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REMOVABLE SINGULARITIES FOR H? AND FOR
ANALYTIC FUNCTIONS WITH BOUNDED
DIRICHLET INTEGRAL

BERNT OKSENDAL

Abstract.

Stochastic calculus, estimates for harmonic measure and the theory of
Dirichlet forms are used to give sufficient conditions that a set is a removable
singularity set for some HP? space and for the space D, of analytic functions
with bounded Dirichlet integral. For example, a set K situated on the boundary
dQ of a BMO, domain Q in C" is a removable singularity for H? for some
p < o if K has 2n— 1 dimensional Hausdorff measure 0 and it is a removable
singularity set for D, if C(0Q) = C(0Q — K), where C denotes the Green capacity.

1. Introduction.

Let U’ be a bounded open set in C" If ¢: U — C is an analytic function,
0 < p < oo, we say that ¢ e H?(U) if |¢|? has a harmonic majorant in U.
If ae U is fixed we define

(1.1) ll¢lfswy = inf{g(a); g harmonic majorant of |¢|"}.

We say that ¢ € D,(U), or that ¢ has a bounded Dirichlet integral, if

2

0
21" ()dm(y) < o0

(1.2) J 5 5

j=1

J
where dm denotes Lebesgue measure. Since condition (1.2) implies that ¢(U)
has finite area, all functions in D,(U) can be seen to belong to H?(U) for all
p < . (See the remark following Theorem 2.2.)

Hence

(1.3) D,(U) € H*(U) c H"*(U) forall0 < p, < p, < .
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If K = U is relatively closed we say that K is a removable singularity for
HP?(U “\K) (respectively D,(U \K)) if every function ¢ € H?(U \K) (respec-
tively D,(U \K)) extends to an analytic function, denoted by ¢, on the whole
of U.

In this paper we use stochastic calculus, estimates for harmonic measure
and Dirichlet forms to study removable singularities for H? and D,. It was
proved by Parreau [26] that if U = C and K is a compact subset of U with
cap(K) = 0 (where cap denotes logarithmic capacity), then K is removable for
H? for all p. In fact, in this case

(1.4) Nl w) = lPllew k)

(see Yamashita [31]). Jarvi extended this result to bounded domains in C"
[22]. See also Fuglede [15]. Conway and Dudziak [8] proved that the only
compacts K « U < C with the property that K is a removable singularity
for H? and (1.4) holds are the sets K with cap(K) = 0. In section 3 we give
a general estimate of the ratio of the H? norm of an analytic function on U
and the HP norms of its restriction to U \K, where K < U is compact
(Theorem 3.2). In Theorem 3.1 we prove that if A,,_;(K)= 0 (where A,
denotes k-dimensional Hausdorff measure) and K is situated on the boundary
0Q of a BMO,; domain Q@ = C" then K is a removable singularity for H?,
for some p < oo. (Q is a BMO, domain if 0Q is locally described as the graph
of a function y with Vy e BMO. Thus BMO,; domains are more general than
Lipschitz domains. See Jerison and Kenig [23]). If Q is required to be C!
then K is removable for H? for all p > 1 and if Q is C! ** then K is removable
for H'. These results extend a result of Heins [19], Hejhal [20] which states
that if K < C is a subset of an analytic arc and K has zero length, then K
is removable for H'. In view of an example due to Hejhal [20] of a set
K < C with A,(K) = 0 situated on the union of the coordinate axes such that
K is not removable for H!, it is clear that not just the metric size of K
but also the geometry of K is important. Therefore it is natural to ask to what
extent the conditions on Q in Theorem 3.1 can be relaxed. It is known that
HP and H? have different removable singularities if p # q (See Heins [19],
Hasumi [17],)

The following result about removable singularities for D, is due to Carleson
([6, Theorem VI 3]):

Suppose K < C is situated on a simple, closed curve I' with continuously
varying curvature. Then K is removable for D, if and only if

(1.5) cap(I' \K) = cap(I).

In section 5 we extend the if — part of this result to C" and to subsets K



REMOVABLE SINGULARITIES FOR H? AND FOR ANALYTIC FUNCTIONS ... 255

of the boundary of BMO,; domains (Theorem 5.2). The condition (1.5) is
replaced by a similar condition involving capacities with respect to the Green
kernel. The main ingredients in the proof of Theorem 5.2 is a stochastic inter-
pretation of the condition analogue to (1.5) (Theorem 4.1) and the use of
general theory of Dirichlet forms. We also use the general stochastic boundary
value result for HP functions established in section 2. (Theorem 2.2 and
Corollary 2.3.)

