LOWER EQUIVARIANT K-THEORY

JAN-ALVE SVENSSON

0. Introduction.

The algebraic version of equivariant Whitehead torsion was introduced by Rothenberg in [5] using the universal R-extension of the Burnside category B(G).

A redefinition of the K_{-i} -groups of a ring R was given by Pedersen in [3], using the notion of Z^{i} -graded categories; if \mathscr{D} is the category of finitely generated free R-modules, then $K_{-i}(R) = K_{1}(\mathscr{D}_{i+1})$, where \mathscr{D}_{i+1} is the Z^{i+1} -graded category associated to \mathscr{D} .

We combine these two approaches and define the equivariant K_{-i} -groups of a discrete group G with respect to a ring R and a subset $\mathscr{F} \subset \operatorname{Conj}(G)$, thus obtaining $K_{-i}(R; G; \mathscr{F})$.

The notion of an R-category is reviewed in Section 3. Essentially it is a category with an R-bimodule structure on the hom-sets which behaves well with respect to composition of morphisms. If $\mathscr D$ is an R-category, then $R[T] \otimes_R \mathscr D$ is an R[T]-category (R[T] is the group ring of the infinite cyclic group T). Let $\mathscr D_i$ and ($R[T] \otimes_R \mathscr D)_i$ denote the corresponding Z^i -graded categories and $K_{-i}(\mathscr D) = K_1(\mathscr D_{i+1})$.

THEOREM A. If \mathcal{D} is an R-category, then

$$K_{-i}(R[T] \otimes_R \mathscr{D}) = K_{-i}(\mathscr{D}) \oplus K_{-i-1}(\mathscr{D}) \oplus 2\overline{\mathrm{Nil}}_{-i-1}(\mathscr{D}).$$

Here $\overline{\text{Nil}}_{-i-1}(\mathcal{D})$ is the abelian group which classifies the nilpotent maps in \mathcal{D}_{i+1} .

In Section 4 we specialize to universal ring extensions of the restricted Burnside category $B(G; \mathcal{F})$. T^i denotes the direct sum of *i*-copies of T and $R[T^i]$ its group ring. Using the restriction and induction functors between the categories $B(G \times T; \mathcal{F} \times \{1\})$ and $B(G \times \langle t^n \rangle; \mathcal{F} \times \{1\})$ we construct an action of the monoid $N^{i+1} = (N \setminus \{0\}, \cdot)^{i+1}$ on $K_1(R[T^{i+1}]; G; \mathcal{F})$ and prove:

Received January 7, 1986.

THEOREM B.
$$K_{-i}(R;G;\mathscr{F}) = K_1(R[T^{i+1}];G;\mathscr{F})^{\text{inv}N!^{i+1}}$$
.

Finally we have the K_{-i} -analogue of one of the main algebraic results from [5]:

Theorem C.
$$K_{-i}(R;G;\mathscr{F}) = \sum_{(H)\in\mathscr{F}}^{\oplus} K_{-i}(R[NH/H]).$$

ACKNOWLEDGEMENT. I would like to thank my advisor Professor Ib Madsen for introducing me to the subject and for many fruitful discussions.

1. Some functorial constructions.

In this section we outline some functorial constructions on the category of additive categories.

Let \mathscr{A} be an arbitrary category. We define three associated categories, $\operatorname{Aut}(\mathscr{A})$, $\operatorname{Proj}(\mathscr{A})$ and $\operatorname{Nil}(\mathscr{A})$ as follows. The objects of $\operatorname{Aut}(\mathscr{A})$ are pairs (A, a) with $a: A \to A$ on automorphisms. The objects of $\operatorname{Proj}(\mathscr{A})$ are pairs (A, p) with $p: A \to A$ satisfying $p^2 = p$, and finally the objects of $\operatorname{Nil}(\mathscr{A})$ are pairs (A, v) with $v: A \to A$ satisfying $v^n = 0$ (here we assume that \mathscr{A} has an initial-terminal object). In each case the morphisms are the obvious ones, namely the morphisms of \mathscr{A} which commute with the extra structure. For example

$$Nil(\mathscr{A})((A, v), (B, u)) = \{f : A \to B | fv = uf\}.$$

If \mathscr{A} is an additive category it is easily checked that $\operatorname{Aut}(\mathscr{A})$, $\operatorname{Proj}(\mathscr{A})$ and $\operatorname{Nil}(\mathscr{A})$ all have a natural additive structure. Thus $\operatorname{Aut}(\mathscr{A})$, $\operatorname{Proj}(\mathscr{A})$ and $\operatorname{Nil}(\mathscr{A})$ are endofunctors on the category of additive categories. Henceforth \mathscr{A} denotes a small additive category.

Recall that $K_0(\mathscr{A})$ is defined as the abelian group generated by isomorphism classes of objects in \mathscr{A} modulo the relations $[A \oplus B] = [A] + [B]$. $K_1(\mathscr{A})$ is the abelian group generated by isomorphism classes of objects in $\operatorname{Aut}(\mathscr{A})$ subject to the relations

$$[A, ab] = [A, a] + [A, b]$$
 and $[A \oplus B, a \oplus b] = [A, a] + [B, b]$.

