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OPERATOR MEANS, FIXED POINTS, AND THE NORM
CONVERGENCE OF MONOTONE APPROXIMANTS

WILLIAM L. GREEN* and T. D. MORLEY

0. Introduction.

Means of operators have found considerable application in’ various areas
of mathematics and science, particularly in network theory (see [1],[2],[5],
[8],[21],[22]). In this paper, we focus on the most fundamental sort of
mean of two operators, namely the parallel sum. In practice one must usually
compute the parallel sum 4 :B of A and B by some limiting or iterative
technique, e.g., by

A:B =lim(A+e)(A+B+2¢) '(B+e),
el0

where the limit is taken in the strong operator topology. Unfortunately,
this net, like most other useful iterative or limiting schemes, does not in
general converge in the norm, as was shown by Anderson and Trapp [7].
We prove below a simple proposition (Proposition 2.1) about the algebra
() (all bounded linear operators on a complex Hilbert space ) which will
enable us to describe, for many sets of pairs (4, B), precisely when this
convergence is in norm. We show in particular that this norm convergence
must hold -whenever A and B commute, and that if 4 and B have closed
ranges, then it holds if and only if the range of A+ B is closed. We further
show that for a large class of monotone approximation schemes we get
norm convergence of any one of these schemes to 4 :B if and only if the
scheme above converges in norm. Our analysis also establishes analogous
results for the geometric meanA # B of A and B.

Interestingly, the property that A :B is such a norm limit is related to
the representation theory of #(5). Indeed, it turns out (as we show below)
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that this property is equivalent to the property that computing parallel sums
commutes with every representation of 4(#), or equivalently that is commutes
with the universal representation. This in turn has some interesting implications
for projections. It is known (see below) that if E and F are (self-adjoint)
projections on #, then E : F is one half the infimum of E and F. Since the
results quoted above for operators with closed ranges are clearly applicable
to projections, we see that the infimum of E and F, computed in #(#), agrees
with the infimum of E and F, computed in #(#)%, if and only if E+F has
closed range in #. (We use the notation X* for the Banach space dual of X.)
Since norm convergence of (E+¢&)(E+F+2¢) '(F+¢) is preserved by a
*.isomorphism of A(.#’) into some A(.£"), it follows trivially that there can be
no formula for the infimum of E and F which is invariant under *-isomorphism.
In particular, inf (E, F) cannot be given by a simple algebraic formula, except
in the case where E + F has closed range. Now when E + F has closed range,
and hence has a Moore-Penrose inverse (E+F)T, such an algebraic formula
was given by Anderson-Schreiber [6]

E:F = E(E+F)'F,
SO
inf (E,F) = 2E(E+F)'F.

Our results thus show that the Anderson-Schreiber formula for the infimum
cannot in fact be generalized in any purely algebraic way to any class of
pairs of projections which is larger than the one which they treated.

Our last section applies the results of the previous sections to the
computation of the geometric mean and to some further iterations, including
the ladder iteration which was considered in [5].

In closing this introduction, the authors would like to point out that
although their fundamental proposition (Proposition 2.1) is here applied
principally to the computation of parallel sums and geometric means, this
proposition has potentially a much greater applicability. In particular, it can
be used in the following way. Suppose # is a (perhaps non-linear) operator
on () which is given by some strong operator continuous simple algebraic
formula, invariant under *-isomorphisms of #(5) into other *-algebras of the
form 2("). Suppose too that # can be shown to have in () (and in Z(X"),
by the same token) at most one positive fixed point. Suppose finally that
2 is monotone in the sense that #(T;) 2 #(T,) whenever T, 2 T, = 0. Then
Proposition 2.1 implies that {%*(0)}°- , converges in norm in #() (necessarily
to a fixed point of #) if and only if {#*(0)}2., is bounded. In particular,
let #(P) = F*PF +1, where F is a fixed but arbitrary operator in #(s#), and
where I is the identity operator on %(). It is relatively easy to show that
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F*PF+1 = #(P) = P 2 0 can hold for only one P, namely the strong limit of

k-1
A0) = Y (F*)F'.

By Proposmon 2.1, we see that Y 2, (F*)'F' is norm convergent if and
only if {}¥Z{ F(*)F'} is bounded, ie., if and only if this same series is
strong operator convergent. (This is an important result of Zabczyk [26].)
More generally, if # is the Riccati operator, as in Zabczyk [26], then by a
similar argument, one can get Zabczyk’s result that # has a positive fixed
point in #(#) if and only if {#*(0)}{-, is norm bounded in #() if and
only if {#*(0)} -, converges in norm (to that unique fixed point). These
results are important in the study of the stabilization of discrete-time systems;
see for example [16], [17], [26].

