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SMOOTHNESS OF VECTOR SUMS
OF PLANE CONVEX SETS

CHRISTER O. KISELMAN

Resumo. Glato de vektoraj sumoj de konveksaj aroj ebenaj.

La vektora sumo 4+ B de du konveksaj aroj glataj 4 kaj B montrigas esti ne ¢iam nefinie
glata. Por ebenaj aroj kun analitaj randoj, la preciza rezulto estas ke la rando de A+ B
apartenas al la Holder-a klaso C2%3. En la artikolo estas difinitaj glatecaj klasoj adaptitaj al la
kalkulado de vektoraj sumoj de finia nombro da konveksaj aroj en dudimensia vektora spaco.

\

1. Introduction.

Let A and B be two convex subsets of R? with real-analytic boundaries.
Then their vector sum

A+B={a+b; ac A,be B}

does not necessarily have a smooth (C*) boundary. However, the boundary
d(A+ B) is always of class C2%3, ie., it is described by a function possessing
derivatives up to order six, and the sixth derivative is Holder continuous
with exponent 2/3. More generally, the conclusion holds for the boundary
of the vector sum of any finite number of convex sets in R? whose boundaries
are smooth and do not possess infinitely flat points; see Theorem 5.4.

The purpose of this paper is to prove these and a few related results.
We introduce classes of smoothness which are adapted to the operation of
vector addition; see Definitions 3.1-3.3 and 5.1.

The crucial questions which led to this investigation were asked by Christer
Borell. I am very grateful to him for this. I would also like to thank Jan
Boman, Steven G. Krantz and Wang Xiaogin who, in addition to Christer
Borell, have made valuable remarks on this matter. In particular, Jan Boman’s
approach to the problem of coordinate invariance was much more natural
than mine, and consequently the new proof of Theorem 5.2 given here is
more direct than the original one.
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2. Vector addition and infimal convolution.

The vector sum of two convex sets is most conveniently described, at
least locally, by means of the infimal convolution which we proceed to define.

Let f and g be two functions on the real line with values in the extended
real line [—o0, +00] =R U {—00, +00}. Then their infimal convolution
fog is defined by

fogx) = inf(f(y)+*g9(x—y))

=iry1f(f(y)+g(x—y); f(y) <+, glx—y) < + o).

Here +* denotes upper addition, which is defined as an extension of the
usual addition to [— oo, + 0], taking a+*b to be + oo if one of a and b
is equal to + oo, arid to be — oo if both a and b are equal to — oo. (Such
precautions are necessary only if both + 00 and — oo occur as values, and
we may leave them aside here, since most functions will be finite at all
points of interest. For details concerning these conventions, see e.g. Moreau
[3] and Kiselman [1; p. 159].) The origin of the name of the operation
o is made apparent by the following heuristic but sometimes surprisingly
accurate formula, where we write * for the usual convolution:

(e—f* e‘g)(x) = 5e"f(Y)‘y(x"Y)dy ~ supe"f(}’)‘y(x“)’) = (e‘(fm.q))(x),
y

Infimal convolution corresponds to vector addition of the strict epigraphs
of f and g. Let us denote by epi f the epigraph of f
epif = {(x,t)eR?; t 2 f(x)},
and by epi, f the strict epigraph
epi, f = {(x,t)eR?*; t > f(x)}.
Then it is easily verified that
epi, f +epi,g = epi,(f 0 g).

Moreover,

epi f +epig < epi(fog) < epi, f +epi,g = epi f +epiy,

where the bar denotes closure in R2. If fog is lower semicontinuous, then
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epi (f o g) is closed and we have
epi f+epig = epi(fug).
If we know that the vector sum epi f +epig is closed, we can simply state
epi f +epig = epi(fog).

Now, given a boundary point ¢ of a closed convex plane set A with
interior points, we can choose an affine coordinate system such that 4 agrees
near ¢ with the epigraph of some convex function. If we have three sets
A, B and A+ B, we can reduce questions about their smoothness to the
local behavior of infimal convolutions — except in some cases when the
boundary of A+ B has the best possible regularity. To be precise we state
the following result :

ProposSITION 2.1. Let A and B be two closed convex sets in R? with C!
boundaries, and consider a point c € d(A+ B). If ¢ happens to belong to A+ B,
say ¢ = a+b with ae A, be B, then there exists an affine coordinate system
and convex functions f and g such that A, B and A+ B agree with epi f,
epig and epi(fog) near a, b and c, respectively. If, on the other hand,
c¢ A+ B, then 0(A+ B) contains an entire straight line through c, so that
A+ B is either a half-plane or a strip.

