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CONFORMAL MARTINGALES AND ANALYTIC
FUNCTIONS

JAN UBGE

Abstract.

We give a number of equivalent characterizations of conformal martingales in C", including
a representation formula in terms of complex Ito integrals.

We then prove that if m > 1 there exist no diffusions X,, Y, on C", C™ respectively such that
all analytic ¢:C" —» C™ map X, into a time change of Y,. However, given any “reasonable” Y,
on C™ and any such ¢ we may construct a diffusion X, (which depends on ¢) such that ¢ maps X,
into a time change of Y.

Finally we prove that the complex Ito and complex Stratonovich integrals in C" coincide if
the integrand is holomorphic.

Introduction.

Our main concern in this paper is to study conformal martingales
in a complex notation. Our basic tool, the complex Ito formula, is by
now well-known. It has been used by several people e.g. Varopoulos [9].
Following Fukushima and Okada [2], we define a conformal martingale
Z,=(2,,2,,..,2,)€C" by the requirement that all Z; and all Z;Z; should
be martingales. In an abstract way, we look at martingales as analogues
of harmonic functions and conformal martingales as analogues of holomorphic
functions. From our viewpoint this definition seems to be natural.

For information on conformal martingales in the plane see Getoor and
Sharpe [3]. For information on stochastic integrals see Gksendal [5].

In Theorem 1 we give several equivalent formulations of the concept
conformal martingale. Some are well-known, but we believe that the matrix
conditions (v), (vi) and (vii) are new.

Theorem 2 states that every conformal martingale dX, = odB, in R?" can be
written as dZ, = UdW, with U a complex nxm matrix and W, a complex
version of 2m-dimensional Brownian motion.

Theorem 5 explains why there can be no pair of processes X, in C", Y,
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in C" m > 1 such that ¢(X,) coincide in law with Y, whenever ¢: C" - C™
is analytic. (When m = 1 there are many such processes.)

Theorem 7 proves a weak Levy theorem in C™, m > 1; Given a reasonable
¢:C"— C™ and a “nice” diffusion H, in C™, there exists a diffusion Z, and a
time-change «, such that ¢(Z, ) coincide in law with H,.

Theorem 9 states that if dZ, = U(Z,)dW, is a solution in the Stratonovich
sense and U has holomorfic coefficients, then Z, is also a solution in the
Ito sense. This has immediate consequences in relation with Theorem 7, i.e.
if H, is given by a holomorphic U as above, Z, can be constructed to have
holomorphic entries in its matrix.
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1. Some notation and background in real variable theory.
A stochastic process X, in R" is called a stochastic integral iff

t t

X, (w) = Xo(w)+ ja(s,w)st(w)-k jb(s, w)ds

0 ]

where B, denotes m-dimensional Brownian notion and a(s, ), b(s,w) are
processed adapted to the Brownian filtration. Integration with respect to
dB,-Brownian motion, cannot be defined as an ordinary integration. This is
because the paths of Brownian motion are of unbounded variation with
probability one. Nevertheless, the integrals are well defined mathematical
objects. One defines them as limits of Riemann-sums with specific approxima-
tion points. Each system of approximation may give different integrals. The left-
point approximations are called Ito-integrals. The mid-point approximations
are called Stratonovich-integrals. Ito-integrals are usually preferred, since the
results turn out to be martingales. Since all reasonable martingales can be
represented as Ito-integrals, we can take this as a definition of a martingale:

A stochastic integral is called a martingale iff b = 0.

Unless nothing else is said, we will work with Ito-integrals.
The same notation applies to any dimension, so ¢ may be an n x m matrix
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and b a vector. Supressing arguments, we will write a stochastic integral as
dX, = 0dB,+bdt

the interpretation being the same as the integral expression.

2. The Ito formula.

Stochastic integrals behave nicely under C?-mappings, and the result is
given by an explicit expression called Ito’s formula, ie. if ¢:R" —» R™ is C2,
then
n 54’ n 024)
do(X,) = dX;+4

(X)) =) (X)) X.+zzax‘ax

T 0x; ij

(X)X dX ;.

i

To get this on the standard form, one treats the products dX;dX; according
to the usual rules of calculus using the formal relations

dt-dt =dt-dB; =0 and dBdB; = §;dt.