In particular, [A, 1] = 0, $[A, a^{-1}] = -[A, a]$ and

$$\left[A \oplus B, \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}\right] =$$

$$= \left[A \oplus B \oplus B, \begin{pmatrix} 1 & 0 & f \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -f \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \right] = 0,$$

for any morphism $f: B \to A$. Hence

$$\begin{bmatrix} A \oplus B, \begin{pmatrix} a & f \\ 0 & b \end{pmatrix} \end{bmatrix} = \begin{bmatrix} B \oplus A, \begin{pmatrix} b & 0 \\ f & a \end{pmatrix} \end{bmatrix} = \begin{bmatrix} A, a \end{bmatrix} + \begin{bmatrix} B, b \end{bmatrix}.$$

If \mathscr{A} and \mathscr{A}' are equivalent, then $K_0(\mathscr{A}) \cong K_0(\mathscr{A}')$ and $K_1(\mathscr{A}) \cong K_1(\mathscr{A}')$, of course.

In $K_0(Nil \mathcal{A})$ we introduce the relations

(1.1)
$$\left[A \oplus B, \begin{pmatrix} v & f \\ 0 & u \end{pmatrix} \right] = \left[A, v \right] + \left[B, u \right],$$

where $f: B \to A$ is an arbitrary morphism. The quotient group of $K_0(\text{Nil } \mathcal{A})$ is $\text{Nil}_0(\mathcal{A})$. Similarly, we introduce

(i)
$$\overline{K_0}(\text{Proj}\mathscr{A}) = K_0(\text{Proj}\mathscr{A})/[A,0] = 0.$$

(1.2) (ii)
$$Nil_0(\operatorname{Proj} \mathscr{A}) = Nil_0(\operatorname{Proj} \mathscr{A})/[A, 0, v] = 0.$$

(iii)
$$\overline{\text{Nil}}_0(\mathscr{A}) = \text{Nil}_0(\mathscr{A})/[A, 0] = 0.$$

For later use we list some obvious relations. In $\overline{K}_0(\text{Proj }\mathcal{A})$ we have

(1.3)
$$\left[A \oplus B, \begin{pmatrix} p & f \\ 0 & q \end{pmatrix}\right] = [A, p] + [B, q].$$

Note that $\begin{pmatrix} p & f \\ 0 & q \end{pmatrix}$ is a morphism in Proj $\mathscr A$ only if pf + fq = f, and (1.3)

follows from the equality

$$\begin{pmatrix} 1 & pf - fq \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p & f \\ 0 & q \end{pmatrix} \begin{pmatrix} 1 & fq - pf \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}.$$

In $Nil_0(Proj \mathscr{A})$ we have

(i)
$$\left[A \oplus B, \begin{pmatrix} p & f \\ 0 & q \end{pmatrix}, \begin{pmatrix} v & h \\ 0 & u \end{pmatrix} \right] = \left[A, p, v \right] + \left[B, q, u \right].$$

(1.4) (ii)
$$[A, p, v] = [A, p, vp].$$

(iii) $[A, p, v] = [A, vp] + [A, p, 0] - [A, 1, 0].$

Conjugating by $\begin{pmatrix} 1 & pf - fq \\ 0 & 1 \end{pmatrix}$ yields

$$\begin{bmatrix} A \oplus B, \begin{pmatrix} p & f \\ 0 & q \end{pmatrix}, \begin{pmatrix} v & h \\ 0 & u \end{pmatrix} \end{bmatrix} = \begin{bmatrix} A \oplus B, \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}, \begin{pmatrix} v & * \\ 0 & u \end{pmatrix} \end{bmatrix} = \begin{bmatrix} A, p, v \end{bmatrix} + \begin{bmatrix} B, q, u \end{bmatrix},$$

proving (i). Note that

$$\begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix}$$
:

$$\left(A \oplus A, \begin{pmatrix} p & 0 \\ 0 & 1-p \end{pmatrix}, \begin{pmatrix} v & 0 \\ 0 & u \end{pmatrix}\right) \rightarrow \left(A \oplus A, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} vp + u(1-p) & 0 \\ 0 & v(1-p) + up \end{pmatrix}\right)$$

is an isomorphism in Nil(Proj A). Thus

$$[A, p, v] + [A, 1-p, u] = [A, 1, vp + u(1-p)].$$

If $(A, p, v) \in \text{Ob Nil}(\text{Proj } \mathcal{A})$, then

$$(1-p)v = v(1-p),$$

so (A, 1-p, v) and $(A, p, vp) \in 0$ b Nil(Proj \mathscr{A}). Choosing u = vp we get

$$[A, p, v] + [A, 1 - p, vp] = [A, 1, vp].$$

Substituting v by vp shows that

$$[A, p, vp] + [A, 1-p, vp] = [A, 1, vp].$$

Thus [A, p, v] = [A, p, vp], proving (ii). Also, by (1.5) (two times)

$$[A, p, v] = [A, 1, vp] - [A, 1-p, vp] = [A, 1, vp] + [A, p, 0] - [A, 1, 0],$$
 proving (iii).