Proor. Let us choose an affine coordinate system with ¢ as the 6rigin and
such that all points in A+ B lie in the upper half-plane x, = 0. We shall
consider first the case c¢ A+B. The quantity a = inf(x,;x € 4) must be
finite, and B = inf(y,;y e B) must be equal to —a. Since c € d(4+ B), there
exist points ¢ = g +bY € 4+ B converging to c. No subsequence of (a)
can converge, for otherwise we would get ce A+ B. However, the second
coordinates a%’ must converge, for

aSaP=c9-bP=<YP-B—> —B=a.

Therefore the first coordinates a4’ account for the divergence: we may for
example assume that (a{) is unbounded to the right. Then (b{) must be
unbounded to the left. Construct two sequences (j,) and (k,) with the
properties that B

af"+b¥ < —m and oY= +b{" 2 m

(given j,, find k, first and then j,,,). We conclude that 4+ B contains a
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segment  [aU=) + btkw), qUn+1) + btka)]  whose projection on the x,-axis
contains [ —m,m] and whose x,-coordinates tend to zero. Therefore d(4+ B)
must contain the whole x,-axis, as claimed.

Next assume that ce A+ B, and take a coordinate system as before. If
¢=0=a+b with ae A and be B, we must have x, = a, for all xe 4 and
y; = by = —aj, for all be B. Denote by I the ray {x;x; = 0,x, = 0}. Then
A+1I and B+1 are the epigraphs of some functions f and g. Now since
A lies in the upper half-plane passing through a, the three sets 4,4 +1 and
epi f agree in ‘'some neighborhood of a. Similarly for B and A+ B, that is
A+B agrees near the origin with the epigraph of some function h, which,
however, can be nothing but fog. If 4+ B and A+ B differ at points
arbitrarily close to ¢, then by the first part of the proof (A4 + B) will contain
an entire line, and it is then not difficult to prove that we must also have
c¢ A+ B contrary to our hypothesis in the present case. (We do not need
this, however.) Thus, near ¢, d(A+ B) is given by the graph of fog, and
A+B (in fact A+B itself) is given by the epigraph of fog. And the
behavior of fog near the origin is completely determined by the behavior
of f near the interval {x,;f(x,) =inff =a,} and the behavior of g near a
corresponding interval.

ExaMpLE 2.2. Take f(x) = x*/4 and g(x) = x®/6. Then

I

y4
hx) = fogix) = inr<-— ‘
y

(x—p)° _x® _ 3pxpon
4 6

where re C’(R). To show this, one may use the observation that the
infimum is attained at a unique point y which satisfies f'(y) = g'(x—y),
that is y* = (x—y)°, and which therefore allows y = x> as a reasonable
approximation. Accepting this result for the time being, we see that he C?°/3
but in no smaller Holder class. The convex sets

A=epif = {(x.t)eR?; 4t = x*}
and

B = epig = {(x,t)e R?; 6t = x°}
have real-analytic boundaries, but their vector sum
A+B=epih = {(x,t)eR"; t 2 h(x)}

has a boundary of class C2%3 only. The orders involved in this example
are minimal as we shall see.
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When is it true that the boundary of A+ B is of class C¥ if 4 and B
are convex sets in R" with boundaries of class C*? In R? the answer is in
the affirmative for k =1, 2, 3 and 4, and, as Example 2.2 shows, in the
negative for k = 7. A recent example due to Jan Boman shows that the
answer is in the negative also for k = 5 (infinitely flat points are admitted).
In R? the regularity drops considerably. In fact, there exist compact convex
sets 4 and B in R® with C* boundaries such that ¢(4 + B) is not of class
C*. An easy modification of Theorem 3.4 in Kiselman [2] shows this.

3. Smoothness classes of germs of functions.

We shall introduce regularity classes of germs of functions which are
adapted to the operations of infimal convolution and vector addition.

DerINITION 3.1. Let k be a non-negative integer, and let p and «,,...,a,, be
some non-negative numbers (m 2 0). Then we shall denote by C(a,,.. ., %,) .+,
or simply Ck(a),, the cone of all germs of functions f defined for 0 < x < §
for some 6 > 0 and such that

(3.1) fix) = xPg(xn, ..., x%), 0= x <6,

for some function g of class C* in a neighborhood of the origin in R™ and
satisfying ¢(0,...,0) > 0.