For a characterization of the removable singularities for D, and other
related spaces in terms of condenser capacities see Hedberg [18].

From now on U will denote a bounded domain in C". Brownian motion in
C* will be denoted by ({B,}, ¢, 2, #* P*). If H = C" we let

(1.6) 1y = inf{t > 0; B, ¢ H}

be the (first) exit time from H of B,. The Green function of a bounded domain
D = C, Gp(x, y), can be defined using Brownian motion by

o

(1.7) jGn(x, yydm(y) = EXI:J‘XF(Bs)dS:Ia F <D,
F 0

where E* denotes expectation with respect to the probability law P* of
Brownian motion starting at x.

We also recall the following version of the Lévy theorem, due to Bernard,
Campbell and Davie [3]. See also [9].

Let ¢: U — C be analytic, non-constant and let (B,, P*) denote Brownian
motion in C. Put

t

2

(1.8) A=Y, g? and o,(w) = jl(B,(w))ds; wel, t < 1y.
j

Then

(1.9) ¢*(w) = lim ¢(B,) exists as. on {w;0, < o}

tlry

and the process

— ‘p(Ba.-l) ; t<ay,
(1.10) B = {¢*+§,-,,U; t2a,

with a probability law P? x B° coincides with Brownian motion in C starting

at ¢(z).
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The closure of a set W is denoted by W, — — means “compactly contained
in” and CJ denotes the C? functions with compact support. We put

Di(a,R) = {xeR*;|x—a| < R}.

2. Boundary values of H? functions.

We first establish a result (Theorem 2.2) about the existence of “Brownian
boundary values” for functions in HP(U), for any p > 0. The case when
p > 1 is a direct consequence of Doob’s martingale convergence theorem (see
e.g. Williams [30, p. 60]). The general case follows from Burkholder-Gundy’s
estimates [5] for exit times of Brownian motions. With the possible exception
of statement (iii) Theorem 2.2 is well-known. For completeness we give the
details.

LEmMMA 2.1. Let ¢:U — C be analytic. Then for all stopping times T < 1y
and all p > 0 we have
2
dt].

Proor. Let Z, = Z® =B V+iB™; 1<k<n, denote complex
Brownian motion, Z, = (Z,,...,Z,). Put Y, = ¢(Z,).
Then by the complex version of the Ito formula

n

5 T
0
@1 EX[l0(Br)I"] = lp(x)I" + %E[ f loB)IP~? ¥ |2
J
0

i=1

dy, = )j d +Za¢dZ+ ) a¢dZde
k

1o 0%
52.‘ o de,dZ,,+ Za ,a- dZ,dZ,

= z 59 dZ;, simce ¢ is analytic and dZ;dZ, = 0.
j

Hence
t a¢
(2.2) o(Z,) = p(Zoy)+ IZ a—zj(z)dZ, for t < 1.
J

So if we put f(z) = |z|? and W, = f(Y,) then
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Yoz ot 0z 6 6 Y,
2
=g"’f""z?rdm’2—’w,|v~2xd7,+§‘.,y,,p_zdytd7'_
Since
_ 5(]) 2
avar, =23 G2
we get

Elo(Z1)I"] = EX[Wr]

o
J

ol

THEOREM 2.2. Let 0 < p < o0. The following are equivalent
i) oeH"(U).

(i) For all xeU there exists M < oo such that E*[|¢(Br)|’] = M for all
stopping times T < ty.

(iii) EX[(6?*] < 0 for all xeU.

(iv) E"[

(v) Jld’(ﬂl" ZZ
U

P’ (
= o+ 7E*Hl¢(zw’ IF
0

as claimed.

2
ds] < forall xeU

G(x, yydm(y) < for all xe U.

Proor. (iv) and (v) are equivalent by the stochastic interpretation of the
Green function:

ff(y)c(x, y)dm(y) = E* U f(B,)dt].
U 0

The equivalence of (ii) and (iv) follows by Lemma 2.1. By Lévy’s theorem we get

23) E(19(Br)”] = E*1B,,1"].
As noted by B. Davis ([11, p. 924]) the Burkholder-Gundy estimate for
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stopping times for Brownian motion ([5]) applies to o as well, so that
(24) E*9[B, |7] ~ E*P[(Ig)* +2n07)"*] = EX[(9(x)> +2n57)"?],

where a ~ b mens 1/ca £ b £ ca for some constant ¢. Combining (2.3) and-
(2.4) we get (ii) <> (iii).