PROPOSITION 1.6. $Nil_0(\text{Proj }\mathscr{A}) \cong \overline{\text{Nil}}_0(\mathscr{A}) \oplus \overline{K}_0(\text{Proj }\mathscr{A}).$

PROOF. There are homomorphisms (induced by the obvious functors).

$$\overline{\operatorname{Nil}}_0(\mathscr{A}) \overset{i_1}{\to} \operatorname{Nil}_0(\operatorname{Proj} \mathscr{A}) \overset{P_1}{\to} \overline{\operatorname{Nil}}_0(\mathscr{A})$$

and

$$\overline{K}_0(\text{Proj }\mathscr{A}) \stackrel{i_2}{\to} \text{Nil}_0(\text{Proj }\mathscr{A}) \stackrel{P_2}{\to} \overline{K}_0(\text{Proj }\mathscr{A}),$$

given by

$$i_1[A, v] = [A, 1, v] - [A, 1, 0],$$
 $i_2[A, p] = [A, p, 0],$
 $P_1[A, p, v] = [A, vp]$ and $P_2[A, p, v] = [A, p].$

Then $P_2i_1 = 0$, $P_1i_2 = 0$, $P_2i_2 = 1$, $P_1i_1 = 1$ and by (1.4) (iii)

$$[A, p, v] = [A, 1, vp] + [A, p, 0] - [A, 1, 0]$$

showing that $i_2P_2 + i_1P_1 = 1$.

2. Z'-graded categories.

In this section we review some results of [3] on Z^i -graded categories. We use the terminology from [3]. Let $\mathscr A$ be an additive category. For each natural number i we consider the Z^i -graded category $\mathscr A_i$. Its object are sets of the form $\{A_J\}_{J\in Z^i}$ where each A_J is an object in $\mathscr A$. An object in $\mathscr A_i$ will be denoted by A and $A(J)=A_J$. A morphism $f:A\to B$ in $\mathscr A_i$ is a set $\{f_{J,K}\}_{J,K\in Z^i}$, where $f_{J,K}:A(J)\to B(K)$ and $f_{J,K}=0$ if

$$|J-K| = \max_{1 \le s \le i} |j_s - k_s| > d, \quad \text{some} \quad d \in \mathbb{N}.$$

A morphism in \mathcal{A}_i will be denoted by a single letter f. It has components $f(J, K) = f_{J,K}$. We say f is bounded by d = d(f). Composition of $f: A \to B$ and $g: B \to C$ is defined by

$$(g \circ f)(J, K) = \sum_{L} g(L, K) \circ f(J, L).$$

Clearly $\mathscr{A} = \mathscr{A}_0$ and \mathscr{A}_i is an additive category.

A function $F: \mathcal{A} \to \mathcal{B}$ extends to a functor $F_i: \mathcal{A}_i \to \mathcal{B}_i$ and a natural transformation $\eta: F \to G$ extends to $\eta_i: F_i \to G_i$. We have the shift endofunctors $T^{\pm 1}: \mathcal{A}_i \to \mathcal{A}_i$ given by

$$(T^{\pm 1}A)(J) = A(j_i, ..., j_{i-1}, j_i \mp 1),$$

$$(T^{\pm 1}f)(J, K) = f((j_1, ..., j_{i-1}, j_i \mp 1), (k_1, ..., k_{i-1}, k_i \mp 1)).$$

 T^{\pm} is naturally isomorphic to $1_{\mathscr{A}}$ by

$$\tau^{\pm}(A, T^{\pm}A)(J, K) = \begin{cases} 1 & \text{if } j_1 = k_1, ..., j_{i-1} = k_{i-1}, \ j_i = k_i \mp 1 \\ 0 & \text{otherwise.} \end{cases}$$

Observe the embeddings

$$L: \mathcal{A}_i \to \mathcal{A}_{i+1}$$

defined by

$$(LA)(J) = A(j_1, ..., j_i, \hat{j}_{i+1})$$

$$(Lf)(J, K) = \begin{cases} f((j_1, ..., j_i, \hat{j}_{i+1}), (k_1, ..., k_i, \hat{k}_{i+1})) & \text{if } j_{i+1} = k_{i+1} \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\tau^{\pm 1} \circ Lf = Lf \circ \tau^{\pm 1}$ and $\tau^{\pm 1} : T^{\pm 1}LA = LA \to LA$. Pedersen defines

$$(2.2) K_{-i}(\mathscr{A}) = K_1(\mathscr{A}_{i+1}).$$

Similarly we define

(2.3)
$$\operatorname{Nil}_{-i}(\mathscr{A}) = \operatorname{Nil}_{0}(\mathscr{A}_{i}).$$

For a Z^i -graded object A we let $p_+: A \to A$ be the projection

$$p_{+}(J,K) = \begin{cases} 1 & \text{if } J = K \text{ and } j_{i} \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

Also, $p_-: A \to A$ denotes the projection

$$p_{-}(J,K) = \begin{cases} 1 & \text{if } J = K \text{ and } j_i \leq 0 \\ 0 & \text{otherwise.} \end{cases}$$

If $(A,a) \in 0$ bAut \mathscr{A}_{i+1} , then $(A,ap_{-}a^{-1}) \in 0$ bProj \mathscr{A}_{i+1} . Furthermore, since a and a^{-1} are bounded this projection equals the identity on A(J), $j_{i+1} \ll 0$ and zero on A(K), $k_{i+1} \gg 0$. Thus summation in the i+1th direction of a certain band around $j_{i+1} = 0$ gives an element $(\overline{A}, ap_{-}a^{-1}) \in 0$ bProj \mathscr{A}_i .

PROPOSITION 2.4 (Pedersen). The map $\operatorname{Aut}(\mathscr{A}_{i+1}) \to \overline{K}_0(\operatorname{Proj}\mathscr{A}_i)$ which sends the object (A,a) to the class $[\overline{A},ap_-a^{-1}]-[\overline{A},p_-]$ induces an isomorphism from $K_1(\mathscr{A}_{i+1})$ to $\overline{K}_0(\operatorname{Proj}\mathscr{A}_i)$.