We allow m =0: then g is simply a constant on R™ = {0} and f
has the form f(x) = cx? for some positive constant ¢. We also permit
a; =0: with the convention x° =1 we obviously have for instance
C:(al’a2’0)+ = C’;(al’az)‘i"

The number p is uniquely determined by f thanks to the requirement
that g(0) be positive. However, the function ¢ is not necessarily unique if
m = 2 and neither are the numbers a;. For example, if § and y are positive
numbers and a = By, and if we take

f(x) = xP(14+x%) = xP(1 +(x#)"), x 20,
then feCP(x), but also in C%(B), provided k < y. Another example is
) fx)=xP(1+e~ ") x>0, f(0)=0,

which belongs to CX(ay,...,a,), for arbitrary a; >0 if m 21, but not
ifm=0,
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To define double-sided germs we have to agree on a definition of the
powers x?,x% for negative x. It is natural to define x? = x4 as (f x)?
when r is an odd integer, ¢ an integer.

DeriniTioN 3.2, If p and ay,...,a, are rational numbers with odd denomi-
nators, we define C%() as the cone of all germs of functions f such that (3.1)
holds in a double-sided neighborhood of the origin.

DeriniTiON 3.3. Let k,p and ay,...,a, be as in Definition 3.1. We denote
by Vy(a). the cone of all germs of functions defined for 0 < x <4 for
some 6 > 0 and such that f" e C}(x),. Analogously we define V)(a) provided
the conditions in Definition 3.2 are satisfied.

LEMMA 34. Let k,p and « = (a,,...,qa,,) be as in Definition 3.1. Then
Cyil@s +R c V@), = Cpiy(@)s +R,
where R denotes the constant functions.
Proor. If f is in Ci}}(a), +R we have a representation
Jx)=f10) = xP*1Gx,..., x*), 0= x 9,
with Ge C**'. Then

(3.2) J'(x) = xPg(x*, ..., x%)
AR \
where

0G
g(t) = g(ty,-. . tw) = (P+1)G(O)+ Y ajt; 7, (t),

in particular we see that ge C* and that ¢g(0) = (p+1)G(0) > 0. This means
that feV¥a),. Next, if feV¥a), we know that (3.2) holds for some

g € C* satisfying ¢g(0) > 0, and we can define
1

G(t) = J‘s’g(s"'tl, vy %t )ds
0

which is a function of class C¥, and we see that

Sx)=f0)=x J'f'(sx)ds = xP+1G(x®, ..., X%).
0
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Moreover, G(0) = g(0)/(p+1) > 0, so that [ —f(0)e CX, ,(x),.

We shall allow k = 0 in the above definitions and write &,(x), = C,’(x)+
etc., and also briefly consider the spaces .o, (x), obtained when g can be
taken real-analytic. Lemma 3.4 shows that V,;*(a), = &,.,(a)+ +R.

For k 2 1 and p > 0, the elements of C(x), are germs of strictly increasing
functions. The same is true of C%a) if « and p are as in Definition 3.2
and in addition p = g/r with both gq and r odd natural numbers. Under
the same conditions, Vp(x), and Vj(x) consists of germs of strictly convex
functions.

We shall need a few results on how to operate on these regularity classes.
Lemma 3.5. If f e Ci(a), and ge Ch(a),, then go fe Ci(a),.

Proor. We have f(x)= xF(x*,...,x*) and g(y) = y*G(y*,...,y*) for
x, y 2 Osufficiently small, and some F, G of class C* satisfying F(0) > 0, G(0) > 0.
Therefore

gUf(x)) = xPF(x%,. .., xW)PG(X%F (X%, .., X%)%, ., X%WF (X%, ..., X% )%)
where all powers of F(x*,...,x%) are C* functions of (x*,..., x%).
PROPOSITION 3.6. Let k 2 1 and p > 0, and let f € Ci(a),. Then the inverse

of f belongs to C%(a/p).. A similiar statement holds for Ck(x) provide|d
o,p and 1/p are rational numbers with odd denominators.