The authors are indebted to the referee for many helpful comments and
suggestions, and in particular for substantially simplifying the arguments
in Section 3.

1. The parallel sum.

In this section we give a brief survey of the elementary theory of the
parallel sum. Our discussion will be limited to those results which we shall
actually use, or which place our later results in an appropriate context, and
the discussion here is by no means complete. All the results in this section
are taken from the papers of Anderson and Schreiber [6], Anderson and
Trapp [7], R. G. Douglas [10], and Fillmore and Williams [11], though
some of the results had earlier appeared in other sources. For a recent survey,
see [25]. Throughout this section, »# will denote a complex Hilbert space,
and 4 and B will be bounded linear operators on . Recall that 4 2 B
means that A — B is positive.

If A and B denote positive operators, and if A+ B is invertible in #(#),
we define the parallel sum A : B by

A:B=A(A+B) 'B.

Note that if 4 and B are invertible in #(5), then 4 :B= (A '+B~ ")~ L If
A+ B is not invertible we set

A:B=Ilim(A+el):(B+el).
el0
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This last limit exists when taken in the strong operator topology [7].
The following two theorems provide formulas for the parallel sum.

Tueorem 1.1 (Anderson-Trapp [7], Fillmore-Williams [11]). Let A 2 0 and
B 2 0. Then there are unique operators C and D which satisfy
A'? = (A+B)'*C,
B'? = (4+B)'*D,
ker C* 2 ker(4+B)"?,
and
ker D* 2 ker (4+ B)'2.
Moreover
A:B = A'Y?C*DB'>,
THeoreM 1.2. If A+ B is invertible, then

A:B = (A+B)"*(4 : B)(A+B)'?
where

A= (A+B) '?4(A+B)" '
and
B = (A+B)"'?B(A+B)~ ',
Proor. Compute.

ProrosiTioN 1.3. If A+ B has closed range, then the net {(A+¢) :(B+¢)},>0
converges in normto A:Bas ¢ 0.

Proor. We may assume that the range of 4 + B is the whole of J#, so that
A+B is invertible. The result now follows from the norm continuity of
addition, multiplication and inversion in #(J¢).

ReMARK 1.4. Let C and D be as in Theorem 1.1 Clearly C*(4 + B)!/? = A2,
so that for any reasonably well-behaved notion 4 — A ' of generalized inverse,
we must have

C* = A'2((4+B)")"
whenever (4 +B)"' exists?Similarly,

D = (A+B)")'?B'12
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whenever (4+ B)' exists. In particular, when Range(4+ B) is closed, ie.,
when the Moore-Penrose inverse (4+ B)' of 4 + B exists, we have

A:B = A(A+B)'B.

A routine computation shows that if 4+ B is invertible, then CC* = 4 and
DD* = B, where 4 and B are as in Theorem 1.2.

The following theorem summarizes the fundamental properties of the
parallel sum.

THeOREM 1.5 (Anderson-Trapp [7]). Let A, B and C be positive operators. Then

(1) A :B is monotone in each variable

(2) A:B=B:A4,;

3) (A:B):C=A:(B:C);

4) A:B=A,A:B<B;

(5) <A :Bc,c) =inf - (Ax,x)+{(By,y);

(6) if A and B are projections, then 2(A:B) = A A B, the infimum of A
and B.

We shall have need in Sections 3 and 4 for the following results on the
range of A :B.

THEOREM 1.6 (see [7]). If A and B are positive operators then

(1) range A nrange B S rang A :B;
(2) range A'? nrange B'? = range (4 : B)'/?;
(3) if A and B have closed ranges, then range A nrange B = range 4 : B.

2. Representations of #(5¢) and invariance of parallel sums.

The purpose of this section is to prove a result (Corollary 2.2 to Proposition
2.1) which will enable us, in principle, to decide when A :B is a norm limit
of (A+¢:B+¢). We shall make use of the fact that #(#) is a C*-algebra
(see for example [9] for the necessary facts about C*-algebras). Throughout
this paper we shall write ./ for the Banach space dual of a C*-algebra (or
Banach space) /.