The reader is referred to [3] and [4] for a proof. We only remark that the inverse of the maps in (2.4) is given by the functor $\text{Proj}(\mathcal{A}_i) \to \text{Aut}(\mathcal{A}_{i+1})$:

$$(f:(A,p)\to(B,q))\mapsto (Lf:(LA,1-Lp+\tau Lp)\to(LB,1-Lq+\tau Lq)).$$

3. $K_{-1}(\cdot)$ of universal R-extensions.

Throughout this section R will be a ring with identity and \mathscr{C} will be a small category with finite coproducts and an initial and terminal object. We consider the groups $K_{-i}(R \otimes \mathscr{C})$, where $R \otimes \mathscr{C}$ is the universal R-extension of \mathscr{C} (cf. [5]). First a category \mathscr{D} is said to be an R-category if

(i) for each pair of objects (A, B) the set $\mathcal{D}(A, B)$ is an R-bimodule such that the compositions

$$\mathcal{D}(B,C) \times \mathcal{D}(A,B) \to \mathcal{D}(A,C)$$

(3.1)

are R-linear to the left in the first variable and to the right in the second one and R-balanced,

- (ii) there is a 0-object,
- (iii) \mathcal{D} has finite coproducts.

A functor $F: \mathcal{D} \to \mathcal{D}'$ is said to be an *R*-functor if $F(rf+gs)^* = rF(f) + F(g)s$, for all $f,g \in \mathcal{D}(A,B)$ and $r,s \in R$.

Given a category \mathscr{C} , we construct its universal R-extension, $R \otimes \mathscr{C}$, as follows. Let $R(\mathscr{C})$ be the category with the same objects as \mathscr{C} and with morphisms

$$R(\mathscr{C})(A, B) = \{\lambda : \mathscr{C}(A, B) \to R \mid \lambda(f) = 0, \text{ almost all } f\}$$

 $R(\mathscr{C})(A, B)$ is an R-bimodule; its elements can be written in the form $\sum_{\text{finite}} r_i f_i$. The composition is defined by

$$\left(\sum_{j} s_{j} g_{j}\right) \circ \left(\sum_{i} r_{i} f_{i}\right) = \sum_{i,j} s_{j} r_{i} (g_{j} \circ f_{i}).$$

 $R(\mathscr{C})$ satisfies condition (3.1) (i) but not the two other conditions. An object I of \mathscr{C} is said to be *indecomposable* if given

then at least one of the dotted arrows exists. Let IND(\mathscr{C}) denote the category of indecomposable objects in \mathscr{C} . We can now define the universal R-extension $R \otimes \mathscr{C}$; it has the same objects as \mathscr{C} and $R \otimes \mathscr{C}(A, B) = R(\mathscr{C})/K(A, B)$, where K(A, B) is the R-bisubmodule of $R(\mathscr{C})(A, B)$ consisting of all morphisms $\lambda: A \to B$, such that for any morphism $\mu: I \to A$, $I \in IND(\mathscr{C})$, $\lambda \circ \mu = r_{\mu} \cdot 0$, some $r_{\mu} \in R$. One easily deduces that

$$K(A, B) = \{ \lambda \in R(\mathscr{C})(A, B) | \text{ for all } h \in \mathscr{C}(I, A), I \in IND(\mathscr{C}), \lambda h = r_u \cdot 0 \}.$$

The elements of $R \otimes \mathscr{C}(A, B)$ will be written in the form $[\sum r_i f_i]$. The obvious functor $\mathscr{C} \to R \otimes \mathscr{C}$ preserves coproducts, so $R \otimes \mathscr{C}$ is an R-category.

Let T denote the infinite cyclic group with generator t. R[T] is the group algebra of T with coefficients in R. If \mathcal{D} is an R-category, then $R[T] \otimes_R \mathcal{D}$ is the R[T]-category with the same objects as \mathcal{D} and morphisms $(R[T] \otimes_R \mathcal{D})(A, B) = R[T] \otimes_R \mathcal{D}(A, B)$.

The R-functor $\mathscr{D} \to R[T] \otimes_R \mathscr{D}$ preserves coproducts and $(R[T] \otimes_R \mathscr{L})(A, B)$ can be identified with $\mathscr{D}(A, B)[T]$.

We have the following obvious

PROPOSITION 3.2. $R[T] \otimes_R (R \otimes \mathscr{C})$ is R[T]-isomorphic to $R[T] \otimes \mathscr{C}$. A ring homomorphism $\phi: R_1 \to R_2$ ($\phi(1) = 1$) induces an R_1 -functor,

$$\phi: R_1 \otimes \mathcal{C} \to R_2 \otimes \mathcal{C}.$$

It is the identity on objects and map the morphism $[\sum r_i f_i]$ to $[\sum \phi(r_i) f_i]$.

PROPOSITION 3.3. Let $F: \mathscr{C} \to \mathscr{C}'$ be a functor preserving initial-terminal objects. Suppose every map $g \in \mathscr{C}'(I', FA)$, $I' \in IND(\mathscr{C}')$ factorizes as

for some $h \in \mathcal{C}(I, A)$, $I \in IND(\mathcal{C})$. Then F extends uniquely to an R-functor $F: R \otimes \mathcal{C} \to R \otimes \mathcal{C}'$, equal to F on objects and with $F([\sum r_i f_i]) = [\sum r_i F(f_i)]$.