(i) = (ii): If ¢ €e HP(U), let h(x) denote a harmonic majorant of |¢|°. Then
for all stopping times T < 1, we have

(2.5) E{lo(Br)I] = E*[h(Br)] = h(x).

(i) = (i): Suppose (ii) holds. Let {U,}°-, be an increasing sequence of
open sets such that U, <« U and U = U, U,. Put 7, = 1y, and define

(2.6) Ou(w) = ¢(B, (w)), k=12....
Then by the strong Markov property we have (6, denotes the time shift
operator 0,(B,) = B, ;)
EXlom—o4l"] = E[I9(B, ) — 9(B,,)I"]
= EX[E[l¢(B,,) - ¢(B )" F 1]
= EX[EB.[l9(B,, - ¢(Bo)l"]

Tm /2
~ E[EB[0?7]] = E* [E" [o,k (f A(Bs)ds>p "7“]]
0

e pi2 " pl2
= E~ [E" [( J A(Bs)ds) W{” = E* [(j A(Bs)ds> ]—» 0.

as k,m — oo. Therefore {¢,} is a Cauchy sequence in [/(Q, P*). (If 0 < p < 1,
the metric is given by the distance

d(f.9) = E[If - 4"])
By completeness of IP(£2, P*) there exists ¢* € IT(R, P*) such that
Ex[l¢k_¢*|p] - 0
By Harnack’s inequalities ¢* € I7(R2, P*) for all xe U. Put

g9(x) = E[|¢*|"].
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Then if V is open, V < =« U we have V < U, for k large enough, and so
0, (0*1°) = lim 0. (") = lim 0, (9(B, 1"
= lim [p(B, )" = 9*".
Therefore, by the strong Markov property
E*[(9(B.,)] = E[E%[19*"]] = E*[E*[0,, (0" #,]]

= EX[E[lo*"1#,,1] = E*[I¢*I"] = g(x),

and hence g is harmonic. Moreover, by Lemma 2.1 we have
g(x) = E[lo*|"] = 1i:n EX[|¢(B,,)I] 2 lo(x)I?,

and we conclude that g is a harmonic majorant of |¢|?. Moreover, g is the

least harmonic majorant of |¢|?, because if h is any harmonic majorant of
[¢|? we have

g(x) = EX[lo*"] = 1i:n E*[l¢(B,)I"] = liin E*[h(By,)] = h(x).

That completes the proof of Theorem 2.2.

ReMARK. It is a consequence of (iii), Theorem 2.2 that if ¢(U) has finite
area, then ¢e H?(U) for all p < . This is seen as follows: Since
0., < T, (by the Lévy theorem) it is enough to prove that E’[t5F)] < %
for all p < oo. For this it suffices to prove that E°[t§*] < » where
D = D,(0,R) with nR? = Area(¢(U)), by a resuit due to Aizenman and
Simon [2]. And this last inequality can be verified directly using the law
of Brownian motion.

The last part of the proof of Theorem 2.2 also proves the following:
CoroLLARY 2.3. Let g e HP(U), 0 < p < w. Let ¢, be as defined in (2.6)

above. Then there exists a “stochastic boundary value function” ¢*(w) given by

2.7) ¢*(w) = lim ¢(B,).

t—=1y

We have ¢* € (R, P*) and
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(2.8) E|pr—0*P] >0 as k- o
for all xe U. The function

2.9) g(x) = EX[lo*I"]

is the least harmonic majorant of |p|? and

(2.10) llolif> = E°[1¢*|P] = sup{E°[lp(B7)IP]; T stopping time < ty}
2
dt]

ReMARK. The existence of the limit in (2.7) follows from the Lévy theorem
and from the fact that o, < o0 as. when ¢ € H?(U) (Theorem 2.2 (iii)).

_ P’ g 2 ¥ |29
=l + % E [ f oI ¥ |7 B
0

i=1

or 0 <p< 0.