Proor. We know that f(x) = xPg(x®,...,x%)as in (3.1), in particular g(0) > j
It is no restriction to assume g(0) = 1. We shall solve the equation & = f(x)
by putting x = £'/7(1+y)'/?, where y is a new unknown. This gives

(33) S(L+y)gi&air(L+y)aie,..., Eomlp(1 + y)lp) = £

Define a function @ of m+ 1 variables t,,...,t,,y by putting

¢(t19'~',tm’y) = (1+y)g(t1(l+y)a|/P’”.,tm(1+y)¢n/P)—1_

Thisis a C* function in a neighborhood ofthe originin R™* !, and #(0,...,0,y) = y.
Therefore ¢(0,...,0) = 0 and d®/dy(0,...,0,0) = 1 # 0. The implicit function

theorem can be applied and yields a C* function ¢ of m variables such
that ¢(0,...,0) = 0 and

Bty Pltrse e stn)) = 05
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in other words, y = @(&u/r,. .., &Py solves (3.3). The solution x to f(x) = &
is therefore

x = U1+ p) P = EVP(1+ (&P, Em/P))p.

This means that f~'eC% (a/p),. For Ck(a) the same proof holds since
all exponents are rationals with odd denominators.

For the classes V;(a), the following results will be needed.
Lemma 3.7.If f e Vi), with f(0) =0 and ge V(@) then go f e V}a),.

Proor. By Lemma 3.4, f € C%(a)., and by definition ¢’ € Ci(x)., so Lemma
3.5 shows that g’ o f € C¥(a),. Therefore (go f) = (g'° f)f € Chla)..

ProposITION 3.8. If f € V¥(a), with k Z 1 and f(0) = 0, then also its inverse
S~ belongs to V§(a),. More precisely, if f(x)= ax+g(x) with ge Vi(@),,
a>0,g(0) =0, then f~'(y) = y/a—h(y) with he Vi(a,p)..

Proor. By Lemma 3.4, f e C%(a),, so Proposition 3.6 shows that
[teCi@, < V@),

which is not quite sufficient. However, (f ') = 1/(f"o f~'). We know that
f'eC¥a), and f'eCk(a), so the composition f'o f~! is in Ch(a),
by Lemma 3.5. Therefore (f ') e C¥(x), which by definition means that
[l e(@),.

To prove the last assertion, we first note that f € V¥(a,p), (not necessarily
in V¥a),), so that the first part of the proposition gives f~'e V{(x,p)..
We define a function h by putting f~'(y) = y/a—h(y) and then have

y=fU"'0) =af 'W+9(f 1)) = y—ah(y)+9(f "' (¥)).
Thus h = (l/a)go f~! where we already know that f~'e Vg(a,p), and
g€ V¥a),. Therefore Lemma 3.7 yields g f ~' € V;(a,p)+.

4. Smoothness under the Legendre transformation and infimal convolution.

Let f:R > [—o,+ ] be a given function on the real line. We define
its Legendre transform (or conjugate function) as

@.1) J© = Sug(xé—f(x)), ¢eR.
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For genera. properties of conjugate functions, see e.g. Rockafellar [4].

Although it is possible to apply the implicit function theorem directly in
the problem concerning the smoothness of fog, we prefer to pass via the
Legendre transformation and consider f 0 g as (f+4§) . Since addition causes
no difficulties, the whole problem is reduced to a study of the smoothness
of f. The result in terms of the regularity classes introduced in Section 3
is the following.

THEOREM 4.1. Let k be a positive integer, let p be a positive number, and let
%y,s...,0, be non-negative numbers. If f€ V:(al,...,am)+, then

fe Violo /P s 0m/D) s -

Similarly for V)(a) provided a;, p and 1/p are all rational numbers with odd
denominators.

Proor. We shall prove that f*(¢) has a representation of type (3.1) with
the new parameters. However, the number x = f*(¢) is the solution to the
equation f'(x) = ¢ for the given ¢ 2 0. In fact the supremum in (4.1) is
attained at the unique x satisfying f’(x) = &, and since f”'(x) > 0for 0 < x < 4,
x is a C! function of ¢ and

7'(&) = x+ (€ —f'(x))dx/dE = x.

So the problem is to investigate the smoothness of the solution x to f'(x) = &,
¢ being given. Now f'e Ck(a), by definition, so Proposition 3.6 yields
(/") ' e C%,,(a/p)+. Therefore f(¢) =x is a function of ¢ in the right
smoothness class, which shows that f e Vipa/p)s.

Forfe o ,..(2), and f € .9/, (x) we get the corresponding result since the
implicit function theorem (which was used in the proof of Proposition 3.6)
preserves analyticity.