This is proved by doing a second order Taylor-expansion of ¢, and estimate
the expressions.

If we instead do a complex second order Taylor-expansion, clearly this will
be just as good in each real coordinate. The terms which should disappear
must still disappear and it is only necessary to note that the products dX,dX;
are treated in the usual way, to get a version suitable to complex analysis:

Let ¢:C" > C™ be C?, then

dq;(Z)—Z dZ+Z } dZdZ+
0
n aZ(P o n 62¢ _
1 .
+ I.ZJ aZazde,dZ,+ :z; 32,02, dZ,dZ;

If ¢ happens to be holomorphic, things simplify, so

n 2
doz) = 2z i3 2 dzaz,

We have done the usual identification between real and complex vectors:

(X1, Y15 X2, V25 .0.) = (Xy +iyg, Xa +iys,..0)
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Throughout the text, we let X,, Y, denote real versions and Z,, H, denote
complex versions of the processes. B, is Brownian motion in real notation
and W, is Brownian motion in the complex case, i.e.

dB,+idB,| [dB,

With these conventions, it is easy to see that we have the formal rules

dt-dt = dt-dW, = dt- dW, = dWdW, = dWdW, = 0
AWdW, = 25, dt.

3. Representation of stochastic integrals in R".

A real linear mapping L: R?" — R>™ is called C-linear iff L(Az) = AL(z) or all
zeC", 1eC. The mapping L is called C-antilinear iff L(Az) = IL(z) for all
zeC", AeC. For example, a 2 x 2 matrix L is C-linear iff it has the form

a —-b
b a
and C-antilinear iff it has the form
a b
b —al’
If dX, = 0dB,+ bdt is a stochastic integral in C" we may assume that o is
a 2n x 2m matrix and split ¢ in a C-linear and a C-antilinear part. Writing this

out in complex language, it is clear that every stochastic integral in C" can
be represented in the form

dX, = UdW,+ VdW,+ bdt

where U and V are complex n x m matrices.

4. Conformal martingales.
We will use the product definition of a conformal martingale:

DEFINITION. A process Z, in C" is a conformal martingale iff all Z; and all
Z,Z; are martingales.
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We will now prove a series of equivalent statements, eventually leading to a
general representation theorem.

Tueorem 1. Let
dX, = odB, dZ,= UdW,+VdW,

be the process Z,€ C" in real and complex notation.
Then the following statements are all equivalent :

(i) Z, is a conformal martingale,

(i) dZdZ;=0 all ij,

(i)  ¢(Z,) is a martingale for all holomorphic ¢,

(iv)  @(Z,) is a conformal martingale for all holomorphic ¢,
(v) UV'+VU' =0,

(vi)  od' is C-linear,

(vii) o0¢* has a C-linear square root.

If in addition, Z, is a diffusion, all the above are equivalent to:

(viii)  The infinitesimal generator L of Z, is given by

Lf = iz(uu*+ VV*y, P
"‘j lJ 62.‘62—]' )

ProoF. (i) <> (ii). Apply the complex Ito formula to ¢(z,, z,) = 2,2,
Since dZ, has no dt-terms the equivalence follows from the above expression.
(ii) <> (i) is obvious from the complex Ito formula.
(iii) <> (iv), since composition of holomorphic mappings are holomorphic.
(ii) <> (v). One must compute
dZ;= Y UydW+ ), VadW,,
k=1 k=1
S0
m m m m
k k I 1l

Using the formal rules for multiplication, we get

k
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(v) < (vi). We need to mediate between the real and the complex notation,
and interprete all matrices as linear transformations on R™

We let 4:R?*™ - R?" be a real-linear transformation, and let C and D
denote the complex-conjugation operators on R?™ and R?" respectively, i.e.

C(X1, Y1, X2, V2, -.) = (X1, = Y1, X2, = V2,..0).