Now assume that U is a BMO,; domain. Then the Martin boundary of U
coincides with the topological boundary of U (Jerison and Kenig [23, Theorem
59]). For 1 £ p < w it follows from Corollary 2.3 that the family {¢,} is
uniformly integrable with respect to P*, for each x e U, so by a result due to
Doob [12] we get that there exists a fine boundary value function - also
denoted by ¢ — such that

2.11) - ¢(x) = E"[cp(B,U)] for all xe U.
Moreover,
(2.12) lim ¢(B,(w)) = ¢(B;,(w)) as. P*

Thus we have
(2.13) ¢*(w) = ¢(B.(w))
if 1 £ p < oo and U is a BMO,; domain.

3. Removable singularities for H? functions.

We are now ready to prove the main result about removable singularities
for HP:
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Tueorem 3.1. Let K be a relatively closed subset of U — C". Suppose K is
situated on the boundary 0Q of a domain Q and that A,,_,;(K) = 0.

(i) If Q is a C'** domain for some ¢ > 0, then K is a removable singularity
for H'(U \K).

(i) If Q is a C' domain, then K is a removable singularity for HP(U \K)
for all p > 1.

(ii1) If Q is a BMO, domain, then there exists p < 0 such that K is a removable
singularity for HP(U \K).

Proor. First assume that n = 1. (iii): Assume that Q is a BMO, domain
and let ¢ be analytic on U \K. We may assume that U is an open rectangle,
so small that both ¥V = U ~nQ and W = U \Q are BMO, domains and ¢
is analytic on U \K. Fix z€ dQ n U \K. Choose an open disc D = U centered
at zsuch that D nK =@ and put ¥ = V uD, W = W U D. By modifying
4Q near 0D if necessary we may assume that ¥ and W are BMO, domains.
Let V, be the domain obtained by shifting the domain ¥ by the distance 1/k
in the direction of the side of U which meets dQ and let z, denote the
corresponding translate of z. If ds,, dA, and ds, dA denotes arc length, harmonic
measure with respect to z, on JV, and arc length, harmonic measure with
respect to z on 0V, we put

_ds s
T da’

(3.1) i f==

i’ d = gids,, d{ = gds
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(where d{,, d{ is dx +idy on aV,, ¥, respectively). Note that |g,| < |. We claim
that

(3.2) 9x(B,,) = ¢g(B,)
and
(3.3) Ji(B,) = f(B,) for aa. w with respect to P*

for each x e U, where 7, = 7, and 1 = 15.
To prove (3.3) we argue as follows:
For each j > O there exists a relatively open H; &V such that f is con-

tinuous outside H; and s(H;) < 1/j. Let H® be the set H; shifted to dV,.
Then

P*[B,, € H for infinitely many k] < &(j) -0 as j —» .
So
P*[B, € H for infinitely many j and k] = 0.

Hence for a.a. w there exist j(w) and k(w) such that for all k 2 k(w), j 2 j(w)
we have

(k)
Btn ¢ Hl(w"

For such w we have that
!

Jx(B,,) —~ f(By),

since f is continuous outside H; and f, is obtained by shifting f to V.
Similarly one obtains (3.2).

Since ¥ is a BMO, domain we know that A€ A,(s) (Jerison and Kenig
[23, Theorem 10.1]). So there exists 6 > 0 and C; < oo such that

E*[|fu(B,)'*?] < €, for all k.
(See Coifman and Fefferman [7, p. 248].) Put

h(w) = ¢(B;,)9x(B,) fi(B:,).
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Then for § > 0 we have
EX[In'*?] = EX[lo(B,)1*" *P ]V EX|gi(Be,) ful B 1T 0]V,

where 1/g+1/q' = 1. So if we choose B = d/4, q¢' = (1+6/2)/(1+6/4) and
q = 2+4/6 we see that

EX[|l)' *¥*] £ C, (independent of k)
if ope HP(UNK) for p = (2+4/0)(1+6/4) = 3+4/0+ /4. Therefore the
sequence {h,}, is uniformly integrable with respect to P* (see e.g. [30])
and we conclude that h, converges in L'(P*). This gives that, with

Vi = by (2mi(B, —2)) 7,

L[ o@)dl

o) =~ -z Exlyi] = Ex[yi] - E*[wi] + E*[wi]
v
1 [ o)dl
i -z as k — o0
v
Hence
_ 1 [ed)dl
1%
Similarly we obtain
1 (e
(3.5) 9() = 5 J s
ow

By adding (3.4) and (3.5) and noting that

1 [e®d
(3.6) o) =5 'f T,
oD
we obtain
1 (e
(37 0@ =55 | T

ou
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Thus we define

-1 (el
¢(W)—§Efm-, welU

ou

and we have obtained the desired analytic extension of ¢. This proves part (iii).