PROOF. If $F: R \otimes \mathscr{C} \to R \otimes \mathscr{C}'$ is well defined it is obviously an R-functor. It suffices to show that it is well defined. Suppose $\sum r_i f_i h = r_h \cdot 0$ for all $h \in \mathscr{C}(I, A)$, $I \in IND(\mathscr{C})$. Let $g \in \mathscr{C}'(I', FA)$, $I' \in IND(\mathscr{C}')$, then

$$\sum r_i F(f_i) g = \sum r_i F(f_i) F(h) k = F(\sum r_i f_i h) k = F(r_h \cdot 0) k = r_h \cdot 0.$$

Note that $F: R \otimes \mathscr{C} \to R \otimes \mathscr{C}'$ preserves coproducts even if $F: \mathscr{C} \to \mathscr{C}'$ does not.

COROLLARY 3.4. If $\mathscr C$ and $\mathscr C'$ are equivalent, then $R \otimes \mathscr C$ and $R \otimes \mathscr C'$ are equivalent.

PROOF. By definition there are functors $F: \mathscr{C} \to \mathscr{C}'$, $G: \mathscr{C}' \to \mathscr{C}$ and natural equivalences $\eta: 1_{\mathscr{C}} \to GF$, $v: 1_{\mathscr{C}'} \to FG$, such that $F\eta = vF$. It follows that F and G satisfies the condition in Proposition 3.3, so the induced functors $F: R \otimes \mathscr{C} \to R' \otimes \mathscr{C}$ and $G: R \otimes \mathscr{C}' \to R \otimes \mathscr{C}$ exists. Also, the natural equivalences extend.

A class of objects \mathscr{W} in a category \mathscr{E} is said to generate \mathscr{E} if, for every $f \in \mathscr{E}(X, Y)$, $f \neq 0$, there exists $W \in \mathscr{W}$ and $j \in \mathscr{E}(W, X)$ such that $fj \neq 0$.

PROPOSITION 3.5. (Rothenberg [5]). Let \mathscr{D} be an R-category and $F:\mathscr{C} \to \mathscr{D}$ a functor such that $F(IND(\mathscr{C}))$ generates $F(\mathscr{C})$. Then F extends uniquely to an R-functor $F:R\otimes\mathscr{C}\to\mathscr{D}$.

 $\mathscr C$ is said to be a *wedge* of two full subcategories $\mathscr C'$ and $\mathscr C''$ ($\mathscr C = \mathscr C' \vee \mathscr C''$) if

- (i) for all $X \in \mathcal{C}$, $X \cong X_1 \vee X_2$, $X_1 \in \mathcal{C}'$ and $X_2 \in \mathcal{C}''$. If $f: X_1 \vee X_2 \to Y_1 \vee Y_2$ is an isomorphism $(X_1, Y_1 \in \mathcal{C}'; X_2, Y_2 \in \mathcal{C}'')$, then $f = f_1 \vee f_2$, f_1 and f_2 isomorphisms in \mathcal{C}' and \mathcal{C}'' , respectively.
 - (ii) $\mathscr{C}(X_1, X_2) = (0)$ for $X_1 \in \mathscr{C}', X_2 \in \mathscr{C}''$.
 - (iii) Let $i: \mathscr{C} \to R \otimes \mathscr{C}$ be the functor $(f: A \to B) \mapsto ([f]: A \to B)$. Then $i(IND(\mathscr{C}'))$ generates $i(\mathscr{C}')$.

Proposition 3.7. If $\mathscr{C} = \mathscr{C}' \vee \mathscr{C}''$, then

$$K_{-i}(R\otimes\mathscr{C})\cong K_{-i}(R\otimes\mathscr{C}')\oplus K_{-i}(R\otimes\mathscr{C}'').$$

The proof of 3.7 is essentially identical to the proof of [5, Theorem 1.17] and will be left to the reader.

Using the Whitehead relation

$$\begin{pmatrix} ab & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -a^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix}$$

it is easy to prove the following:

LEMMA 3.8. Let H be an abelian group and $\Phi: 0bAut(\mathcal{A}) \to H$ a map. Then

$$0bAut(\mathscr{A}) \xrightarrow{\Phi} H$$

$$\downarrow K_1(\mathscr{A}).$$

if and only if

(i) $\Phi(A \oplus B, a \oplus b) = \Phi(A, a) + \Phi(B, b),$ for all $(A, a), (B, b) \in 0$ bAut(\mathscr{A}),

(ii)
$$\Phi\left(A \oplus B, \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} c\right) = \Phi\left(A \oplus B, \begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix} c\right) = \Phi(A \oplus B, c),$$

for all $(A \oplus B, c) \in 0$ bAut (\mathcal{A}) and $h: B \to A, g: A \to B$,

(iii) $\Phi(A,1)=0.$

We want to describe a map

$$v: K_1(R[T] \otimes_R \mathscr{D}) \to Nil_0(\operatorname{Proj} \mathscr{D})$$

and begin with giving ν on $\operatorname{Aut}(R[T] \otimes_R \mathcal{D})$. It is easy to check that the functor $R[T] \otimes_R \mathcal{D} \to \mathcal{D}_1$ given by

$$\left(\sum t^i f_i \colon A \to B\right) \mapsto \left(\sum \tau^i L f_i \colon LA \to LB\right)$$

is well defined. (See section 2 for notation.) We will denote this functor by $(a: A \to B) \mapsto (\tilde{a}: LA \to LB)$. If $(A, a) \in 0$ bAut $(R[T] \otimes_R \mathcal{D})$, then $(LA, \tilde{a}) \in 0$ bAut (\mathcal{D}_1) .