If 4 happens to be C-linear, it can be represented by a real 2n x 2m matrix A,
or by a complex n x m matrix M. Then 424 (= Hilbert-space adjoint) can be
represented by A or M*. But what is the linear transformation corresponding
to M'? To understand this, we have to be able to express complex conjugation
of matrix-elements in M in terms of linear transformations.

We have

Mz = Mz = (DAC)z,

so M represents the linear transformation DAC. That is, we have the following
scheme:

If A is C-linear
A —4 - M
A e pd o M
DAC <« DAC - M
CA'D « CA4D - M'.

Note that C and D are self-adjoints, and that C?> = I, D* = I.

In the rest of this proof equalities are to be interpreted as equalities between
linear transformations, and the operations t and * refer to the matrix in
question. Note that the relation between o, U and V is

c=U+VC
o6' = ¢®¥ = (U+VC)U + VCpdi
= UU™ + VCCrdivadi 4 UCadivadi 4+ y CUd
= UUi + Vyadi + UCV2DD + VCUDD
=UU*+VV*+(UV'+VU)D,
so (UV'+VU")D is the C-antilinear part of ¢a'.
(vi) <> (vii) is trivial.
(v) <> (viii) will follow immediately from the following proposition:
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ProposITION 1. Let
dZ, = U(Z)AW,+ V(Z,)dW,+b(Z,)dt
be a diffusion. Then Z, has an infinitesimal generator

o2f o2f of
Lf = Z“”a dz, +Z "a a- +22 ‘faz,.az-ﬁ;b‘a Zb’a-

Where (a"j) = UV‘+ VU’, (C,’j) = UU*+ VV*, (b,) =

Proor. One could of course just translate from the real expression, but an
imitation of the real proof is much easier. Let f in C? and apply the complex
Ito formula

4@)-3 Lz 3 Laz+

62f

2
12 -dZdZ;+ 2 9 dZdZ+Z 9 4zaz,
Ta&5 02,02 & 02,0z,

From the proof of Theorem 1 (ii) <> (v) we know that
dZ,dZJ = (UV‘+ VU‘)U' 2dt.
We need the corresponding expression for dZ,dZ; that is
izaz, - (S VWit 3 V) (5 0.+ 3t
k k 1 1
= Z (Uik('-]jk+ V;kl—/ﬂ‘) ¢ 2dt = 2(UU* + VV*),'](it.
k

Then if we collect the dW and the dt-terms,

of of of oY — o
¥(z) = {;a bit S bt Tt Lays bt ot ey e

of of

+ Z VilZ) 5~ (Z W, + Z VilZ,) 5~ (Z MW, +

of of

+ ZU.u(Z) (Z AW, + Z Vm(Z)a_ (Z,)dW,.
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Taking expectations, all dW-terms disappear by the martingale property of
Ito-integrals, and

t

aZJ

(=)

f — o3f :'
+ ——d;;i+ Yy ———2¢;; |ds
i~ o0z0z; Y o 0z0z; Y
This gives
Af(z) = lim Eﬂziﬂ_@ — L),
t]0

5. A representation theorem for conformal martingales.

We see that the condition (v), UV'+VU' =0 in Theorem 1 is trivially
satisfied if ¥V = 0. We will prove that all conformal martingales can be
represented in this way. To do this we need the fact that any n x n matrix
has a polar representation. This is true because we are in a finite dimensional
Hilbert space. For the sake of complementeness we give a proof.

LEMMA 1. If ¢ is a nxn matrix and /ac' is a square root of cad', there
exist an orthogonal matrix oo such that ¢ = (\/66')o,

Proor. Define a linear mapping
L: Range(\/a_a') — Range(d')
by L\/a7(x) = ¢'(x). Put H = Range(\/;tr-'), G = Range(d'). Since
II\/G—G'(x)ll = (/o0'x, J/aa'x)!? = (ga'x, x}'/? = (6'x,0°x)'/? = ||o'x]|.