The proofs of parts (i) and (ii) are similar. An essential ingredient in the
proof of (iii) was that ds/die L' *%(4) for some & > 0. In (i) we use that for
C!*¢ domains arc length is boundedly absolutely continuous with respect to
harmonic measure (see e.g. Stein [29]) and in (ii) we use that for C' domains
we have ds/dA e I4(A) for all g < oo. (See Dahlberg [10, p. 21].) As before we
can then conclude that

= - as k - o0,

A av

¢Odl f«p(c )d

and we continue as in case (iii). That completes the proof when n = 1.
The proof for the case when n > 1 is similar, except that here we use the
Bochner-Martinelli integral formula

oe) = fcp(ok,,(z,c»

A
where
Ky(z.0) = 1L—21"" ¥ (€=Z)wi) A w(0),
i=1
w(z) =dzy A -+ A dz,
wi@) = (=1Y"'dzy A-- Adzj_y Adzjey A A dz,
and

(= 1y~ D2(2niy
n! ’

Cp =

(See e.g. Rudin [28, p. 347] or Krantz [25, p. 15].) Taking limits as k - oo we
obtain as for n = 1

1
o) = — f«p(oxb(z,o
" ap
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and similarly

nc,

o) = f POK(z, &).
W

By adding these formulas the integrals over 0¥ ~ dW cancel and we are left
with

1
20(:) = — fcp(C)K.,(z,m = J«p(oKb(z, 0.
" U "an
Since
96) = = | 9K )

D
we conclude that

1
#(z) = ne, J¢(C)Kb(Z,C)-
au

Now define

~ 1
P(w) =

nc,

J¢(C)K5(W,C) forweU.

ou

Then ¢ coincides with ¢ in U \K and ¢ is smooth in U. This implies that
¢ is in fact analytic in U, since U \K is dense in U.
This completes the proof of Theorem 3.1.

Theorem 3.1 gives no information about the H?(U) norm of the extension
¢ of ¢ € HP(U \K). In the case when K is a compact subset of U = C we
can estimate the norm of a function y € H?(U) by its H?(U \K) norm as
follows :

Tueorem 3.2. Suppose U — C and that K is a compact subset of U. Then
for all p > 0 there exists a constant A = A(K) such that

Wllarw) < AWl for all y e HY(U).

Proor. We may assume that K is not polar. Choose open sets W, {U,}"-,
such that ae W, KcWcc U, c U, c--and U = v U,. It suffices to
prove that there exists a constant 4 independent of k and y such that



266 BERNT GKSENDAL

(3.8) E*[lw(B,)I"] = AE“[ly(B;)"]

for all y analytic in U and all k = 1,2,..., where 1, = 1y, and 7, = 1y, k.
By the strong Markov property we have for all x e oW
(39)  Ew(B, )] = EE Ty B #4]] = EE™[lw(B.,)"]]
= EX[E* W B )"t < o]+ ETE* (W B s, = o]
§ sup Ey[IV/(Btk )lp] ’ Px[,r;‘ < Tk] +Ex[lW(Bt;)l"]‘
yekK

So if we put
Ay = sup E*[|y(B,)I"],
xedW
Ay = sup E*[Jy(B;)"]
xedW
and

o= sup Pt <7] S sup Pltyxk <ty]=e¢<1,
xedW xedW

then by the maximum principle
E’[ly(B,)|"] = A, forall yeK
and we have by (3.9)
A S oA+ AL S A+ A4,

Hence

1
A, £ —— A, for all k.
1-¢

By the Harnack inequalities (3.8) follows.

4. A thin set that catches almost all Brownian paths.

We now give a result which describes when a measurable subset of the
boundary of a bounded domain in C" catches almost all Brownian paths
starting from an interior point of the domain. Various versions of this result
seem to be known. See Hedberg [18] and HruStev [21]. Since it is so crucial
for the next paragraph we give a proof.
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Recall that the fine topology on R¥ may be described by Brownian motion
as follows:

A set H < R* is finely open and only if 15 > 0 as. P* for all xe H.

