+N(A;—f2) > 1+ N(f3)

because

N(A—f) > N(f) = N(/1) = 1 +N(f>).

By the induction hypothesis, A, = f,, which means 4 = f.

THE prROOF OF THEOREM 1. If |§] < 1, put

fO =TI eot+ies

ox)=¢
and

l m
A¢) = (— Y (1+5(¢’,X))¢1(x)> .
M ox)=¢

It is plain that f and A are holomorphic in D, with |f| <1 and (4] < 1
there. (Less briefly: To each point x there is an open disc V of center x and a
(cyclic) group G, of 1+0(¢’, x) automorphisms of V¥ that fix x, such that the
orbits of points are the fibers of ¢|V. In other words, if y € V, then the set of
points o(y), o€ G, is the set in V where ¢ = ¢(y). We may identify O(p(V))
with {g(@): g€ O(¢(V))}; then O(V) is an overring of O(e(V)). The group G
serves to tell who is in @(¢(V')). The test is this: let ge O(V); then g € O(p(V))
iff g(¢) = g for every ¢ in G. Put

0= n 1(0);

oceG

then by the test, 8 € O(p(V)), which means 6 = g(¢) with g holomorphic in
(V). Let |¢| < 1. If f; is the germ of f at £, and g, the germ of g at ¢(x),
then by (2.1),

22) fi= 11 9-
px)=¢

This proves that f:€0,, which means f € O(D). Likewise, 4 € O(D)). And it is
plain that f is proper, because if m sequences in the disc D converge to the
boundary, then their termwise product does too. Let | be the number of times
S vanishes in D. Then it is plain, once more, that | = m,, which is to say that f,
like ¢, vanishes m, times. (Less briefly: Let |¢| < 1. Then by (2.2),
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(2.3) of,0)= Y 09x?),

olx)=¢

while by the corollary to Lemma 7 (infra),

(g, p(x))(1+0(¢', x)) = 0(9(9), x) = 0(6, x)
= Y Apilo)x) = Y A@y,a(x))(1+d(d,x))

ceG oeG

= 0(¢y, x)(140(¢', X)),

that is, d(g, ¢(x)) = d(¢,, x), hence by (2.3),

a(f9 C) = Z 6((p1,x).
ox)=¢

Then

I= Z of,¢) = Z Z @y, x) = Z O(@y,x) = my.)

teD ¢eD o(x)=¢ xeX

Let x € X. If the branch order of x is m—1, then
A(@(x)) = 01(x)" = f(o(x)).

This means that

(2.4) NA-f)2N

if the left side is the number of times A — f vanishes in D. The inequality
(2.4), plus the hypothesis N > m,, implies that N(A—f) > N(f). Then by
the lemma, 4 = f.

We may identify ¢/(D) with {g(¢):g € O(D)}; then, in words used before,
O(X) is an overring of O(D). It is to be proved that ¢, e O(D). If xe X,
let x,..., x,, be the points where' ¢ = ¢(x). Because there are m points in the
list, it is understood that x is in the list 1+0d(¢’, x) times. Put w, = @,(x;).
Then we have proved that
2.5) (l Yy w,) =[] W

m =y k=1
If m = 2, the identity (2.5) implies that w; = w,, which means ¢, € O(D). If
m > 2, the identity (2.5) does not imply that the w, agree.
Let —1 <t < 1. Then (t—¢,)/(1—t@,), like ¢@,, is a proper holomorphic



TWO-SHEETED COVERINGS OF THE DISC 21

map of X to D; it vanishes m,; times because ¢,, being holomorphic and
proper, is of constant valence. Hence by “4 = [,

26) (1 i t-—w,‘>"'= I'l'[ t—w,

m = 1—tw, k=g 1—tw,’

Then (2.6) holds everywhere in t because both sides are rational. Let n be the
number of w, that equal w,. Then the right side of (2.6) has a pole of order
n at 1/w, while the left side has a pole of order m there. Thus n = m, which
means, once more, that ¢, € O(D).

We have proved that ¢, = g(¢) with g holomorphic in D; |g| < 1 there
because @(X) = D. Then g is proper.

(ProoF. Let E, contained in D, be bounded in D. Put F = {ge E} and
G = {@eF}. Then G = {¢, €E}, hence G is bounded in X, hence ¢(G),
ie. F, is bounded in D.)