Since \tilde{a} and \tilde{a}^{-1} are bounded we can consider the maps (for $k = \max(d(\tilde{a}), d(\tilde{a}^{-1}))$)

$$\tilde{a}p_{-}\tilde{a}^{-1}: \sum_{k=1}^{k} \oplus LA(j) \rightarrow \sum_{k=1}^{k} \oplus LA(j),$$

$$\tilde{a}p_{-}\tau\tilde{a}^{-1}:\sum_{-k}^{k} \oplus LA(j) \to \sum_{-k}^{k} \oplus LA(j),$$

where p_{-} and τ are as defined in section 2. Write $\sum_{k=1}^{k} LA(j) = (2k+1)A$

and set

$$v(A, a) = [(2k+1)A, \tilde{a}p_{-}\tilde{a}^{-1}, \tilde{a}p_{-}\tau\tilde{a}^{-1}] - [(2k+1)A, p_{-}, p_{-}\tau].$$

If l > k, then the restrictions of $\tilde{a}p_{-}\tilde{a}^{-1}$ and $\tilde{a}p_{-}\tau\tilde{a}^{-1}$ to the band $|j| \le l$ give the same element since $\tilde{a}p_{-}\tilde{a}^{-1}(j,i) = p_{-}(j,i)$ and $\tilde{a}p_{-}\tau\tilde{a}^{-1}(j,i) = \tilde{a}p_{-}\tilde{a}^{-1}\tau(j,i) = p_{-}\tau(j,i)$ if |j| > l.

PROPOSITION 3.9. The map v factors over $K_1(R[T] \otimes_R \mathcal{D})$;

$$v: K_1(R[T] \otimes_R \mathscr{D}) \to Nil_0(\operatorname{Proj} \mathscr{D}).$$

PROOF. We check the conditions in (3.8). We leave conditions (i) and (iii) to the reader and prove (ii). If $d: A \oplus B \to A \oplus B$ is an invertible matrix with entries in \mathcal{D} , then $Ld = \overline{d}$ preserves the degrees. It follows that

$$(3.10) v(A \oplus B, dc) = v(A \oplus B, c).$$

Suppose we have proven

$$(3.11) \quad v\left(A \oplus B, \begin{pmatrix} 1 & t^{\pm 1}f \\ 0 & 1 \end{pmatrix} c\right) = v\left(A \oplus B, \begin{pmatrix} 1 & 0 \\ t^{\pm 1}f & 1 \end{pmatrix} c\right) = v(A \oplus B, c),$$

for every $f \in \mathcal{D}(B, A)$. Then by applying the Whitehead relation to

$$\begin{pmatrix} 1 & 0 \\ 0 & t^{\pm 1} \end{pmatrix} c \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

we see that

$$v\left(A \oplus B, \begin{pmatrix} 1 & 0 \\ 0 & t^{\pm 1} \end{pmatrix} c\right) = v\left(A \oplus B, \begin{pmatrix} 1 & 0 \\ 0 & t^{\pm 1} \end{pmatrix}\right) + v(A \oplus B, c).$$

If $h = \sum t^m f_m$, then

$$\begin{pmatrix} 0 & h \\ 0 & 1 \end{pmatrix} = \prod \begin{pmatrix} 1 & t^{m} f_{m} \\ 0 & 1 \end{pmatrix}$$

so it is enough to consider $h = t^m f$. Now

$$\binom{1}{0} t^{m+1} f \choose 0 = \binom{1}{0} t^{-1} \binom{1}{0} \binom{1}{0} t^{m} f \binom{1}{0} \binom{1}{0} t, \quad \text{if } m \ge 0$$

and

$$\binom{1}{0} t^{m-1} c = \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{1} \binom{1}{0} \binom{1}{0} t^{-1} c, \quad \text{if } m \leq 0.$$

There are similar formulas in the case $\begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix} c$. Thus the proposition will

follow from (3.11) by induction (using (3.10) to start it).

We now prove (3.11). If $k = \max(d(\tilde{c}), d(\tilde{c}^{-1}))$, then $\tilde{c}p_-\tilde{c}^{-1}$ maps the band $-k \leq j \leq k$ into itself; the map is the identity if j < -k and zero if j > k. $\tilde{c}p_-\tau\tilde{c}^{-1} = \tilde{c}p_-\tilde{c}^{-1}\tau$ also maps the band $-k \leq j \leq k$ into itself; if j < -k it equals τ , and if j > k it equals zero.