Let o/ be any C*-algebra, and let {x,} be a net in /. Let xe o/*. Then
{x,} converges weak* to x if and only if x, - x pointwise on the set
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S(.o) of all states of .&/. Indeed each ¢ in . can be written in the form
¢ = ¢y —¢P,+ip;—ip,, where each ¢, is a positive element of .«7“, and where

max {|lg]l: 1 =i =4} = ||o|l.
Since moreover

llx = x,Il = sup {lp(x —x,)l : ¢ € ., ]l = 1},

it follows that {x,] converges in norm to x if and only if x, - x uniformly
on S(.«).

If .o/ has an identity I, then S(.«/) is weak * compact in .o/“. Suppose now
that x, = 0 for each y, and that for each ¢ € S(.«/), the net {¢(x,)} is monotone
and bounded. Then clearly {¢(x,)} converges for each ¢ € ./*, and the limiting
function ¢ — lim, ¢(x,) defines an element x of .o/*, by the uniform boundedness
principle. By Dini’s Theorem and the remarks above, we have that {x,} is
norm convergent in .7/ whenever this limiting function is weak * continuous
on S(.«/), which is certainly the case if x is an element of .«/. We thus have
the following result.

ProposITION 2.1. Let o/ be a C*-algebra with identity, and let {x,} be a
monotone norm-bounded net of elements of /. Then {x.,} is norm Cauchy in
<o/ if and only if the weak* limit x in 4™ of {x,} is actually an element of <.

Proor. We may assume {x,} has an initial index y,. Replace each x, by
X, —X,,, or by x, —x,, and apply the remarks above.

Now the double dual .«/* of a C*-algebra .o/ is again a C*-algebra. Indeed,
one can prove the following result (see [9, Section 12.1]). Let .o/ be a C*-algebra.
Then there exist a Hilbert space #, and an isometric *-homomorphism =,
of .of into #(#), with the following properties ;

(1) =, extends to an isometric linear map of .«* onto the weak (or
equivalently, strong) operator closure B of n,(.o/)in #(#,); here we embed
o into /" in the usual way;

(2) Bis a norm closed *-stable subalgebra of #(,) containing the identity
operator on J,;

(3) if &% is given its weak * topology (as the Banach space dual of /), and
if B is given the relative topology from the weak operator topology
on &(A#,), then the extended =, : &#/* - B is homeomorphism;

(4) every weak * continuous positive linear functional ¢ on «/* corresponds
under =, to the restriction to B of some vector state T — {Tx, x) of Z(s,).
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REMARK 2.1. A *-homomorphism of a C*-algebra ./ into #(.¢"), where X" is
a complex Hilbert space, is called a representation of o on .#. The map =,
constructed in [9] is called the universal representation of .o/, and has the
universal property that every representation of .o/ factors through n, (see
[9, Chapter 12]).

When we apply the results above with .of = #(#), we obtain the following
versions of Proposition 2.1.

CoROLLARY 2.2. Let P, be a monotone, norm-bounded net of operators in
B(H), where # is a complex Hilbert space. Let P be the weak operator limit
in B(A#)" of P,. Then P lies in B() if and only if P, is norm Cauchy in B(#).

CoRroOLLARY 2.3. Let P, and P be as in Corollary 2.2. Let P’ be the weak
operator limit in B(#) of the net {P,}. Then {P,} is norm Cauchy in B(¥)
if and only if P = P.

Now consider two positive operators A4 and B in Z(#). We have

A:B= lim (A+¢:B+¢)= inf (A+¢:B+¢),

e—0"* e>0

and we recall that the net A +¢ : B+¢ is a monotone decreasing net of positive
operators. Thus, we have

A :B = norm-limit (4 +¢, B+¢)

e—»0*

if and only if
n(A) :n,(B) = n,(A : B),

since for ¢ > 0, we have
n (A+¢e:B+e) = n,((A+e)(A+B+2) ' (B+¢))
= (m,(4) +e)(m,(4)+m,(B)+2¢)” ' (n,(B) +e)
= (n,(A)+¢€ :n,(B)+e).
That is, A:B is a norm limit of A+¢:B+¢ if and only if we can safely

compute the parallel sum of A and B either in #() or in #(#,), without
introducing any ambiguity. Since every representation of #(s#) factors
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through the universal representation, it follows that 4 :B is a norm limit
of (A+¢):(B+¢) if and only if the computation of 4 :B is independent
of representation. Now any representation =n is order preserving, so
{n(A+¢):n(B+¢)},>o is also monotone net, and

(A :B) = n(A+¢) :n(B+e)

for each ¢ > 0. Thus
n(A) :n(B) = inf n(4 +¢) :n(B+¢) = n(A4 : B).
e>0

We summarize in the next corollary.