L is an isometry. \/o¢' and ¢' have the same kernel so dim H = dimG.
Then dim H* = dim G * and there exist a linear isometry 4: H* — G *. Define
a linear mapping G,: R" —» R" by

Go(x) = L(xy)+ A(xy+).
Then
(Go(x), Go(x)) = (L(xg), L(xg))+ (4xy+, Axy )

= (xH’ xH)+(xH"'9xH") = (xs X),
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so 6, is orthogonal and coincide with L on H. That is

Go /06" = 0" =0 = (\/06')6,.

THEOREM 2. Let dX, = adB, be a conformal martingale in R?". Then there
exist a complex nxm matrix U and a complex Brownian motion W, such that
in complex notation, dX, can be written as dZ, = UdW,.

ProoF. Assume first that ¢ is a 2n x 2n matrix. By Theorem 1 (vii) and the
lemma, we know that dX, = (\/(; )oodB,. Put oc = \/;07 and dY, = 64dB,;
dX, = ch)';.

By a theorem of McKean [4], a stochastic integral dY, = godB, is a
Brownian motion if and only if o¢oy = I. This being satisfied, Y; is Brownian
motion, and since a¢ is C-linear, the conclusion follows by writing everything
out in complex notation.

If o is not a 2n x 2n matrix, we can add columns or rows of zeros to arrange
this. Addition of such columns do not change the process, so the result follows
as before. Addition of rows do not change the conformity. We then do the
construction in a larger space. Since C-linearity is not changed when we
remove rows of zeros to get back to the old dimension, the result is still true.

6. The Lévy theorem.

The famous Lévy theorem says the following:

If ¢:C — C is holomorphic and W, is Brownian motion in C, ¢(W,) is
again Brownian motion except from a change of time scale.

Let us see why this is true. To do this we need a strenghthening of the
McKean theorem. First we discuss the concept of time change.

Let c(t,w) 20 be a process adapted to the Brownian filtration. Let
Bw) = focts, w)ds and put a, = inf{s; B, > t}.

Then the following theorem applies, see Qksendal [6].

THEOREM 3 (Dksendal). Let
dX, = o(t, w)dB,+ b(t, w)dt be a stochastic integral,
dY, = é(Y,)dB,+b(Y,)dt be a diffusion.
If c(t,w) and «, are as above, the following statements are equivalent

(i) 0d't,w) = c(t, w)6G'(X,), E,[blX] = b(X)E,[c|X].
(ii) X, coincide in law with Y,.

Since we are only going to use the first part of (i), we leave the second part
undefined, noting only that it is trivially satisfied if b and b are both zero.
The interested reader can consult Qksendal’s paper.
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ReMARK. This allows «, to have jumps. If we only want to consider con-
tinuous time changes, , must be strictly increasing. «, is called a time change,
and we will only consider time changes of this type.

As a special case we get:

A stochastic integral coincide in law with B, up to a change of time scale
if b =0 and o0' = c(t, w)I.

From this we easily get the following;

THeEOREM 4. (Lévy theorem, strong global form). Let ¢:C" —» C be holo-
morphic and let dZ, = U(t, w)dW, be a conformal martingale such that
t— S'OIchb(Zs)U (s, w)|*ds is strictly increasing. Then ¢(Z,) is a continuous time
change of Brownian motion.

Proor. Jc¢ denotes the complex Jacobian matrix. By the complex Ito
formula
do(Z,) = JeP(Z)Z, = Jop(Z)U(t, w)dW, = T(t, 0)dW,.
Since in this case JU* is a 1 x | matrix
00*(t, w) = Jep(Z)U(t, )+ 1,
and the result follows trivially from the complex version of OQksendal’s
theorem.

In higher dimensions the Lévy theorem fails completely. Not only is it
false, there exists no reasonably large class of functions and no pair of
processes X,, Y, for which the conclusion of the Lévy theorem is true.
The following theorem explains this.