It is easy to track what happens to the smoothness classes under addition:

Lemma 4.2. Let fe V¥ay,... %), and g€ Vi(By,...,B,)+ and assume that
0 § p é q. Then f+g€ V:(ab--"amaﬂli--"ﬁmq—p)+'

Proor. We have representations of f’ and ¢’ as follows:

f'(x) = xPF(x%,...,x%),

!

g'(x) = xIG(xbr, ..., xP),
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where F and G are of class C* and F(0) > 0, G(0) > 0. This gives
F(xX)+g' (x) = xP(F(xn,...,x%)+x4"PG(xF:, ..., xPr))

where a new exponent is needed if ¢ > p.

THeoREM 4.3. Let f € Vi(ay,..., %), and ge VHB,,...,B,)+, and assume that
k21and p2q > 0. Then

' p p p
ogeV¥(ay,..otm=PBry..o=Pp=—1] .
’ q p< 1 qﬁl qﬂ q >+

For double-sided germs the analogous result holds under the provision that
all numbers aj, By, p, 1/p, q and 1/q are rationals with odd denominators.

Proor. By Theorem 4.1 we have
JeViy(a/p). and” Ge Vig(B/a)..

Since 1/p £ 1/q, Lemma 4.2 yields

F+ge Vi (a/p,B/a.1/a—1/p)..

By Theorem 4.1 again

(f+9) e V¥a,pB/a.p/g—1)+.

Now (fog) = f+¢g wherever f and § are finite, so (f+§) = (fog)*
near the origin. Finally, the functions we consider satisfy F=h in
some neighborhood of the origin, so we are done.

CoRrOLLARY 4.4. Let f,,...,f,, be a finite number of C* convex functions on
R all with the property that, at every point, some derivative of order two or
higher does not vanish. The infimal convolution f = fio....q f, may be the
constant — oo or an affine function. Otherwise, the germ of f at an arbitrary
point consists of an affine function plus a germ from one of the regularity
classes

S, = V*(1,2/M(p)) = C711(1L,2/M(p))+R, p=13,5,...,

where M(p) is the smallest common multiple of the numbers 3,5,7,...,p—2.
M) =M3) =1, M(5) =3, etc.)
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Proor. If for some x the infimum in
J19 fax) = inf(f;(v)+ f2(x — V)

is not attained, then f; o f, is either — x identically or an affine function.
(Cf. the proof of Proposition 2.1.) This property is then inherited by the
convolutions f,of,0...0f,, 2 £ k £ m. Thus the case when the infimum
is always attained remains to be considered, and by means of a translation
we can reduce the problem to a study of the germs at the origin. Now,
after subtraction of a linear function, each factor f; has a germ in one of the
classes V,°(1) for some odd integer p. We observe that V(1) = §,, and
only have to prove that S,o V,*(1) < §, if ¢ < p. The special provisions
needed for calculating with double-sided germs in Theorem 4.3 are satisfied,
so this theorem yields

S,o V(1) = V;°(1,2/M(p), p/q,p/qg —1).

However, this class is precisely S,: first note that p/q = 1+ (p/g—1) so that
the exponent p/q can be eliminated, then observe that the number

_ra.
L= 2

L]
)

is a muitiple of 2/M(p) since it is non-zero only if ¢ = p—2. This proves
the corollary.

For real-analytic convex functions we get the analogous conclusion with
S, replaced by .o, (1,2/M(p))+R.

5. Smoothness classes of plane convex sets.

Let A be a subset of a two-dimensional vector space and assume that
the boundary of 4 can be described locally by a function f, so that y = f(x)
is the equation of 0dA near a given point for some coordinates (x,y). Of
course we would like to say that 4 has a certain smoothness if f does.
But then we need to know that this does not depend on the coordinate
system.

DeriNITION 5.1. Let A be a convex subset of an oriented two-dimensional
vector space. We shall say that dA4 is of class VX(ay,...,a,), at a point
ce0A if there is an affine coordinate system with positive orientation such
that A agrees near ¢ with the epigraph of a function f whose germ at ¢
is in VX(ay,...,0m) 4.
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We would like to prove that all coordinate systems with the x-axis along
the tangent at ¢ will do.

