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ON EXTREMAL h-BASES 4,

SVEIN MOSSIGE

Summary.

Let heN. For each set A, = {l = a, <a, <a; <a,} with g eN the h-range n(h, A,) is
defined as the largest integer N, such that all positive integers n < N have a representation as a
sum of at most h addends, all elements from the set A4,. In this paper we give a set 4, for which

n(h, Ay) = 64(h/4)* +O(h®)  where o, > 2.008.

1. Introduction.

LetN = {1,2,3,...}, No=N u{0}and Z = {0, 1, £2,...}. Small letters
represent non-negative integers, when not otherwise said. [x] denotes the
integral part of a real number x. We define an interval by

[a,b] = {m|m,abeZ, a < m =< b}.
The sum A+ B of two non-empty integer sets A, B is defined by
A+B = {a+blac A, beB]}.

Let he N. Then we write hA for the h-fold sum A+A+...+ A.
We shall be concerned with finite integer sets

A=A,‘={a1,az,...,ak}, 1=a,<a2<...<ak.

We have a representation of the integer n with respect to the basis A, if

k
(1.1) n= Y xa, x€No.
1=1

We say that A, is a h-basis for a positive integer n if [0,n] = hA’, where

A = A, = A, u{0}.
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We denote the representation (1.1) a h-representation of n, even if less than h
addends are used. The h-range n(h, A,) is

nh,A) =n iff [0,n] < hA, and n+1¢hA;.

In the global case (Selmer [11]), h and k are given and the problem
consists in determining the extremal h-range

n(h, k) = max n(h, A,),

A

and also the corresponding extremal bases, i.e. the bases A, for which
n(h, A,) = n(h, k).
We consider only bases A4, which are h-admissible, that is

a, = n(h, A,).
Let us denote the smallest such h by hy, hence
ho = ho(A,) = min{he N|a, < n(h, A,)}.
For k = 3 (see Selmer [11]),
(1.2) ho = ho(A3) = ay +[as/a;]—2.

2. Some results about s-ranges.

Apart from some tabulated values of the extremal h-range n(h, k) for small
h and k (see Mossige [7], [8] and Lunnon [6]), the exact value of ri(h, k)
is known only for k = 1 (trivial), k =2, k = 3 and for h = 1 (trivial).

Let k be given. Like Hofmeister [3] we write for h — oo,

n(h, k) Z c,(h/k}+O(H~1).

For k = 4, Hofmeister and Schell [2] showed in 1970 that

1989
> 4 3 .
n(h,4) 2 1004 (h/4)* +0(h>)

Hofmeister and Schell showed in 1972 (see Hofmeister [5]) that

(2.1) n(h,4) = 2(h/4)* + O(h*).
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In a lecture in Mainz in 1972, Hugo Schell (see also Hofmeister [5, p. 51])
presented the conjecture that:

for given k 2 1 and sufficiently large h,
the extremal h-range satisfies

k-1

k

n(h k) = 2 (h/k):+ Ok~ 1).

The conjecture is true for k = 1,2 and 3, see Hofmeister [3].
Since 1971, it seems to have been generally believed that (2.1) holds with
equality. Here we prove (Mossige [9])

2.2) n(h,4) Z c4(h/4)* +0(h*), where ¢, > 2.008.

Hence, for k = 4, Schell’s conjecture is not true.
We shall need the following result of Mrose [10]:

LEMMA 2.1. Let k,meN. If
n(h, A,) Z ¢ (h/ky+O0Mh*~ ') for all heN
with h = 0 (mod m) (h — o0), then we have for all K e N (W' > )

n(h, 4) 2 e/l + O,

3. The main steps in the search for bases 4, with large h-ranges.

Let k=4, h = 12j, j = at, where a,teN. For o sufficiently large we
consider the h-range of the integer basis C = {a;,a,,as,a,}, given in the
regular form (see (4.2)) as

a, =1

a, = (9j+b,t+d,)a,

ay = (4j+byt+dy)a, +(3j+bst +ds)a,

ag = (Tj+bst+dy)a, + (2j+bst+ds)a, +(2j+bet +dg)as,

(3.1)

where the ordered sets B = (b,,b,,b3,bs,bs,be) and P = (d,,d,,ds,d,,ds,dg),
B,P = Z. We denote the basis C = C(B, P).