Tueorem 5 (Negative Lévy theorem). Let X,, Y, be processes in C* with
a(t,w) # 0 and

dX, = a(t, w)dB, +b(t, w)dt
dY, = D(Y,)dB, + F(Y))dt.
Let ¢;:C*— C?, j = 1,2,3,4 be given by
P1(z,w) = (2, w),
P2z, w) = (W, 2),
P31z, w) = (2z,w),
P4z, W) = (z+w, w).
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Then there exists a j such that ¢ (X, ) does not coincide in law with Y, for
any time-change a,.

PROOF. Assume the converse to get a contradiction ie. for each j there
exists «, such that ¢;(X, ) coincide with Y,. By Ito’s formula we have

do(X,) = Jro (X )o(t, 0)dB, +dt-terms.

By Oksendal’s theorem, it is necessary that there exist functions c/(t, w)
such that

(*) Jro(X,)o(t, w)a(t, w)Jag;(X,) = c;(t, w)D(X,)D(X,).

Put P = a(t, w)o(t, ), @ = D(X,)D(X, ).
P and Q are 4 x 4 matrices consisting of 4 2 x 2 blocks.

[ %) ot ]

Assume P # 0. Now we have:

1000 001 0
hg 0100 o001
R1L=109 0 1 of° R*2=1|1 ¢ 0 o
00 0 1 01 0 0
2 0 0 0 10 1 0
0200 0101
TRe3=10 0 1 0] " =|90 01 0
0 0 0 1] 0 0 0 1]

If we insert the three first expressions in ( * ) and multiply out, we will get:

[F G| [J K]
=Cl(t,(l))

H I] L M|
I H} _ )‘J KT
¢ F|~9 L M|

— -

4F 2G‘_”w)1 K
2H 1_”(’ L M

- -
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The only nonzero P satisfying these three relations are

0 G
P=
o ol

If we use this last expression in (* ) with j = 4, then

26 G]_ . o) K
¢ o]~ 4N M|
This cannot bé a multiple of P unless P = 0.
We see that the Lévy theorem fails in higher dimensions because we can

manipulate 2 x 2 blocks. It is, however, possible to prove a weak version in
which the process X, depends on the ¢ given. We first need some tools.

7. A Lévy theorem in higher dimensions.

TheoreM 6 (Csink and @ksendal [1]). Let X, Y, be diffusions on open sets
Q, = R", Q, = R™ respectively. Let A and A be the generators, and assume
¢:Q, - Q, is C2. If there exists a continuous function A: Q; — [0, o0) such that

ALS ° 9](x) = Ax)A[f1(@(x))

then there exists a time change o, such that ¢(X,) ~ Y,

More exactly: with f, = [oA(X,)ds, o, = inf{s; B, > t} the limit lim, _, ., ¢(X,)
exists a.s., and the process

(p(X(! )’ t < ﬂr
M o, (Jb) ={ 4t 2
‘( x——ﬂ‘n" t 2 Brm
with a natural probability law such that Y, starts at lim, _, ., ¢(X,),
coincides in law with Y,.

Remark. The original proof, see Csink and Dksendal [1], required A > 0
except on an X,-finely nowhere dense subset. Then the time change is
continuous. Qksendal [6] extended this, allowing «, to have jumps.

maxrank Jo¢ = m. Let dH, = E(H,)dW, be a conformal diffusion in Q,. Then
there exists a conformal diffusion dZ, = F(Z,)dW, in Q, and a time change
a, such that ¢(Z,) coincide in law with H, in the precise sense of the Csink-
Oksendal theorem.

THEOREM 7. Let ¢:Q, S C" - Q, S C™ be holomorphic, and assume that

Before we can prove Theorem 7 we need two simple lemmas.
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LeEMMA 2. Let ¢:C" — C™ be holomorphic, and let
n aZf
Alf]@z) = i‘zjcij(z) 0-2,527, ().
Then

AL 2916 = § et 20 o061l 52 (060

where Jco¢ denotes the complex Jacobian matrix of ¢, (6¢‘/6zj) m

W\

1si
15
Proor. By the complex version of the chain rule

3o LN
207, (2) = Z 6@- (9(2)) 52, (2) 5, (2)

and the lemma follows easily from this.