CoRrOLLARY 2.4. Let A and B be positive operators on a complex Hilbert
space #, and let m be a representation (not necessarily normal) of B(H) (or
any of von Neumann subalgebra of #(#) which contains A and B). Then
n(A):n(B) 2 n(A : B). Moreover, if n = n,, then equality holds if and only if
(A+e):(B+e) =04 :B in norm.

DeriniTION. Let A4 and B be positive operators on a complex Hilbert space
#. We say that the pair (4, B) is uniformly and universally parallelizable
(or UUP for short) if the net (4+¢) : (B+¢) converges in norm.

We shall show in the next section that if E and F are (self-adjoint)
projections on J#, then (E, F) is UUP if and only if (E + F) () is closed in .
It follows that there are many non-UUP pairs of operators, even when the
operators in the pair are required to have closed range. On the other hand,
the next result shows that even with no assumptions on the ranges of A
and B, there are many UUP-pairs (4, B).

THEOREM 2.5. Let A and B be positive operators on a complex Hilbert space
. If A and B commute, then (A, B) is UUP.

Proor. If A and B commute, then it follows from Theorem 1.1 above that
C and D, as in Theorem 1.1, are the unique operators satisfying the system

A'? = (4+B)'C,
B'2 = (4+B)'"*D,
c=c,
D=D*
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This system of equations is invariant under the universal representation.
Since

A:B = AY*C*DB'/?,
we have n,(A4 : B) = n,(A) :n,(B), by uniqueness.

ReEMARK 2.6. The von Neumann algebra generated by a commuting pair
(A,B) is commutative and contains A4 :B, so a straight-forward spectral
theoretic proof of Theorem 2.5 can also be given. Note however that by
Proposition 2.1, (4,B) is UUP if and only if 4 :B lies in the (smaller)
C*.algebra generated by A4, B, and I.

ReMark 2.7. Suppose {T,} is any monotone approximation which converges
strong operator to A4 : B, and suppose the computation of T, is independent
of representation, ie., (n(T)), = n(T,) for all y and all n. Then by arguments
analogous to those above, we have that T, converges in norm if and
only if

(A :B) = n,(A) :n,(B).

Thus for any monotone approximation scheme which is independent of
representation, we have norm convergence to A : B if and only if (4, B) is UUP.

3. The parallel sum for operators with closed range.

In this section we show that if 4 and B are positive operators in .4(#),
each having closed range, then (4, B) is of class UUP (i.e., the computation
of A4 :B is independent of representation) if and only if 4+ B has closed
range. Observe that if A + B has closed range, then by Proposition 1.3 above,
the net {(4+el):(B+el)},»o converge in norm to A4 :B, so that A :B is
of class UUP. (This part of the argument makes no use of the assumption
that 4 and B have closed ranges.) Thus it remains only to show that if
A and B have closed ranges, and if (4, B) is of class UUP, then 4+ B has
closed range. For the remainder of this paper we shall denote by T the
image of T € #() under the universal representation (see Section 2). We shall

also denote by E; the (orthogonal) projection of # onto the closure of the
range of T.

LemMMa 3.1. If A 20, then the following four assertions are mutually
equivalent.

(1) A has closed range;

(2) there exist a projection E in B(#) and strictly positive real numbers o
and B such that «E £ A < BE;
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(3) A has closed range;
(4) (E4) =E;

Moreover, if (2) holds, then the projection E necessarily coincides with E ,.

PRrOOF. (1) <> (2) and the coincidence of E with E , are well-known and easy
to prove. To establish the remaining equivalences, it suffices to assume that
0=A=1I Now for 0S4 =1, E, is the monotone limit in the strong
operator topology of the sequence {4'"}, . Similarly

E; = lim A"

in the strong operator topology on Z(# )*. By Corollaries 2.2 and 2.3 above,
we have (E,)” = E; if and only if A'" converges in norm, and it follows
also that (E,)” = E; if and only if A'" converges in norm. By spectral
theory and the equivalence of (1) and (2), we have that 4 has closed range
if and only if A!/" converges in norm, and similarly that 4 has closed range
if and only if A" converges in norm. Thus we have (1) <> (4) and (3) < (4).
and the lemma is established.

ProprosITION 3.2. Let P and Q be projections in B(X). Then the following
assertions are mutually equivalent.

(1) P+Q has closed range;
@ (PvQ)y=PvQ;

() (PAQ) =PrQ;

@) (P:Q)=P:0.