Finally, if k is the number of times g vanishes in D, then by (2.1), m; = km.
(Less briefly: By (2.1),

km= 3 09,8) Y (1+d(¢,x)= } (g, ¢x)(1+0d(¢,x)),

teD o(x)=¢ xeX

while by the corollary to Lemma 7 (infra),

the last sum = ) 9(g(p),x) = m,.)
xeX

2.2. How good is the theorem, in other words, can one say more if the
number of points of branch order m—1 is finite? I think it is fair to say no.
Let m =2, let N < oo, put

A = {¢(x):x is a branch point of ¢},
and let y be “the” finite Blaschke product that vanishes to order one every-
where in A. The number of points in 4, like the number in 4, ((2.7) infra),
is N. By part 3 (infra), y(¢) = 6% with 0 € O(X). Then 0 is proper, but it is not

a g(p). By (3.6), it vanishes N times.
Put

2.7 4, = {xe X :x is a branch point of ¢}.

Because m = 2, the number of points in 4, is N. Let y, be holomorphic in X,
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vanish to odd order infinitely often there, and vanish to odd order everywhere
in A,. (If we like, y; = B(¢)0 with B a Blaschke product that vanishes to odd
order infinitely often in D, but vanishes nowhere in 4.) Let (X, ¢,) be the
Riemann surface of \/7, , in other words, (X, ¢,) is a 2-sheeted covering of X
with y,(¢,) a square in O(X,). If ¢, = ¢(p,), then the pair (X,,¢,) is a
4-sheeted covering of the disc D with N points of branch order 3, no points
of branch order 2, and infinitely many points of branch order 1, while 6(¢,)
is a proper holomorphic map of X, to D that is not a g(¢,) because 0 is not
a g(¢). Because 6 vanishes N times, 6(¢,) vanishes 2N times.

3. Proper holomorphic maps of X to itself.

We return to part 1. Accordingly, the pair (X, ¢) is a two-sheeted covering
of D and N is the number of branch points of ¢. Let Prop X be the semi-
group of proper holomorphic maps of X to itself. Then Prop X contains
Aut X. If 3 £ N < oo, then by Riemann-Hurwitz, Prop X = Aut X. (If N = 2,
then by an ad hoc proof, Prop X = Aut X.) What if N is infinite? Then the
inclusion can be proper, and it is this we study here. (If N = 1, X = D, hence
the inclusion is proper.)

Let N = oo. Then by putting ¢, = ¢(f) if fePropX, we may use
Theorem 1 to study Prop X. E.g., we find that if H*(X) separates points in X,
if f e Prop X, and if f fixes a point, then f € Aut X. (This is Theorem 4.)

Put

4 = {o(x):x is a branch point of ¢},

and let T = 4’ (the derived set of 4). Then 4 is a discrete set in the disc D,
while T is a closed set in the circle D. Both are nonempty (4 is infinite, but
T may be finite).

Let f € Prop X ; then by Theorem 1, ¢(f) = flp) with f € Prop D. Which
finite Blaschke products are f’s? The test is this: Let g be a finite Blaschke
product. Then the following imply one another:

(i) gis an f.
(ii) Let éeD. Then ée 4 iff g(é)e 4 and ¢’ vanishes to even order at &,
(If g'(&) # 0, the order of vanishing is zero, which is even.)

We begin by proving the “g = f test”. The proof is lengthy.

To ¢ corresponds a period 2 automorphism of X, called 6. The proof
and precise statement is this: Let x € X. Then the set where ¢ = ¢(x) consists
of x plus one other point, say y. It is understood that y = x if x is a branch
point of ¢. Put o(x) = y. Then ¢(c) = ¢ and o(g) = 1. (Iota = the identity
map.) To each point there is a disc in which ¢ is either the identity or minus
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the identity, which means ¢ is holomorphic. (The first alternative holds if the
point is not a branch point, the second if it is.) Then o € Aut X.

We have
(3.1) o(x) = x iff x is a branch point of ¢.

LEMMA 2. Let f € Prop X. Then f (o) = o(f). In words, the proper maps of X
to itself commute with the period 2 automorphism that corresponds to ¢.

Proor. By Theorem 1,

?(f (@) =[(@0) =] (@) = o(f),

hence either f (o) = a(f), which is to be proved, or f(s) = f.

Let f(o) = f. Then f = g(¢) with g: D — X. This gives f = ¢(g) because
flo) = o(f), hence N(f”) is infinite. N(f’) is the number of times f’ vanishes
in D, counting multiplicities.) But N(f’) = k—1 if k is the valence of f.

We identify, once more, O(D) with {g(¢):g € O(D)}; then, in words used
twice before, 0(X) is an overring of (D). The automorphism ¢ serves to tell
who is in O(D). The test is this: let f e O(X); then f e O(D) iff f(o) = f.