In the next lemma we assume that C and D are complex matrices which
are positive semidefinite and self-adjoint, i.e. they correspond to generators of
processes.

LEMMA 3. Let ¢:C"— C™ and assume m = n. Let A,(z), A3(2),..., A (2)
denote all m x m submatrices of Jo¢(z). Given D(z), an m x m matrix as above,
there exist an nx n matrix C(z) such that

Je¢(2)o C(2)o Jep(z)* = Y. |det 4,(2)I*D(o(2)).
i=1
ProorF. Find matrices B,B,...B, such that A;B; = det A;Ic» (that is
B; = Adj A4,). Put
Ei(z) = Bi(z)D(¢(2))B(2).

Then construct n x n matrices C,C, ... C, with E; as submatrices and then only
zeros such that

Je¢ o CioJod*(z) = AiBy(2)D(¢(2))BF AF(2) = |det Ai(2)*D(¢(2)).

Then put C = Y. C;.

Proor oF THEOREM 7. Put D(z) = EE*(z) in Lemma 3, and let Z, have the
generator

5 o) oz
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where C(z) is the matrix given by the lemma. By Lemma 2 the conditions in
the Csink-Oksendal theorem are satisfied, and the result follows.

RemaRrk. (i) If n = m it is easy to see that the proces
dZ, = AdjJc9(Z)E(¢(Z,))dW,

solves the problem. Then if E has holomorphic coefficients, F will also have
this property.

(ii) In case ¢ is everywhere of maximal rank, the time change factor is
strictly positive. Then the time changed process is a diffusion, and the
theorem is true without time change.

(iii) Again, the time change need not be nice. The continuity of the time
change, is related to the time the process spends on the zero set N of the
time change rate A. If E is holomorphic, it is easy to see that N is the inter-
section of zero sets of analytic functions. In some cases, it is possible to prove
that the time-scaling is “nice” if one starts Z, outside N. It is never
possible to start the process at a point where rank Jc¢ = m—2, since from
the construction the diffusion Z, will only have the constant solution. In some
cases e.g. ¢(z,w) = (z2,w), it is possible to start the process everywhere.

In relation to the last remark we have the following:

THEOREM 8. Let dZ, = F(Z,)dW, be a conformal diffusion in D = C". Let
f:D — C be analytic, let P = C be a polar set (i.e. P has logarithmic capacity
zero) and put

K = f~Y(P).

Then if Z, starts outside K, it never hits K, a.s.

Proor. We know that, up to the exit time 7 from D of Z,, the process
f(Z,)is a time change of Brownian motion W, in C. More precisely, if Z? starts at z
then

C(f@):  t<B
M"{fww:lp,; £ 2 B,

coincides in law with Brownian motion starting at f(z). Here

(s |
ﬁ"!?laz,

: (Z,)ds, o, =inf{a;p, >t}
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and

f* =lim f(Z,), which exists a.s. on {w;f, < ©].

t—t

Since P is polar we know that M,¢ P for all t > 0, as. So if z¢ K, then
M,¢Pforallt 20, as.
Hence

f(Z,)¢P forall0=t < B, as.
To complete the proof we need to know that the two paths
(f(Z):0S1SB) and (f(Z):0St<1)

coincide a.s.
For this it suffices to prove the following:
If B, is constant on (ty,t,), then f(Z,) is constant on (t,,t;) (a.s.).
The last statement follows from Ito’s formula (see Proposition 1 above):

/(Z) = fe+ j > L (zpaz,
J i
o

so if B, is constant on (t;,t;), then Y ;|0f/dz;(Z,)* is zero there, hence
f(Z,) is constant there. That completes the proof.

CoROLLARY 1. Let dZ, = U(Z,)dW, in D = C", where U € C"*" has analytic
entries. Put

N = {z;detU(z) = 0}.

If Z, starts outside N, it never hits N, a.s.

In Theorem 7 consider the case where ¢:C" —» C" and E is everywhere
invertible. Then

dZ, = AdjJco(Z)E(9(Z,))dW,
solves the problem. The time change rate in this case is
At, w) = |det Jep(Z ().