Our extensive calculations for k = 4 were performed on the Univac 1100/82
computer at the University of Bergen. We have earlier (Mossige [7])
determined the extremal h-range n(h,4) for all h < 28, by scanning the
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complete universe of all admissible bases 4, for each h. For larger h, the
search had to be restricted to increasingly narrower sectors of the complete
universes. The computed bases with the largest h-ranges for 29 = h < 75 are
given in [9]. It proved useful to concentrate the search to h,-bases, but
extensive calculations were also performed with h > h,.

From this point on, in 1978, the further search was concentrated on bases
with the structure given in (3.1). This is done without explicit computation of
the h-range and hence, the amount of calculations is independent of h. The
structure is the same as that Hofmeister and Schell used in [5], though they
did not parametrize the basis in the same way.

4. The regular form and the D(n; c,, c5, ¢,) representation.
The representation

k
4.1) n=1Y ea, ¢32=0,

=1

is regular (and unique) by the basis A, if

Y e < apey, m=12,.. k-1
151

From now on, let k = 4. The basis A, is given in regular form when

[ dy =y a,
4.2) az = y,a;+Y3a;
| Qg = Yaay+ Y53+ Yeas

are regular representations by the partial bases 4, = {a,,4a,,...,a,}, | =2,3.
From (4.1) with k = 4, for any ¢,eZ,
(n=ea,+e,a;+esaz+esa,+cy(y,a,—ay)+

+c3(y2a; +y3a; —as)+ca(yaay +ysa; +ysa; —as)

4.3) { = (ertcaystesy,+eayglag+(ea+cays+c3y; —cz)as +
+(e3+cays—c3)as+(es—ca)as

L = Xx,a;+Xx,8,+X3a3+x4a, (say).

If all x, 20, using Hofmeister’s notation in [5], we call this the
D(n; c,, c3, c4) representation of n (with respect to A4 in the regular form (4.2)).
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Clearly D(n;0,0,0) is the regular representation of n. We call

Glca,c3,¢04) = Zel_le

(4.4) = —C4Ye—CaY5—CaYa—C3Y3—C3)2—C2)1 +C4+C3+Cy

the gain in the number of addends in the D(n;c,, c3, ¢,) representation com-
pared to the regular one.

To determine the h-range of the basis A,, we use that for each integer
nehAy, we can find a h-representation D(n;c,,c3,¢,) with Y x; < h. (It is
clear that given x,..., x4, then c,, c3,c4 are uniquely determined by (4.3).)

5. The procedure to determine the /-range.

Lemma S.1. Let the basis A, in (4.2) with y3 = ys+2 be given. The
representation Y. eja; of the integer n is regular iff

ey =y —1

e =y

e3 = ye

+ye—1 for e, S y,—1
5.1) | eyte, < {Ys Ye—1 for e, =
V3tye—2 for ey 2y,
if e;=y; then e, £ y,—1,
if es=ys, and e, =ys then e, S ys—1 and else
L !‘f e3 = y6 then €y < Ys.

The proof is easy and can be found in [9].

LeEMMA 5.2. Let the basis C in (3.1) be given and let o be sufficiently large.
Let the regular representations of nel[0,hay] satisfy (5.1). Then the
representations

{D(n;—1,190)) D(";—'l,"l,l), D(n;—zvl’l)

(5.2)
D(n; —1,-2,2), D(n;-2,-12), D@n;-2,-3,3)

and D(n; —3, —4,5), given by (4.3), are the only representations that can
give a positive gain (4.4).

Proor. From (4.2), (4.3), and (5.1) we get

—CaYs+C3 S e3 = Y
—C4ys—C3Y3t+C; Se; S y;
—C4Ya—C3Y2—CY1 S e Sy — L.