Let 6, € O(X) but ¢ O(D), put 0, = 0, —0,(c), and put y, = 03. Then y, is
holomorphic in D. Because y, does not vanish everywhere there, its order of
vanishing, pointwise, is even or odd. The alternative is that the order of
vanishing is everywhere infinite. Let y, € O(D) with 0(y,, z) = k if d(yy,z) = 2k
or 2k+1. Then y, = y3y with y holomorphic in D and all zeros of y, if any,
simple. Put

(3.2) 0 = 0,/72;

then 6% = y, hence 6 € O(X). By (3.2),

3.3) 0(c) = —6.
LeEMMA 3. The pair (1,0) is a basis of the O(D)-module O(X).
Proor. Let ge O(X), and put

A =(9+9(0))/2, B=(g—g(0))/20.

Then g = A+ B#. It is to be proved that B, which is meromorphic in D, is,
like 4, holomorphic there. But B?y is holomorphic, hence B is too because
the zeros of y are simple.
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We have proved that the pair (1, 6) generates the @(D)-module O(X). On the
other hand if A+B6 = 0, with 4 and B in O(D), then by (3.3), A—B0 =0,
hence A = B = 0. This means the pair (1, 0) is independent over O(D).

CoroLLARY 1. 0 separates the points of fibers of .
Proor. ((X) separates the points of X.

LEMMA 4. The set where 0 vanishes is the set of branch points of ¢, in symbols,
(34) {6 =0} ={xeX:a(x) =x}

by (3.1). Equivalently, A is the set where y vanishes.

ProoF. By (3.3), the left side of (3.4) contains the right side.

Let 6(x) = 0. Then by (3.3) once more, §(a(x)) = 0, hence by Corollary I,
_ a(x) = x. This proves that the right side of (3.4) contains the left side. (Alter-
natively, let x € X. Then because 02 = y(¢),

(3.5) 20(8, x) = 0y, (x))(1 +0(¢', x))

by the corollary to Lemma 7 (infra). Thus if 6(x) vanishes, then é(¢’, x) is
odd, which means x is a branch point of ¢.)

LEMMA 5. Let g be a finite Blaschke product. If g is an f, then y(g) = B?y
with B e O(D).

Proor. By Lemma 2, 6(f(0)) = 0(6(f)) = —0(f), hence by Lemma 3,
0(f) = B6. Then

79(@)) = (B*7)(9)
because the left side = y(p(f)) = 0*(f).

The converse is true too: g is an f if y(g) = B%y. This is Lemma 6 (infra).
Let x € X. Then by (3.5),

(3.6) " @(x)+0 if x is a branch point of ¢,

while of course

(3.6") ¢@'(x) # 0 if x is not a branch point of ¢.
LemMMA 6. Let g€ Prop D, and let

3.7 y(9) = B%>y with Be O(D).

Then g(@) = @(f) with f € Prop X, that is, g is an f.
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Proor. Let x € X. Then, counting multiplicities, the set where ¢ = g(p(x))
consists of two points, y, and y, say. By (3.7), 6(y,) = B(x)0(x) or
0(y,) = —B(x)0(x). If the first alternative holds, put f(x) = y,, if the second
holds, put f(x) = y,. (If both hold, y, = y,.) Then

(3.8) o(f) =g(p) and 0(f) = BY.

By (3.6) and (3.8), f is holomorphic because it is continuous, while by the
first identity in (3.8), f is proper.

Lemma 7. Let f and g be formal power series with f(0) =0 but f # 0.
If 0G is the order of vanishing of the formal power series G, then

a(g(f)) = (@g)(1+0f").
Proor. Without loss of generality g # 0. If

g=agt'+.., %0,

and
f=ff+..., fi#0, k>0,
then
9(f) = g(fis+ ..V + ... =g fisd+ ...
and
fr=kfisk 1+ ...,
hence

og(f) =kl=(1+k-1)=Q1+0f")g.

CoroLLARY. Let X, and X, be Riemann surfaces, let f be holomorphic in X ,,
with values in X,, but not a constant, and let g be holomorphic in X,. If
x€ Xy, and if O(F,w) is the order of vanishing of F at w, then

d(g(f), x) = d(g, f (x))1+0(f", x)).
We now come to the proof of the “g = f test”. Accordingly, g is a finite
Blaschke product.
Let (i) hold. By Lemma 5,

(39 7(9) = B%y, BeO(D).
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Then
(3.10) Y'(9)9' = 2BB'y + B?y'.