Proor. We have Ep, o = P v Qand Ep,g) = P v Q. Thus the equivalence
of (1) and (2) follows from Lemma 3.1. The equivalence of (3) and (4) follows
from the fact that P:Q = 1/2(P A Q). By Corollary 1.3, (1) implies (4), so it
suffices to show (3) implies (2). Now (3) implies

(=P)v (I-Q) =U-P) Vv (I-0)
Applying the implications (2) = (1) = (3) to the pair (I — P,I—Q) yields
(U-P)A(I-Q) =(-P) A (I-0),

which is equivalent to (2).

THEOREM 3.3 Let A and B be positive operators in B(3¢), each of which has
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closed range. Then the following properties are mutually equivalent :

(1) A+ B has closed range;
(2) (A4:B) =A4:B;
(3) (A,B)is of class UUP.

Proor. By the results of Section 2 and the remarks in the first paragraph
of this section, it suffices to prove that (2) implies (1). Since A and B have
closed ranges, there exist a, § > 0 such that

aE, < A< BE,
and
aEB é B é _BEB

It follows from the monotonicity of the parallel sum and form (6) of Theorem
1.5 above that there exist o', ' > 0 such that

o«'(Eq ANEg) S A:BES B(E, A Ep).
Hence A4 :B has closed range. By (1) <> (4) of Lemma 3.1,.we have
E.py = (E4.5)"
By this last and (3) of Theorem 1.6, we have
Eu:py = (Ea:8) = (E4 A Ep)"

But by (1)<>(3) of Lemma 3.1, 4 and B also have closed ranges, so in
similar fashion Lemma 3.1 and Theorem 1.6 imply

Ei.g = E; A Eg = (E,)” A (Eg)"
Thus (2) implies that
(Eq A EB)A= E(A By = Ez.g= (EA)A A (En)t

Thus by Proposition 3.2, the range of E,+ Ej is closed whenever (2) holds.
Now by Corollary 3 to Theorem 2.2 of [11], we have that A+ B has closed
range <> E,+ Eg has closed range. Thus (2) implies that A+ B has closed
range, ie., (2) = (1).

RemARK 3.4. Suppose the range of A+ B is not closed. Then it is possible
to construct more or less explicitly a state of #(»#)* which separates E4 p)°
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from (E,. )" Since Range (4 + B) is not closed, there exists in Range (A4 + B)
a net {x,] of unit vectors such that {(4+ B)x,,x,> = 0. Let w, denote the
state T — (Tx,,x,» on A(X), and let w be any weak* limit point of {w,}
in the state space of A(#). Then w(E 4, 3) = 1 since each x, lies in E 4, g(#).
However, -

w(4+B) = limw,(4+B) = 0.
)

We may regard w as a vector state on A(#)* (see [9, Section 12.1] or Section
2 above). It can be shown, by means of Theorem 1.1 above, that w(4+B) = 0
implies w(E44p7) =0, so o separates (E,,p)  from E,,p Note
that

Eivp=E N Ep
and that
Euvsr=Eiv Eg = (E4)" v (Ep)”
whenever 4 and B have closed ranges. Thus w separates the image of
E, v Eg from the supremum of the images of E, and Eg whenever 4 and

B have closed ranges. In particular, if A = P and B = Q are projections,
then o separates (P v Q) from P v Q.

4. The geometric mean and other iterations.

The geometric mean, A # B, of two invertible positive operators is defined
by the formula

A # B = AI/Z(A_UZBA'”2)”2A”2.

In the non-invertible case we define

A# B =Ilim(A+el) # (B+el),
el0

where the limit is taken in the strong operator topology. It follows from
the transformer inequality (see [4], [8], or [12]) that whenever A+ B is
invertible, we have

A # B = (A+B)"*(4 # B)A+B)'?,
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where 4 and B are as in Theorem 1.2 above. Note that if 4 and B commute

(but not otherwise) then A # B = (AB)'/?, and hence the name geometric

mean. The geometric mean of two positive operators has proved useful in

a wide variety of contexts (see [5], [8], [24], [27]). Some of the properties

of the geometric mean that we shall use are summarized in the following

proposition, the proofs of the various parts of which may be found in

(4], (8] [24]

PropoSITION 4.1. Let A and B be positive operators. Then

(1) A#B=B#A.

2) If A,lA and B,|B strong operator, then A, # B,—> A # B strong
operator

(3) If E and F are projections then E A F = E # F.

(4) If A and B have closed ranges, range (A # B) = rangé A nrange B.