10 SVEIN MOSSIGE
To use the representation (4.3), the gain (4.4) must be non-negative :

CaY6+CaYs+Cayatcays+C3y,+cy1—C4—c3—cy S 0.

Let a be sufficiently large. When we substitute by (3.1) in the inequalities
above, we get

(i) s 2 —1

(i) 2c44+3¢c3; 2 -3

(iii) Tea+4c3+9c;, = -9
(iv) ey, +7c3+9c, £ 0.

From (ii), (i), and (iv),
4e,+3c3 29, ¢y 6.

From this, it follows that we have only a finite number of different
representations (4.3). For chosen c,e[—1,6] we have

"3"26'4 é 3C3 é 9—4C4,
and for chosen c; we have
'—9“7C4—4C3 =< 9C2 RS —1164‘—7C3.

This gives us the following possibilities in addition to the seven given in
Lemma 5.2

cy 0 1 0 -1 =2 0 -1
c3 0 0 1 2 4 -1 0
c|l-1 -1 -1 -1 -1 0 0

From Lemma 5.1 it is easily seen that none of these representations
D(n;c;,c3,c4) can be used, and Lemma 5.2 follows.

Our basis C in (3.1) satisfies the condition y; 2 ys;+2 in Lemma 5.1 for «
sufficiently large. Let ne hC’' be given by (4.1) and satisfy (5.1). If possible,
we apply the D(n;c,, c3, c4) representation in (5.2) with non-negative coeffi-
cients that gives the largest positive gain. Then

(5.3) e;te,+es+e,—G(cy,c3,¢4) S h,
or we have for the regular representation itself that

(5.4) e, +estes+e, S h.
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It turns out that D(n; —3, —4,5) in our case never gives the largest gain.
Using (5.1) and the fact that the coeficients in (4.3) for the representations
(5.2) must be non-negative, we split the integers n first into 3 disjoint sets

1. 0§81§y2—1, € = Y3, 0§e3§y6—1

2. 0=e; =y;—1, 0Se;Sy;—1, 053 S ye—1

3_ 0§e1 éyl"l, Oéezéys_ly e3=y6 or
0=e Sy,—1, e, =ys, €3 = Ye-

Splitting these sets further, we end up with 40 linear inequalities of the type
(5.3) and (5.4) to determine the smallest value of e, with the corresponding
integer n € hC’ such that n+1¢ hC’ (see [9]). It turns out that this e, has the
form e, = 3at+xt+y, where x,yeZ. It follows that for a sufficiently large,
we get

(5.5) n(h, C) = a4(h/4)* +O(h*),
where the coefficient g, = 0,4(C).
6. The optimal C basis.

THEOREM 6.1. Let h = 12at, a,t € N. Let the basis C have B = (15b, 14b,
—15b,23b, —2b, —20b), P = (0,0, 2,0,0,0) where be N. Let b and o. be given,
where o 2 25b. Then the basis C = C(B, P) with

{a; = (9au+ 15b)ta,
(6.1) ! az = (4a+ 14b)ta, + ((3a— 15b)t + 2)a,
a, = (Ta+23b)ta, + a—2b)ta, + (2a—20b)ta,

is a hy-basis with h-range

(6.2) n(h, C) = (3a+45b)ta, +(a— 13b)ta, + (8 — 2b)t —2)a,.

Proor. From Lemma 5.2 and (4.4) we get the gains

(1) G(-1,1,0) = (2u+16b)—2
() G(—1,—1,1) = (Sa+13b) +1
(3) G(-2,1,1) = 30bt—2

4) G(—1,-2,2) = (a+11b)t+3
(%) G(=2, —1,2) = 3o +27b)t +1

(6) G(—2, -3,3) = (6a+24b)t +4.
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For each integer ne hC’, the regular representation (4.1), satisfying (5.1) is a
h-representation itself, or we use the D(n;c,,c3,cs) representation, corre-
sponding to the gains (1) to (6), that gives the largest gain. In each of the
40 cases below we mark to the left which representation that is used if different
from the D(n;0,0,0) representation. In each line we only write the changes
from the preceding line.