A. Let £e 4. Then by (3.9) and Lemma 4, g(£)e 4. Because d(y, &) = 1,

pE+t) =yit+ ..., 1 #+0,
while
B(l+1t) = B,tP+ ..., B, #0.
These give
2BB'y+B*y = (2p+1)By,t*" + ..,
hence by (3.10),
2p = 0(y'(9)g’, {) = 0(y'(9), £)+ (g, &) = 0(g', &)

because y'(g(¢)) # 0. In words, g’ vanishes to even order at &.

B. Let g(£)e 4 and let d(g', &) = 2. Then

Y(9(E+1) = Ao+ ..., Ao #0,

and
gE+1) =Gyt + .., Gy #0,
while
B((+t) = BtP+ ..., B, #0,
and

YE+) = nt*+ .., w# 0.
These plus (3.10) give

AoGyt®' + ... = Qp+k)Biy 2Pt "1+ ...
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If k = 0, that is, if £¢ 4, then by (3.9), p > 0, hence 2/ = 2p—1. This proves
ted.

We have proved that (i) gives (ii).

Let (ii) hold. Then y(g) = Ay with Ae ¢(D). It is to be proved that A4 is
a square.

Let A(¢) = 0. Then g(£) e 4, hence

G.11) 1+0(g',¢) = 0, g(E)(1 +0(g', &) = d(r(9). &)

by the corollary to Lemma 7.
A. Let £€ 4. Then 0(g’, &) = 21. By (3.11),

1420 = 0(y(g). §) = 9(A4,8)+0(7, &) = 0(4, ) +1

or 2l = 0(A, §).
B. Let ¢ 4. Then d(g’, &) = 1+21. By (3.11) once more,

2421 = 0(y(g), &) = 8(A, 8)+0(y, &) = 9(4, ).

We have proved that 4 vanishes to odd order nowhere in D. This means 4
is a square, in other words, y(g) = B*y with Be O(D). Thus by Lemma 6,
(i) gives (i).

COROLLARY 2. Let g be a finite Blaschke product. If g is an f, then T,
the derived set of A4, is completely g-invariant. In symbols,

(3.12) T={geT}.
Proor. If k is the valence of g, then by the g = [ test:
(3.13) there are at most k— 1 points in {ge 4} \4.

Let g(¢) e T with ¢ ¢ T. Then there are infinitely many points in {ge 4} \4,
but this contradicts (3.13). This proves that the left side of (3.12) contains the
right,

Let £€ 4. Then by the g = f test, g(¢) e 4. Thus T contains g(T), in other
words, the right side of (3.12) contains the left.

3.1. Four theorems on PropX. Let gePropD. This, ie, g is a finite
Blaschke product that is not a constant, is a standing hypothesis. Let E < T.
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Then by E £ T we mean that g, if restricted to E, is a homeomorphism of E
with T. This amounts to saying E is closed, g is univalent in E, and
g(E) = T. Let k be the valence of g.

COROLLARY 3. Let g be an f, and let T #+ 0D. Then
k
T=\ T
1=1
with the T, disjoint and with T, £ T. This means in part that T is the union

of k disjoint copies of itself.

Proor. Let £€0D \T. Here we use T # dD. The circle 0D is the union of k
nonoverlapping arcs whose endpoints, z,,..., z,, satisfy g(z) = & If 4, is the
Ith arc, let T, = A, n T. Then T, is closed, g is univalent in T; because, by
Corollary 2, the endpoints of A4, are not in T, and, by Corollary 2 once
more, g(T;) = T. In brief, T, £ T, while the T,, whose union is T, are disjoint
because, once more, the endpoints of the 4; are not in T.

If | is a positive integer, let g, be the Ith iterate of g. In symbols,

91 =9, 92 = 919)-- 91 = 91-1(9)

If =0, g =1 Then g, like g, is a proper holomorphic map of D, but its
valence is k'.

CoRrOLLARY 4. Let g be an f, let T # 0D, and let | be a positive
integer. Then T is the union of k' disjoint copies of itself.

PROOF. g, is an f.
Here is the first theorem on Prop X.

THEOREM 2. Let T #0D. If T is not the union of large numbers of
disjoint copies of itself, e.g., if the number of components of T is finite, or if
the number of isolated points of T is finite, then Prop X = Aut X.