THEOREM 5.2. Let A be a closed convex set in R? with the origin on its
boundary, and let M(A) be its image under an orientation-preserving linear
map M. We assume that the interiors of A and M(A) intersect the positive
y-axis, so that both sets are epigraphs of some convex functions F and G near
the origin. Let F have the form F(x) = Ax+ f(x) with f e V¥@,,..., %)+, and
assume that k=1 and that p>0. Then G(x)= ux+g(x) with
gE Vi) Uy D)

Proor. We know that A is defined by y = F(x) near the origin, and
similarly M(A) by y 2 G(x). This means that y = F(x) is equivalent to
Mllx + M22y = G(Ml 1x+ Mle), or again that

3.1) My x+M,,F(x) = G(Myx+ M ,F(x)).
Dividing by x and letting x tend to zero we see that
My +Mjd = p(My +M,4)

where 1 = F'(0), u = G'(0). After subtracting (M,, + M,,A)x = u(M,, + M ,A)x
from (5.1) we get

My, f(x) = uM 5 (f(x)+g(M 1 x+ M, ,Ax + My, f(x)).

The number M, +M,,A is by necessity positive, for it is the derivative
at the origin of the abscissa of the point M(x, F(x)) which is on dM(A).
Therefore the function h(x) = (M, + M;,4)x+ M, f(x) belongs to V¥a,p).
(cf. Lemma 4.2) but in general not to V¥(a),.

Proposition 3.8 tells us that h™'eV¥(a,p),, and Lemma 3.7 that
f o h teVio,p).. Now

g(y) = (M —uM,)f (h~ 1(.V))
where

My, —uMy; = (M +M,A)" det M
is positive. This proves our claim.

COROLLARY 5.3. It makes sense to define smoothness classes of convex sets
using Definition 5.1 if k 2 1, p > 0, and p € ZNa,;.
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Proor. If p = nya, + ... +n,a, for some non-negative integers n;, then x”
is a monomial in x*, ... x*. Therefore the exponent p is not needed in
the representations, and we see that

VMA e O P) e = V(e 0) 4

THEOREM 5.4. Let Ay,..., A, be a finite number of convex sets in the plane
with C* boundaries, and without infinitely flat points. Then the vector sum
A;+ ... + A, is either the whole plane, a half-plane, a parallel strip, or a convex
set whose boundary at every point belongs to one of the regularity classes

of germs of sets corresponding to S, = V,*(1,2/M(p)) for some odd natural
number p.

Proor. First note that the classes S, do satisfy the criterion of Corollary
5.3. Indeed p = pa; € ZNa;. So it is meaningful to speak of regularity classes
of sets, not just of functions. Given ¢ on the boundary of 4,+... +A4,,
we conclude from Proposition 2.1 that either d(4,+ ... +A4,,) contains an
entire straight line through c or else there are ¢;e 04, such thatc, + ... +¢, = c.
In the first case we are done; in the second we apply Corollary 4.4 to the
epigraphs of functions f; defining A4; near c; in a coordinate system whose
x-axis is tangent to A+ ... +A4,, at c. If p;+1 is the order of contact at
¢j, then fie V(1), so the proof of Corollary 4.4 even gives the additional
information that f, 0...0 f,, belongs to S, with p = maxp;.

Let us look in more detail at the situation in Corollary 44 and Theorem
54 when m = 2. The convolution of a germ in V,°(1) and one in V,*(1)
with ¢ S pisin

(5.1)  V,>(Lp/g,p/g—1) = V,°(1,(p—q)/q) = Cp+1(1,(P—q)/9)+R

by Theorem 4.3. Now if ¢ = 1 or g = p, this class is equal to ¥,°(1) which
contains only C* germs. To get a non-smooth germ by convolving in this
way, we have to take both ¢ > 1 and g < p. Therefore, the lowest orders
of contact which may give a convolution which is not in C* are four and
six, corresponding to ¢ =3 and p = 5. The class (5.1) is then Vs°(1,2/3),
whose germs have representations

h(x) = h(0)+x®H (x,x*?);

see Lemma 3.4. We have a Taylor expansion
H(x,x*3) = H(0)+ xH}(0)+x**H(0)+ higher order terms,

and arrive at the functions already considered in Example 2.2.
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The first few classes S, occurring in Corollary 4.4 and Theorem 5.4 are

S
Ss

]

o), 83 =1*(1,2) = CZ(1)+R,
V#(1,2/3), S, = V4*(1,2/15).

It is clear that S is contained in C?°3 and that all other classes are
contained in C®*2/'5 Therefore the vector sums in Theorem 5.4 have C®
boundaries except when the orders of contact for two of the sets are as
in Example 2.2, i.e., four and six respectively, and the orders of contact for
the other m—2 sets are at most six. In the exceptional case the boundary is
of class C?°® but no better, for it turns out that the negative term
—3/4|x|>°/3 in Example 2.2 can never be wiped out by convolving h with
convex functions having zeros of order two, four or six.
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