If V is a domain in R¥ with a Green function G = Gy(x, y), the Green
capacity C, of a subset F of V is defined as follows:

Cy(F) = sup{u(F)},

the sup being taken over all positive measures u on F such that

jGV(x,y)du(y) <1 for all xeR*

For information about probabilistic potential theory we refer to [4], [13],
and [27].

THEOREM 4.1. Let
D = D,(0,R) = {xeR¥;|x| < R}

where 0 < R < oo, let H be a relatively closed subset of D and let Hy be a
(Borel) measurable subset of H. Put

H ={xeH; 1y =0as. P’} = {xeH; B, hits H immediately as.}.
Assume the following holds:

4.1) If B, does not hit Hy immediately as. P* (that is if tp\p, > 0 as. P¥)
then B, hits 0D before H, with positive P*-probability.
Then the following are equivalent :

(i) Cp(Ho) = Cp(H).

(i1) B, hits H, immediately, a.s. P* for all xe H'.
(iil) tp\py, = tp\y as. P* for all xeD.

(iv) H, is finely dense in H'.

(v) For all xe H'

i m-Cp(Hy N A,(x)) = © if k=2
m=1

E-DC (Hy A Ap(x)) = 00 if k>2
=1

where

An(x) = {yeRk;27 ™ 1 <|y—x] 27"}, m=1,2,....



268 BERNT OKSENDAL

Proor. By considering H N D_,(fa,r_) and H, ml_)_k(_(),_r_) for r < R we see
that we may assume that H is compact. The equivalence of (ii), (iii) and (iv)
follows directly from the stochastic interpretation of the fine topology. The
equivalence of (ii) and (v) follows from the Wiener criterion for hitting a set
immediately (see for example Theorem 7.35 in [27])

(i) <> (ii): The probability of hitting H before 0H, hy, may be expressed as
(4.2) hu(x) = hy = ij(x,y)dun(y),
H
where uy is the equilibrium measure on H, i.e.
uu(H) = Cp(H),
and similarly for H,. (See [4, p. 285].)

If Cp(Ho) = Cp(H) we conclude that uy = py by uniqueness of the
equilibrium measure and therefore by (4.2)

4.3) hy = hy,.

So if B, does not hit H, immediately as. P* then by (4.1) we have
hy(x) < 1, hence by (4.3), hy(x) <1 and therefore B, does not hit H
immediately a.s. P*. Thus (ii) holds.

Conversely, if (ii) holds then (4.3) holds.
Now if f € C*(D) with compact support in D then by Green’s formula

1 .
~5 de(Z)Gn(y,Z)drn(Z) = f(y); xeD.
So by the Fubini theorem, (4.1) and (4.3) we get
. 1
Jf »dpu(y) = — 2 JAf (2) (fGo(y,Z)duu(y)> dm(z)

1
=-3 J.Af(z) (JGD(y, Z)d#HD(.V)> dm(z)

jf(y)duﬂo(y), for all such f.

It follows that uy = py, and therefore (i) holds. That completes the proof.
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A somewhat surprising consequence of this result is that one can find
relatively thin subsets of the boundary of a domain in C" such that the
subset catches almost all Brownian paths starting from an interior point of
the domain before the paths exit from a ball containing the domain:

COROLLARY 4.2. Let Q be a bounded regular domain in R* with R¥\Q
connected and choose R such that D = D,(0,R) > U. Let K be a compact
subset of 0Q. Then the following are equivalent :

(i) Cp(dQ \K) = Cp(Q).

(i1) B, hits Q \K immediately a.s. P*, for all x € Q.
(iil) Tp- (a0 k) = Tp ag as. P* for all xe D.

liv) @0 \K is finely dense in dQ.

(v) For all xedQ

i mCp((0Q \K) n A4,,(x)) = © if k=2

m=1

e el

2mE=2C((0Q NK) N A,(x)) = © if k>2,
=1

m

where A,,(x) is as in Theorem 4.1.

Thus, if (i) holds then a.e. Brownian path starting from xeQ must hit
0Q \K either before it hits K or immediately after. There are sets K of positive
surface area satisfying (i), and thus sets dQ \K of surface area less than the
area of 0Q catching a.a. Brownian paths starting from Q. (For an example
in the unit circle see Ahlfors and Beurling [1].)

5. Removable singularities for analytic functions with bounded Dirichlet integral.

We now apply the previous results to prove the partial extension of
Carleson’s result mentioned in the introduction.