e; S Ba—3b)t—1,e; = (Ba—15b)t+2, e3 = Ru—20b) —1,
ey < (4o + 38b)t
Ba—-3b)t e, £ (da+14b)t—1,¢, =1
4)2=e, < (4a+32b)t+3
e, £ (Sa+b)—1,e;, £ (x—13b)t, e, < (da+32b)t+2
Ba+b)t Ze, S (Ta—7b)t—1,e3 =0, e, < (da+20b)t+1
(Ta—Tb)t S e; £ (Ba—2b)t—1,e, =0
()1 = ey < Bu+45h)—1
(1) Sa+b) ey < (8au—2b)t—1,1 S e3 < Qu—20b)t—1, e, £ Ba+51b)t
Bu—2b)t S e, S Qa+15b)t~1,e5=0, e, =0
Ble, =1
(1)1 Ses S (u—20b)—1, e, <1
(5)es S Qu—20b)t—1,2 S ey = (Ba+45b)t+3
e; £ Ba—3b)—1, (a—13b)t+1 < e, £ Ba—15h)t+1,
ey < (4a+38b) +1
Gu—3b)t S e, < (Sat+b)i—1, (@—13b)t+1 < e, S (2a—26b)t +2,
ey < (3a+45b)
(Qu—26b)t+3 =e;, =< Ba—15b)t+1,e, =1
4)2=e, = (Ba+45h)t+4
(Sa+b)t S e, S (6u+6b)—1, (x—13b)t+1 S e, S (20— 26b)t +2,
e3 =0, e, £ (4a+20b)—1
Qu—26b)t+3 < e, £ Ba—15b)t+1,e, =1
4)2 e, < (40 +20b)t+3
(1) @—13b)t+1 S e; < Ga—15b)+1, | S ey S (20—20b)t —1,
ey S (Ba+45b)—1
(6a+6b)t e, S(Oa+15b)t—1,e3=0,e, =0
(1)1 S ey < (2a—20b)t—1, e, =0
(2) (6a+6b)t < e, < Qa+3b)t—1, e5 S (2a—20b)t —1,
1 Sey S (3u+45b)t+2
() Ou+3b)t S e; S Qu+15b)—1, 1 S e, S 2
2) (@—13b)t+1 = e; £ Ba—39)t+3,3 S ey S (3a+57b)e
(6) Ba—39)+4 S e, S Ba—15b)t+1,3 S e, S (da+44b)t +5
e, S (Sa+b)—1, e, < (a—13b), e3 = Qu—44b)t, e, S (do+32b)t+1
(1) Sa+b)t S e; £ (Bu—2b)t—1, ¢4 £ (3a+51b)t—1
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(1) Bu—2b)t < ey < (9a+15b)t—1,e, = 1

(5)2 < ey < (Bu+45b)t +2
e; S (Sa+b)t—1, (a—13b)+1 L ey = Qu—26b)t+2, e, < (30+45b)t—1
e; = (Ba—3b)—1, Qu—26b)t+3 = e, = (Qu—2b)t, e, < (Sa+25b)t -2
Ba— 3b)t Se S Sa+b)y—1,e, =1

4)2 = e, = (4a+32b)+4

1) (<a+b)t Sey S (6a+6b)—1, (a—13b)t+1 =S e, £ Qu—2b)—1,
es < (da+32b)t

(1) (6a+6b)t < e, < (9a+15b)t—1,e, =0

(2) 1 £ eq S (do+20b)t +3

(1) Ga+b)t S e, < (6a+6b)—1, e, = 2a—2b), e, < (da+32b)t —1

(1) (6a+6b)t < e, < (Ta+23b)t—1,e, = 0

2)1 £ e4 < (60+12b)t+2

We easily check that for o = 25b, line 7 in the above scheme gives the
smallest integer

N+1 = Ba+45b)ta, + (x — 13b)ta, + ((8a—2b)t — 1)a,
with no h-representation and such that all integers smaller than N+1 have
a h-representation. Hence, from Lemma 5.2, N+1 has no h-representation

and n(h,C) =
From (1.2) we immediately have ho(C \{as}) = h hence, h = ho(C).