Let l > k and define

$$LB'(j) = \begin{cases} B & \text{if } |j| \le 2l \\ 0 & \text{if } |j| > 2l \end{cases}$$

and LB'' by $LB' \oplus LB'' = LB$. Let $h = t^{\pm 1}f$,

$$h' = LB \xrightarrow{\text{proj}} LB' \xrightarrow{\text{incl}} LB \xrightarrow{\hbar} LB$$

and

$$h'' = LB \xrightarrow{\text{proj}} LB'' \xrightarrow{\text{incl}} LB \xrightarrow{\hbar} LB.$$

Then

$$\begin{pmatrix} 1 & \widetilde{h} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \widetilde{h}' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \widetilde{h}'' \\ 0 & 1 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 1 & \widetilde{h}'' \\ 0 & 1 \end{pmatrix} \widetilde{c} p_{-} \widetilde{c}^{-1} \begin{pmatrix} 1 & -\widetilde{h}'' \\ 0 & 1 \end{pmatrix} = \widetilde{c} p_{-} \widetilde{c}^{-1},$$

since $\tilde{c}p_{-}\tilde{c}^{-1}$ is the identity if j < -l and zero if j > l. Consider

$$V = \begin{pmatrix} 1 & \tilde{h}^{"} \\ 0 & 1 \end{pmatrix} \tilde{c} p_{-} \tau \tilde{c}^{-1} \begin{pmatrix} 1 & -\tilde{h}^{"} \\ 0 & 1 \end{pmatrix}.$$

If $j \ge -2l$ then $V = \tilde{c}p_{-}\tau\tilde{c}^{-1}$ and if $j \le -2l-2$ then $V = \tau$. In the case h = tf we have

$$V(-2l-1,i) = \begin{cases} 1 & \text{if } i = -2l \\ \begin{pmatrix} 0 & -f \\ 0 & 0 \end{pmatrix} & \text{if } i = -2l+1 \\ 0 & \text{otherwise.} \end{cases}$$

If $h = t^{-1}f$, then

$$V(-2l-1,i) = \begin{cases} 1 & \text{if } i = -2l \\ \begin{pmatrix} 0 & -f \\ 0 & 0 \end{pmatrix} & \text{if } i = -2l-1 \\ 0 & \text{otherwise.} \end{cases}$$

Writing down the matrices for V and using (1.1) it follows that

$$\begin{bmatrix} (6l+1)(A \oplus B), \begin{pmatrix} 1 & \tilde{h}^{"} \\ 0 & 1 \end{pmatrix} \tilde{c}p_{-}\tilde{c}^{-1} \begin{pmatrix} 1 & -\tilde{h}^{"} \\ 0 & 1 \end{pmatrix}, v \end{bmatrix}$$
$$= \begin{bmatrix} (6l+1)(A \oplus B), \tilde{c}p_{-}\tilde{c}^{-1}, \tilde{c}p_{-}\tau\tilde{c}^{-1} \end{bmatrix}.$$

Observing that $\begin{pmatrix} 1 & \hbar' \\ 0 & 1 \end{pmatrix}$ restricts to an isomorphism of the band $|j| \leq 3l$ we get

$$v\left(A \oplus B, \begin{pmatrix} 1 & t^{\pm}f \\ 0 & 1 \end{pmatrix}c\right) = v(A \oplus B, c).$$

The proof of the other half of (3.11) is completely analogous.

The map v above is a split epimorphism. Indeed, we can define a homomorphism in the opposite direction by

$$\delta : Nil_0(\text{Proj } \mathcal{D}) \to K_1(R[T] \otimes_R \mathcal{D})$$

$$\delta[A, p, v] = [A, (1-p) + (v-t)p] - [A, (1-p) + (v+1)p]$$

$$= [A, 1-p-tp] + [A, 1-t^{-1}vp] - [A, 1-p+(v+1)p]$$

$$= [A, 1-p+(v-t)(v+1)^{-1}p].$$

 δ is induced by the obvious functor.

Proposition 3.13. The map δ is a section of v.

PROOF. $1-p-t^{-1}p$ is the inverse of 1-p-tp and an easy calculation shows that

$$v[A, 1-p-tp] = \begin{bmatrix} 3A, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & p \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & p & 0 \end{pmatrix} \end{bmatrix} - \begin{bmatrix} 3A, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$
$$= [A, p, 0].$$

The last equality follows from (1.3) (i).

Assume v has nilpotence index n+1 (that is $v^{n+1}=0$). Then

$$(1-t^{-1}vp)^{-1} = 1+t^{-1}vp+t^{-2}v^2p+\ldots+t^{-n}v^np.$$

The maximal bound of the maps $((1-t^{-1}vp)^{\gamma})^{\pm 1}$ is n. Using the definition of v we get

$$v[A, 1-t^{-1}vp] = \left[(2n+1)A, \begin{pmatrix} I_{n+1} & M \\ 0 & 0_n \end{pmatrix}, \begin{pmatrix} I_{n+1} & M \\ 0 & 0_n \end{pmatrix} J_{2n+1} \right],$$

where M is the $(n+1) \times n$ -matrix with entries

$$(M)_{i,j} = \begin{cases} v^j p & \text{if } i = n+1 \\ 0 & \text{otherwise.} \end{cases}$$

 J_{2n+1} is the matrix for the cyclic permutation (1, 2, ..., 2n, 2n + 1). An application of (1.4) (i) shows that

$$v[A, 1-t^{-1}vp] = [A, 1, vp] - [A, 1, 0] = [A, 1, vp] - [A, 1, 0].$$

Since $1-p+(v+1)^{-1}p$ is a morphism in \mathcal{D} it follows that (cf. the proof of (3.9)), $v[A, 1-p+(v+1)^{-1}p] = 0$.

Thus by (3.12) and (1.4) we have

$$v\delta[A, p, v] = [A, 1, vp] + [A, p, 0] - [A, 1, 0] = [A, p, v].$$

We can substitute p_- and τ for p_+ and τ^{-1} in the definition of ν and get a new homomorphism

$$v_-: K_1(R[T] \otimes_R \mathscr{D}) \to Nil_0(\operatorname{Proj} \mathscr{D}).$$

Also, there is a homomorphism

$$\delta_{-}: \tilde{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \to K_{1}(R[T] \otimes_{R} \mathscr{D})$$

induced by the functor Nil Proj $\mathcal{D} \to \operatorname{Aut} R[T] \otimes_R \mathcal{D}$, which sends (A, p, v) to $(A, 1-p+(v-t^{-1})(v+1)^{-1}p)$.