ProoF. Let f € Prop X. By Corollary 4, { is univalent, which means f is too.
Put 0'(t) = €"g'(e")/g(e") if —o0 <t < o0, and let i6(0) = logg(1). Then
(3.14) gle") = 0.
If {,,...,{, are the zeros of g, i.e., if
k

o) = e [] =22

m=1 l—(mz ’
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then
k

(3.15) @)=Y (=1 =Ce)
m=1

which means in part
(3.16) 0 > 0.

Put p=min@. Then u > 0. Let || =1. Then there are k points,
ty <ty <...<t, in the interval [0,2n), that satisfy g(e") = ¢ Put
tie1 = t;+2n. Because u = ¢,

(B 1=t < 0(t141)—0(1),
while by (3.14) and (3.16), the right side is 2. Thus

(3.17) t,+1-—ll<2n/[1 ifl é[ék.

Lemma 8 (Fatou [1]). Let |&| = 1. If g is not univalent and if g fixes the
origin, then the union, over positive integers I, of the sets where g, = & is
dense in 0D.

Proor. We have g} =¢, 95> =919)d,...9: =¢:-1(9)g9’. Thus in D,
lgil = ! because |g'(e")| = €'(t). Then by (3.17), the circle 0D is the union of
k' (nonoverlapping) arcs of length < 2n/u' whose endpoints, z,, ..., z,, satisfy
gi(z) = &, while by (3.15), u > 1 because k = 2 and g(0) = 0. This proves that
the union in the lemma is dense in the circle.

CoroLLARY 5. Let ge Prop D but ¢ Aut D. Let £€0D. If g fixes a point in
D, then

Uta=9

is dense in oD.

Proor. The g in the corollary is conjugate to a g that fixes the origin,
namely, A(g(A)) if A is the period 2 automorphism of D that takes the origin
to the point fiked by g.

Here is our second theorem on Prop X.
THeOREM 3. Let T # 0D. Let f € Prop X. If f fixes a point, then f € Aut X.

Proor. If f fixes x, then f fixes ¢(x). This implies, by Corollaries 2
and 5, that 7 is univalent. Then f is too.
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3.1.1. Our standing hypothesis is that ge Prop D. Let g¢ Aut D, and let
g fix p, pe D. Let {e D, and put

4= la=1)

LeEmMMA 9. If g(z) is conjugate to a power of z, let { # p. Then 4, is infinite.

Proor. Let k be a positive integer. If { # p, and if x is a point with
gi(x) = ¢, then x,g(x),g2(x), ..., gx-1(x),{ are distinct. E.g,, if g3(x) = g,(x)
= ga(g3(x)), then g5(x) = p because g ¢ Aut D, hence { = g,_3(p) = p.

If { = p, let y be such that y + { while g(y) = {. (There is such a point
because otherwise g(z) would be conjugate to a power of z.) Let g,(x) = y.
Then x,g(x),g2(x),...gx-1(x), y are distinct.

LemMa 10. If g(z) is conjugate to a power of z, let { # p. Then A, does not
satisfy the Blaschke condition, i.e.,

2 (I=lzl) = .

ZeA;

Proor. If ¢’ vanishes nowhere in 4, let £ = {. Otherwise, let x,,...,x, be
the points, in 4,, where g’ vanishes, let m(1),...,m(t) be integers such that
Im1)(X1) = ... = Gmy(X,) = {, and let £ e 4, with ¢ # g/(x,) if 0 = | = m(s) and
1 = s = t. There is such a point ¢ because, by Lemma 9, 4, is infinite. Then

(i) 4, contains A4, because £ € 4;;
(ii) g’ vanishes nowhere in 4..

To prove (i), let x, € 4,. Then £ = g,(x,) say, which means & = g;_,1,({)
because [ > m(1). On the other hand, because £ € 4, { = g,() say, hence

{ = Ghri-m)(©) and & = g1-may+x(&)-

But { # ¢ while I—m(1)+k > 0. This proves (ii) because g ¢ Aut D.

Let 4, satisfy the Blaschke condition. Then there is a Blaschke product B
that vanishes to order one everywhere in 4, while vanishing to order zero
elsewhere. Put 68 = B(g). Then 6, like B, is a Blaschke product. Let 6(x) = 0.
Then g(x) € 4, hence x € 4,, hence 6'(x) # 0 because 6'(x) = B'(g(x))g'(x). In
words, the zeros of 6 are simple and each is a zero of B. Then B/f e O(D),
hence

(3.18) B/ < 1

because |B| < 1. The inequality (3.18) means |B| = |B(g)l, hence |B| < |B(g,)|.
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Then |B| < |B(p)| because the iterates of g converge in D to the point
fixed by g. This proves that 4, does not satisfy the Blaschke condition. Then
by (i), neither does 4,.