COROLLARY 6.1. Let the basis C = C(B, P) in (6.1) be given, with
n(h, C) = a4(h/4)* +O(h*).

For given ¢ > 0, we can choose the integers o and b such that

G4 > S4—E,
where
(6.3) sq = 2+37427%(y) = 2.0080397
(6.4) 9(y) = — 864y —4536y% — 594y° + 81y*

163

7
=74—5;7—3', 0<ep<mnf2

(6.5) 'y——+ J457

y = —0.09712372.
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Proor. From (6.2) and (6.1) we get for t —» o0

n(h, C) = (3o.+45b)t(20. — 20b)t (30 — 15b)t(9 + 15b)t + O(t?)
= t*(162a* 4+ 2700*b — 28350a2b? + 742500b> + 202500b*) + O(¢3).

Since h = 12at, we get with r = —20b/a
n(h,C) = (2+37427%g(r))(h/4)* + O(h*).

To maximize g(r), put g'(y) = 0, where y is given by (6.5).

Choosing a and b suitably, we can always make r = —20b/a as close to y
as we want, and hence 2+37%27%g(r) as close to s, as we want. In fact,
already the choice b = 1, a = 206 gives 6, with all the decimals of s, in (6.3).

The condition o 2 25b is clearly satisfied. The two other roots of g'(r) = 0
correspond to (local) minima of g(r). The remaining values of r, where
g(r) 2 g(y) are either positive or so large negative that we cannot get o« 2 25b.

In combination with Lemma 2.1 with modulus 12a, we have

THEOREM 6.2. For any given ¢ > 0
n(h,4) Z c,(h/4)* +0(h3),

where ¢4 > s, —¢. Here s, is given in Corollary 6.1.
7. The search for optimal bases.

The basis (6.1) of Theorem 6.1 was the result of a long and complicated
search, described in detail in [9]. We shall here only indicate the method.

As mentioned in section S5, the conditions (5.1) lead to a set of 40
(mutually disjoint) cases for the basis (4.2). With the particular choice (6.1),
these cases are given in section 6. With the general basis (3.1), we can similarly
write down the 40 cases, with 40 corresponding inequalities resulting from the
condition ) x; S h (when n = Y xa). It turns out that if a choice of 9 of
these inequalities are satisfied, so are the remaining ones (for « sufficiently
large).

The set P = (dy,d,,ds,d,,ds,dg) does not influence the coefficient o, of
(5.5). The choice of P in Theorem 6.1 turned out to be convenient (but
other choices of P might give larger h-ranges). Over all integral sets
B = (by, by, b3, by, bs, bg), we must then try to maximize o, (a non-linear
function in the b;) under the constraints of the above-mentioned 9 inequalities
(linear in the b;). This is a formidable task, but it was greatly simplified by
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the early observation that 6 of the 9 inequalities could apparently be replaced
by strict equalities. After a long computer search, the basis (6.1) finally
emerged.

We then got a welcome confirmation of this result, by treating the
optimization (with all 9 inequalities) as a problem in real variables. There
is a NAG algorithm EO4VDF for this (Numerical Algorithms Group (NAG),
7 Bandbury Rcad, Oxford, U.K.). The algorithm only gives a local maximum
for o4, but it came out with the same result (6.1). We therefore feel
confident that we have found the global maximum, at least with the structure
of the basis (3.1) as our starting point.

With P = (0,0, 2,0,0,0), it follows from (3.1) and (1.2) that

ho(C\{as})=h+ (b +b3)t,
showing that we must have b, + b; < 0. In the optimization, we usually get
ho = ho(C) = h+(b1 +b3)t.

Choosing b; +b; < 0, we then get bases where h—h, is proportional to
h = 12at. Also in this case, we can find bases C with the coefficient o, very

close to the optimal one in Corollary 6.1. As a simple example of o, > 2,
we mention

B =35 -98, -2 —11), a=141, o, = 2.0058.

This should be compared with the extremal bases for k = 3 (Hofmeister
[1], [4]), which all have h—h, ~ h/9 (asymptotically, as h — o).
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