It follows, just as in the case of the parallel sum, that if 4 and B commute,
or if A+ B has closed range, then A # B is the norm limit of (4 +¢l) # (B +el).
Similarly, it follows from Proposition 2.1 and its corollaries that A # B is
the norm limit of this netifand onlyif (4 # B) = A # B.Since P # Q = P A Q
when P and Q are projections, it also follows that for projections we have
P:Q)=P:0Q>P#Q)=P#(Q0<P+Q has closed range. An
argument very similar to that in Theorem 3.3 shows further that if 4 and
B have closed ranges, then (4 # B) = A # B implies that 4 + B has closed
range. In particular, we have the following result.

THEOREM 4.2. Let A 20, B =2 0, and let A and B have closed ranges. Then

(A#By=A#B< (A:B=4:B
<> A+ B has closed range
<> A # B is the norm limit of the net {(A+el) # (B+¢l)}, >0
<> (A, B) is of class UUP.

In [4] and [12] the following iteration was considered :

(4.1) Ao =A Bo = B,
An+1 = (1/2)(Au+Bn)a Bn+l = Z(An :Bn)’ nzl.
In[4]and [12],itis also shown that the following result holds, where convergence
is taken in the strong operator topology.
ProposITION 4.3. The operators A, and B, satisfy

@ A,28B,fornz1;
(b) A, #B,=A#Bfornz20;
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(c) [A,} is monotonically decreasing and {B,} is monotonically increasing ;
(d) A# B=1limA, = limB,.

Thus the 4, and B, bound A4 # B respectively above and below. The
effectiveness of this bounding is greatly increased if the A4, and B, should
happen to converge in norm.

THEOREM 4.4 Let A and B be positive operators with closed ranges, and
suppose A+ B has closed range. Then A, and B, converge in norm to A # B,
where A, and B, are given by (4.1) above.

Proor. If Range ((4 + B) is closed, then 4, and B, are UUP, and we argue
by induction. Now A, = 1/2(4o+ By) has closed range by hypothesis, and
B, = 2(A, : By) has closed range by (3) of Theorem 1.6. By Proposition 4.3,
A, Z B,, so A;+B; has closed range. Thus (4,,B;) is UUP, and by
induction (A,, B,) is UUP. Thus we have

(4,) = (A), and (B,) = (B),

by Theorem 3.3. (Hence (4,) denotes the iteration computed in #(#) and
then lifted to 4(#,), while (4), denotes the iteration computed in #(#,).) By
Proposition 4.3,

A # B =inf{A,} = sup{B,},
and

A # B=inf{4,) =sup{B,}.

It follows that 4 # B = (4 # B). The norm convergence of A4, and B,
now follows from Corollary 2.3 to Proposition 2.1.

An analysis similar to that above may be applied to the ladder iteration
considered in [5]. This iteration is defined as follows. Let A and B be given
positive operators, let Range 4 be closed, let ¢(X) = B :(4+ X), and put

X [\ A +B,
and
Xn+l =B '(A+Xn) = ¢(Xn)9 n g 0.

It was shown in [5] that this iteration converges monotonically down in
the strong operator topology to the unique positive fixed point X, of the
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function ¢. It was also shown in [5] that
X, =3((B # (I+44))—-B).

REMARK 4.5. Note that we have assumed when defining the ladder iteration
that 4 has closed range. The formula given above for X, is not known
to hold without this assumption on the range of A.

We now consider the norm convergence of the ladder iteration. Suppose
A and B have closed ranges and that (4,B) is UUP, that is, A+ B has
closed ranged. Then

(X)o=A+B=(4+B) = (Xo),

and A+ B = X, has closed range.
Now
Xl =B '(A"'Xo)

But B has closed range, A+ X, has closed range, and B < A+ X,, so
B+ A+ X, has closed range. Thus (B, A+ X,) is UUP, so

(X1) = (B:(A+X,)) = B:(A+X,) = (X),.
Continuing by induction we have
(X,) = X,
Now in the strong operator topology, we have the (monotone) convergence
X, = 3(B # (4+41))-B).

Since A +4I is invertible, it follows from the definition of the geometric
mean that

3(B # (A+4D)—B) = H(B # (A+4I))-BY.

Thus by Corollary 2.3 above and the fact that for all n, the sequence
{X,} must converge in norm.

REMARK 4.6. As in the case of the parallel sum, we have for any monotone
approximation scheme which is independent of representation that the
scheme converges in norm to A # B if and only if (A4, B) is of class UUP
(see Remark 2.7).
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