COROLLARY 6. If g is an f, then A does not satisfy the Blaschke condition.

"Proor. If x € 4, then by the g = f test, each point of the sequence

g(x), g2(x), ..., gi(x), ...

is in A. This implies that g,(x) = p for some ! because 4 is discrete in the
disc while, once more, the iterates of g converge there to the point fixed by
g. In other words,

(3.19) ped and Ac 4,

The previous lemma means in part this: to prove the corollary it is enough
to prove there is a point { such that 4 contains A4,. There are two possibilities.
The first is that g’ vanishes to odd order nowhere in 4,, the second is g’
vanishes to odd order somewhere in 4,.

(i) g’ vanishes to odd order nowhere in 4,. Then 4 = 4,.

To prove this, let x e 4,. Let k be the first integer with g,(x)e 4. If k = 1,
then g(g,_,(x)) € 4. But g’ vanishes to even order at the point g, _,(x) because
this point, like x, is in 4, hence by the “g = f test”, gy_i(x)eA. Thus
k =0, that is, x e A.

(ii) g’ vanishes to odd order somewhere in 4,. Let x,,...,x, be the points,
in 4, where g' vanishes to odd order, let m be an integer such that
In(x1)=... =gn(x,)=p, and let (€A with { #gx,) f 0=SI=m and
1 =5 = t. Then 4 contains 4;.

To prove this, we first prove { #g,(x,) if /20 and 1 Ss=¢t If
gi(xs) =, then | > m, hence { = g,_,(p) = p. But { # p.

Let xe 4;. Then { = g,(x) say. Once more, let k be the first integer with
g(x)ed. If k 21, then by the “g = f test”, g’ vanishes to odd order at
gk-1(x). Then g, _,(x) = x, say, hence { = g,_,(x;) because | = k—1. This
proves k = 0.

One has, in the symbols of the proof of the corollary,

(3.20) 4= A,,\( O Ax') .

s=1

The identity means in part that g determines 4 if g is an f. How can one
exploit this, or for that matter, how can one exploit (3.20)?
We may paraphrase the corollary in this way.
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THeorReM 4. Let A satisfy the Blaschke condition. Equivalently, let H™(X)
separate points in X. Let f € Prop X. If f fixes a point, then f € Aut X.

ProoF. By the hypothesis on f, f fixes a point in D, hence by the hypo-
thesis on 4, f is univalent.

Here is the fourth theorem on Prop X. We might have proved this at the
outset.

THEOREM 5. Let f e Prop X but ¢ Aut X. Then f fixes at most one point.
If f fixes a point, then the point is a branch point. (Neither of these need
hold if f e Aut X.)

Proor. Let f fix x and put p = ¢(x). Then f fixes p, hence by (3.19),
p € 4 because f ¢ Aut D. This proves the second assertion of the theorem. For
the first assertion, let f fix y and put g = ¢(y). Then f fixes q as well as p,
hence q = p because otherwise f(z) would be z everywhere, but f is neither
1 nor ¢. That is, @(y) = @(x), hence by the second assertion, y = x.

3.2. The theorems are pretty good. What we mean is this:

A. There is an X, whose N is infinite, that has a proper holomorphic map
of itself of ‘valence 2 that fixes a point.

B. There is an X, whose N is infinite, whose T is not the circle, and
whose 4 satisfies the Blaschke condition, that has a proper holomorphic map
of itself of valence 2.

C. There is an X, whose T is the circle, and whose 4 does not satisfy
the Blaschke condition, that has a proper holomorphic map of itself of valence
2 that fixes no point.

All three have a period 2 automorphism that fixes two points, neither point
being a branch point, and a period 2 automorphism that fixes no point.

We will omit the proofs of the first two. Here is the proof of the third.
We will work not in the disc D, but in the right half plane H. This is
all right, because if (X, @) is a two-sheeted covering of H, and if ¢, is the
Cayley transform, (¢ —1)/(¢ + 1), of ¢, then (X, ¢,) is a two-sheeted covering
of D, and vice versa. Let

1
g(z)=z+ Z

Then g maps H bivalently onto itself.
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Lemma 11 (Fatou [1]). There is a 0 that is holomorphic in H, that is not a
constant, and that is g-invariant. In symbols,

0eOH), 0¢C, and 06(g) = 0.