THEOREM S5.1. Let U < C" be open and K a relatively closed subset of U.
Let D = D,,(0,R) o U. Suppose K is situated on the boundary of a BMO,
domain Q such that

(5.1) Cp(@Q N UNK) = Cp(0Q n V).

Then any ¢ € D,(U \K) extends analytically to U.

Proor. Let ¢ € D,(U \K). Then as noted in the introduction ¢ € H?(U \K)
for all p < 0. So we proceed as in the proof of Theorem 3.1 (iii) and in the
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case n = 1 we obtain, using the same notation as there,

as k - o,

o) = L [204 1 [onO)d
2ni | (—z 2ni ) (-z
44 av

where ¢, is the boundary function of ¢|V. Similarly

_ 1 [ ow()dl
o) = 2mi {(—z °

aw

where ¢, is the boundary function of ¢|W. Of course ¢, = ¢y on
0Q n U \K. The problem here that we did not encounter in Theorem 3.1 is
that K may have positive length, so we cannot (yet) conclude that ¢, = ¢,
a.e. on 0Q NnU \K. To obtain such a conclusion we proceed as follows:

Since ¥ is a BMO, domain it follows by a result of P. Jones ([24,
Theorem 1]) that ¥ is an extension domain for the Sobolev spaces LE(V).
In particular, since ¢|V has a finite Dirichlet integral it follows from a variant
of the Poincaré inequality (see e.g. the proof of Lemma 1.4 in [14]) that
oV e I2(V) and hence ¢|V € L}(V), and therefore there exists an extension
¢ of |V to R?" such that

I|$“L§(R2") =Y ID* @Iy < 0.

laf =1

By Theorem 3.1.3 in [16] there exists a Cp-quasicontinuous modification
¢" of ¢|V. Then ¢" is finely continuous Cp-quasi-everywhere (g.e.) ([16,
Theorem 4.3.2]), so ¢V = ¢ qe. on ¥V and (since ¢, is a fine boundary
function of ¢|V)¢* = ¢, a.e. on V.

Similarly, if we consider ¢|W we get a q.c. finely continuous function ¢%
such that ¢" = ¢, ae. on OW. Since ¢, = ¢y on 0Q\K and 0Q \K is
finely dense in dQ (Corollary 4.2) we conclude that ¢V = ¢% q.e. on 6Q N U
and hence ¢y = ¢y a.e. on 6Q N U.

Now the proof of Theorem 3.1 applies to give the conclusion of the
theorem when n = 1.

The argument for n > 1 is similar. As in the proof of Theorem 3.1 we
now use the Bochner-Martinelli kernel instead of the Cauchy kernel. That
completes the proof.

ReMark. Using Corollary 4.2 we see that the condition (5.1) in Theorem 5.1
can be replaced by the following (apparently) much weaker condition:
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(5.2) For all x e 0Q we have

i m- Cp((0Q \K) N A,(x)) = ifn=1
m=1

i M2 DC(@QNK) nAu(x) = 0 ifn>1.

m=1

This generalizes one part of Theorem 13 in [18].

AckNOWLEDGEMENTS. I am gratefulR. Baruelos, J. Conway, E. Fabes,

J. Garnett, T. Kolsrud, A. Stray, G. Verchota, and J.-M. Wu for useful
discussions. I am indebted to T. Kolsrud for his idea of using the extension
theorem of P. Jones in the proof of Theorem 5.1, thereby simplifying the
author’s original proof considerably. This work is partially supported by
Norges Almenvitenskapelige Forskningsrdd (NAVF), Norway.

9.

10.

11.
12.

13.

14.

15.

16.

REFERENCES

. L. Ahlfors and A. Beurling, Conformal invariants and function theoretic null sets, Acta Math.

83 (1950), 101-129.

. M. Aizenman and B. Simon, Brownian motion and a Harnack inequality for Schrodinger

operators, Comm. Pure Appl. Math. 35 (1982), 209-273.

. A. Bernard, E. A. Campbell and A. M. Davie, Brownian motion and generalized analytic

and inner functions, Ann. Inst. Fourier (Grenoble) 29 (1979), 207-228.

. R. M. Blumentahl and R. K. Getoor, Markov Processes and Potential Theory, (Pure and

Appl. Math. 29), Academic Press, New York, London, 1968.

. D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi linear operators

on martingales, Acta Math. 124 (1970), 249-304.