This is nonzero whenever the matrix of Z, is invertible. The last theorem
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then gives that Z, never hits the zero set of the time change if it starts outside
this set, i.e. the time change is continuous in this case.

8. The Stratonovich integral.

As we mentioned in the very beginning, we can define different stochastic
integrals if we choose different approximation points. The two most popular
choices lead to the Ito and the Stratonovich integral. It is a rather remarkable
property that the Stratonovich solution coincides with the Ito solution in case
we have a diffusion with holomorphic coefficients. We will now prove this.
We start with a lemma.

LEMMA. Let dZ, = b(Z,)dt. Then, in real notation, the characteristic operator
Lof Z,is

L= Z Re(b)) 5—— +Im(by) 5 —

i=1 0x3i_4 X2i

ProOF.

n 6 6 " 6 0 0

i=1

2 Re(b) +Im(b) 0 _ Y. Re(b); +Im(b;) =— o
i=1

oy S X2i-1 0x 2.

PROPOSITION 2. Let Z, be the solution of dZ, = U(Z,)dW, in the Stratonovich
sense. Then Z, solves the corresponding Ito equation:

dZ, = U(Z,)dW,+b(Z,)dt

where

oU;
bi:zzakuk"

Proor. Let dX, = o(X,)dB, be the corresponding real expression. Then it
is well-known that X, solves the Ito equation

(*) dX, = o(X,)dB,+b(X,)dt
where
m,2n »
b = 2 ) %y Ok

k.j 0xy
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To prove the proposition, it is enough to prove that Z, and (*) have the
same infinitesimal generator, and it is enough only to consider the first
order terms.

Let U;; = ¢;;+id;;. Then the coefficients of g are given by

02i-12j-1 = Cjj

Criy4; = —d:; . . . . . a —b
2i-12j Y (usmg the identification a +ib ~ )

G3i2j = dl’j b “

03i2j =G

To use the lemma, we must find the real and imaginary part of b;.

Uy oU,; U
= z_a‘sz‘ Uk.l Z (ax,‘ + ayk U‘U

k,j

cy .0dy  .0c; 0d )
= - +i +i Cxj—id
,‘Z; <6x,‘ 0x, Oy, Oy, (i —idy;)

ki 6C,~j adll ad‘l aC,'j
- kz.:l b;:%— an wt 0%, dui+ an b+
ooy ody 3y ody
% o+ S g,
+l’§ o, — i+ ax, it 3 i+ 3,

We now use the lemma and express everything in terms of o.

L= " [002i-12j-1 + 003i—y LT +
“_“‘—a G2k-12j-1 —*—“‘a 2k 2j
ik X2k-1 X2k

+

60'2,'_121' 60’2.'—12]—1 Ok 2j x} 0 +

O2-12j+ ™
(7 77 ! 0x 3 0%y

\

O2-12j-1+

302:2) aazu;—n
+ O2-12jt P
6x2k_, X2k-1

0o 2.21 aaz:’l]—l 0
+ = + —————022i-1¢ =—
E 02k 2j 0%k 2k 2j-1 %2,

2n,2m,

" aa"j 5
i 0%, % B, ox;
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Since the last expression is the generator of the real process, this proves
the proposition.

As a corollary we get:

THEOREM 9. If dZ, = U(Z,)dW,+b(Z,)dt and U has holomorphic coefficients,
then the Stratonovich solution coincide with the Ito solution.

RemMARrk. The correction is the same if we have an extra b-term.

Theorem 9 may have consequences in geometry. On manifolds Stratonovich
integrals are preferred, but they are not necessarily martingales. Now,
given a minifold M, we can construct a martingale diffusion on M if we can
find a holomorphic U such that U(z)(C™) & TM, for all ze M. Stratonovich
solutions are also required in the Stroock and Varadhan [8] support theorems.

An interesting question is the following: Is it possible that the solutions
are independent of the approximation points in this case? Is there a measure
behind the result? We do not know, but we think it should be investigated
further.
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