Proofr. The key to 0 is this: iterate the square of g. We begin though
by iterating g. Let

1 1 .
Zo = 2, Z141 =Z,+“‘, Al=—__9 and x1+’)’l=zl~
Then
(3.21) Xpey = X(1+4,),

hence x; 1 s. It is understood that x, > 0. If s < o0, then by (3.21) once more,
A;— 0, hence y, -t with —o0 <t < o0 because

(3.21A) Yier = (1 —A).

Then A4, — |s+it| ™2, but this is not 0. This proves s = co. Thus

(3.22) Y A=
k=0
because

1
Xj+1 = Xg n (1+4,),
k=0
while

(3.23) 4, -0

because 4, < 1/x2. By (3.22) and (3.23), y, — O because

]
Yi+1 = Yo H (1—Ay).
k=0
Then

(3.24) Yi/%, = 0.
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By (3.21) and (3.21A),

(3.25) Vis 1/ Xea] < lyi/xl.

Let f(w) = w+1/w+2. Then f maps the slit plane {z?>: ze H} bivalently
onto itself. One has g,(z)* = fi(z?), but we do not use this if | = 2. Anyway,
passing to f and its iterates amounts to squaring the iterates of g.

Let

1
Wo =W, W =wi+—+2, Bj=——, and uy+iv, = w,

Then, like y,,,,

(3.26) Vivy = Vg k[_']o (1-By),

while, unlike x,, ,,

(3:27) Uy = u(l+B)+2.
Let ug > 0. Then by (3.27), u; > 21, hence

(3.28) B, < 1/41%.

By (3.26) and (3.28), the harmonic functions v, converge uniformly in the half
plane u > 0, to V say. Then

V = vl H (l"‘Bk).
k=1

The infinite product is positive, hence the sign of V changes with that of
v,. This proves V is not a constant. We have v;,, = v)(f) because
Wie1 = w(f), hence V = V(f). Thus if F is holomorphic in u > 0 with
imF = V there, then F(f) = F +y with y e R. In other symbols,

Fw+1/w+2) = Fw)+y.

Let H'? be the sector of opening n/2, ie.,
H'? = {x+iy:|y| < x},
and put G(z) = F(z?) if ze HY?. By (3.25), z+1/z is in H"? if z is. Then

G(z+1/z) = F(22+1/22+2) = F(z*)+y = G(2) +y.
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Thus in H'?,

(3.29) Gg)=G+ly if 1=0,12,....

We may combine (3.29) with (3.24) to continue G to H. Put X, = {g,e H'/?}.
Then in X, n X, G(gx)—ky = G(g,)—ly, while by (3.24), H is the union of
the X, This continues G to H if in X, we let G = G(g;)—Ily. Then
Ge O(H) with G(g) = G+7.

We now come to 0. If y = 0, put @ = G, while if y # 0, put § = €%, Then
0 e O(H) with 0(g) = 0. Finally, 0 is not a constant since V is not.

Fatou’s proof, which is of greater subtlety, gives more. Namely, the value
of y, which is 2.

To ¢ in H, or for that matter in P, corresponds its g-orbit 4,. This is to say,
4, = U {9x = 91(&)}.
k=0

(The 4, in 3.1.1 is just a piece of the 4, here.) Then
(3.30) 4; = {gedy,

in words used before, 4, is completely g-invariant. It is the least set
containing ¢ that is.

CoroLLARY 7. Let £ € H. Then A, is discrete in H.
Proor. The set where 8 = 6(¢), which is discrete in H, contains 4,.
LEmMMA 12. A, does not satisfy the Blaschke condition.

Proor. By (3.22),

o

=
o |z +11°

because x, = 1 if k is large.
LEmma 13 (Fatou [1], Julia [2]). 4, is dense in the imaginary line.
ProoOF (in brief). Let zo iR \4, and let D be an open disc of center z,.
By (3.21A), A4, #+ 0, hence by Montel,
U 9:1(D)
=0

meets 4,. Then D does too.
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We now come to the X in the statement C. Let { € H with Z ¢ 4,. Then
(3.31) g’ vanishes nowhere in 4,.

By Corollary 7, there is a y in O(H) that vanishes to order one everywhere in
A, while vanishing to order zero elsewhere. Let X be the Riemann surface
of \/;7 Then X is a two-sheeted covering, of H, whose 4 is 4,. By (3.30)
and (3.31), there is an f in Prop X with f = g. Then f is of valence 2 and
fixes no point. Put G(z) = 1/z. Then g(G) =g, hence 4 is completely G-
invariant, hence by the “g = f test” once more, there is an F in Prop X with
F = G. Then F and F(c) are period 2 automorphisms. One of these fixes
two points, neither point being a branch point, the other fixes no point.
Finally, 4 does not satisfy the Blaschke condition, this is Lemma 12, while
in the disc D, T = 0D by Lemma 13.