. L. Carleson, Selected Problems on Exceptional Sets, (Van Nostrand Math. Studies 13),

D. Van Nostrand Company, Inc., Princeton, London, 1967.

. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and

singular integrals, Studia Math. 51 (1974), 241-250.

. J. B. Conway and J. J. Dudziak, Removable singularities for HP functions, Preprint,

University of Indiana, 1984.

L. Csink and Qksendal, Stochastic harmonic morphisms: Functions mapping the paths of one
diffusion into the paths of another, Ann. Inst. Fourier (Grenoble) 32 (1983), 219-240.

B. E. J. Dahlberg, On the Poisson integral for Lipschitz and C'-domains, Studia Math. 66
(1979), 13-24.

B. Davis, Brownian motion and analytic functions, Ann. Probab. 7 (1979), 913-932.

J. L. Doob, Béundary properties of functions with finite Dirichlet integrals, Ann. Inst. Fourier
(Grenoble) 12 (1962), 573-621.

J. L. Doob, Classical Potential Theory and Its Probablistic Counterpart, (Grundlehren Math.
Wiss. 262). Springer-Verlag, Berlin - Heidelberg - New York, 1984.

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerale elliptic
equations, Comm. Partial Differential Equations 7 (1982), 77-116.

B. Fuglede, Value distribution of harmonic and finely harmonic morphisms and applications
in complex analysis, Ann. Acad. Sci. Fenn. Ser. AI. Math. 11 (1986), 111-135.

M. Fukushima, Dirichlet Forms and Markov Processes, (North-Holland Math. Library 23),



272 BERNT OKSENDAL

North-Holland Publ. Co., Kodansha Ltd., Amsterdam, Oxford, New York, Tokyo,
1980.

17. M. Hasumi, Hardy Classes on Infinitely Connected Riemann Surfaces, (Lecture Notes in Math.
1027). Springer-Verlag, Berlin - Heidelberg - New York, 1983.

18. L. I. Hedberg, Removable singularities and condenser capacities, Ark. Math. 12 (1974),
181-201.

19. M. Heins, Hardy Classes on Riemann Surfaces, (Lecture Notes in Math. 98), Springer-Verlag,
Berlin - Heidelberg - New York, 1969.

20. D. A. Hejhal, Classification theory for Hardy classes of analytic functions, Ann. Acad. Sci.
Fenn. Ser. A.I. Math. 566 (1973), 1-28.

21. S. V. Hruev, The problem of simultaneous approximation and removal of singularities of
Cauchy-type integrals, (Russian): Trudy Mat. Inst. Steklov 130 (1978), 124-195. (English):
Proc. Steklov Inst. Math., Issue 4 (1979), 133-203.

22. P. Jarvi, Removable singularities for Hr-functions, Proc. Amer. Math. Soc. 86 (1982),.596—-598.

23. D. S. Jerison and C. E. Kenig, Boundary behaviour of harmonic functions in non-tangentially
accessible domains, Adv. in Math. 46 (1982), 80-147.

24. P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta
Math. 147 (1981), 71-88.

25. S. G. Krantz, Function Theory of Several Complex Variables, J. Wiley & Sons, New York,
Chichester, Brisbane, Toronto, Singapore, 1982.

26. M. Parreau, Sur les moyennes des fonctions harmoniques et la classification des surfaces de
Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103-197.

27. S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory, Academic Press,
New York, San Francisco, London, 1978.

28. W.. Rudin, Function Theory in the Unit Ball of C», (Grundlehren Math. Wiss. 241),
Springer-Verlag, Berlin - Heidelberg - New York, 1980.

29. E. M. Stein, Boundary Behaviour of Homomorphic Functions of Several Complex Variables,
Princeton University Press, Princeton, N.J., 1972.

30. D. Williams, Diffusions, Markov Processes, and Martingales, 1: Foundations, John Wiley &
Sons, Chichester, New York, Bristone, Toronto, 1979.

31. S. Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J.
31 (1968), 57-68.

DEPARTMENT OF MATHEMATICS CURRENT ADDRESS:

UNIVERSITY OF CALIFORNIA AT LOS ANGELES MATEMATISK INSTITUTT

LOS ANGELES, CALIF. 90024 UNIVERSITETET I OSLO

USA BOX 1053 BLINDERN
N-0316 OSLO 3

NORWAY