3.3. Three problems. We state each in terms of the two-sheeted covering X,
but by Theorem 1, plus the “g = f test”, all are problems on finite Blaschke
products.

ProBLEM 1. Can we have f,ge Prop X but ¢ Aut X with g fixing a point
and f fixing no point?

ProBLEM 2. Let y be the number of points fixed by the proper maps
that are not automorphisms, i.., yx is the cardinality of

{xe X :3f ePropX but ¢ Aut X with f(x) = x}.

By Theorem 5, y is at most countably infinite. What are the possible values
of x? One can have y = 2, but we do not know, for example, if 1, 2, or @
is possible.

The underlying problem is one of size. Namely, how large can the semigroup
Prop X \Aut X be? I think the answer is “not very”. This would mean that in
Problem 1 there is no such pair (f,g), while in Problem 2, y is finite.

Let f and g be holomorphic maps, of D to itself, such that g is proper
while f fixes no point. Suppose that to each positive integer [ there is a
positive integer m such that the Ith iterate of f followed by the mth iterate
of g fixes the origin, in symbols, g,(f;(0)) = 0. Is this possible? It seems
unlikely, especially if g fixes the origin and f is proper. This, i.e., “not possible
if g(0) = 0 and f € Prop D”, would imply that in the first problem the answer
is no.

This is a good place to prove that Prop X is countable, which means that
Prop X is countably infinite if it is not equal to AutX. In other words, in
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terms of cardinality, Prop X is as small as it can be provided it is not equal
to Aut X.

Let ge Prop D and put k = the valence of g. If £e D, let (g = £) be the
unordered k-tuple of points where g = £ Thus if the point x is such that
g(x) = & with multiplicity [, then x is listed ! times in the tuple (g = &).

LemMa 14. Let f,fePropX and let EeD. If the tuples (f = &) and
(fy = &) are equal, then

-] _ &-h
i-¢7 M-y,

where u is a root of unity.

ProoF. Let A be the period 2 automorphism of D that takes the origin
to the point ¢, in symbols, A(w) = (£ —w)/(1 —&w). The hypothesis implies
that A(f) = pA(f,) where |u| = 1. It is to be proved that y is a root of unity.

Put g = A(f(A)), 91 = A(fi(4)), ¢, = A(p), and 4, = A(4). Then

(3.32) g = ugi,

while g(¢,) = A(f(¢)) = A(¢(f)) = @,(f), which means that g is an f. Like-
wise, g, is an f. By the “g = f test”, there is at most a finite number of points
¢, in A,, such that A, does not meet {g, = (}. Call these points, if any,
{is.- 8, Let O 4y with |6] # || if 1 = k < t. Because § is not a {;, thereisa y
in 4, withg,(y) = 6, but then by (3.32), u0 = g(y),hence uf € 4,. Then p?6 € 4,,
etc. This proves, if 8 # 0, that p is a root of unity because 4, is discrete in
the disc.

THEOREM 6. Prop X is countable.

‘Proor. If (€4, let 4° be the set of those unordered tuples, (f = &),
whose components belong to 4. Then A% is countable because 4 is, in symbols,

(3.33) A={fi=8 =0}

Let A, once more, be the period 2 automorphism of D that takes the origin
to the point ¢£.

Let f e Prop X. By the “g = [ test”, there is a £ in 4 with (f = ¢) in 4,
but then the tuple (f = ¢) is equal to one of the tuples in the right side
of (3.33), to (fi = &) say. By the lemma, f = A(pA(f,)) where p is a root
of unity.

ProBLEM 3. If 0 =t < 1, let pu(t) be the number of points in 4 bounded by ¢.
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Then

zed

1
Ju(t)dt = ¥ (-l
o

Because of Theorem 4, we ask if
(3.34) Prop X = Aut X

if u is not too large? E.g., is there a p, 1 < p < o0, such that (3.34) holds if

1

jy(t)”dt < o0?

0

Failing this, what if

1
J2“"’dt < o?
)

REFERENCES

1. P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271;
48 (1920), 33-94, 208-314.

2. G. Julia, Mémoire sur l'itération des fonctions rationnelles, J. Math. Pures Appl. 4 (1918),
47-245.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WISCONSIN - MADISON
MADISON, WISCONSIN 53706

USA.