One shows, exactly as in the proof of Proposition 3.13, that δ_{-} is a section of ν_{-} . The same type of calculations also show that

$$(3.14) v_{\delta}[A, p, v] = v\delta_{-}[A, p, v] = [A, 1-p, 0] - [A, 1, 0].$$

The embedding $\mathscr{D} \to R[T] \otimes_R \mathscr{D}$ induces

$$i_1: K_1(\mathcal{D}) \to K_1(R[T] \otimes_R \mathcal{D})$$

with left inverse given by the map $R[T] \rightarrow R$, $t \mapsto -1$,

$$p_1: K_1(R[T] \otimes_R \mathcal{D}) \to K_1(\mathcal{D}).$$

We also have

$$i_{2}: \overline{K}_{0}(\operatorname{Proj} \mathscr{D}) \longrightarrow \operatorname{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \xrightarrow{\delta} K_{1}(R[T] \otimes_{R} \mathscr{D}),$$

$$p_{2}: K^{1}(R[T] \otimes_{R} \mathscr{D}) \xrightarrow{\vee} \operatorname{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \longrightarrow \overline{K}_{0}(\operatorname{Proj} \mathscr{D}),$$

$$i_{3}: \overline{\operatorname{Nil}}_{0}(\mathscr{D}) \longrightarrow \operatorname{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \xrightarrow{\delta} K_{1}(R[T] \otimes_{R} \mathscr{D}),$$

$$p_{3}: K_{1}(R[T] \otimes_{R} \mathscr{D}) \xrightarrow{\vee} \operatorname{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \longrightarrow \overline{\operatorname{Nil}}_{0}(\mathscr{D}),$$

$$i_{4}: \operatorname{Nil}_{0}(\mathscr{D}) \longrightarrow \operatorname{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \xrightarrow{\delta^{-}} K_{1}(R[T] \otimes_{R} \mathscr{D}) \text{ and}$$

$$p_{4}: K_{1}(R[T] \otimes_{R} \mathscr{D}) \xrightarrow{\vee} \operatorname{Nil}_{0}(\operatorname{Proj} \mathscr{D}) \longrightarrow \overline{\operatorname{Nil}}_{0}(\mathscr{D}),$$

where the unnamed maps are as in 1.6.

It follows from (3.14) that $p_k i_l = \delta(k, l)$.

PROPOSITION 3.15.
$$K_1(R[T] \otimes_R \mathscr{D}) \cong K_1(\mathscr{D}) \oplus \overline{K}_0(\operatorname{Proj} \mathscr{D}) \oplus 2\overline{\operatorname{Nil}}_0(\mathscr{D}).$$

PROOF. By the above the only thing left to check is that $\sum p_k i_k = 1$. Let $(A, \sum t^m f_m) \in 0$ bAut $(R[T] \otimes_R \mathcal{D})$. Thus $\sum t^m f_m$ is a unit in the ring $R[T] \otimes_R \mathcal{D}(A, A) = \mathcal{D}(A, A)[T]$.

There is an obvious homomorphism $K_1(\mathcal{D}(A,A)[T]) \to K_1(R[T] \otimes_R \mathcal{D})$, mapping an $n \times n$ -matrix to the torsion of the corresponding map $nA \to nA$, followed by the map induced by $R[T] \to R[T]$, $t \mapsto -t$. By the usual decomposition of K_1 of a ring (see [B]) we have

$$\left[\sum t^m f_m\right] = \left[\sum f_m\right] + \left[1 - p + (t+v)(1+v)^{-1}p\right] + \left[1 - q + (t+u)(1+u)^{-1}q\right],$$

where p and q are matrices over $\mathcal{D}(A, A)$ such that $p^2 = p$ and $q^2 = q \cdot u$ and v are nilpotent matrices over $\mathcal{D}(A, A)$. It follows that $\sum i_k p_k = 1$.

THEOREM A.

$$K_{-i+1}(R[T] \otimes \mathscr{C}) \cong K_{-i+1}(R \otimes \mathscr{C}) \oplus K_{-i}(R \otimes \mathscr{C}) \oplus 2\overline{\operatorname{Nil}}_{-i}(R \otimes \mathscr{C}).$$

PROOF. The case i = 0 follows from (3.15) and (2.4). Writing down a diagram corresponding to [3, (2.15), p. 473] one sees by induction that

$$K_{-i}(R[T^r] \otimes \mathscr{C}) \cong K_1(R[T^r] \otimes_R (R \otimes \mathscr{C})_{i+1}).$$

4. The equivariant $K_{-i}(\cdot)$ -groups.

Let G be a discrete group and \mathcal{F} a subset of the set of conjugacy classes of subgroups of G. We shall consider G-finite sets, that is G-sets X with X/G

finite. All G-sets will be assumed to have a base point $\{*\}$ wich is a stationary point. Let $B(G; \mathcal{F})$ be the category of G-finite sets X, such that

$$v \in X - \{ * \} \Rightarrow (G_x) \in \mathscr{F}.$$

Here (H) denotes the conjugacy class of H < G. The morphisms in $B(G: \mathcal{F})$ are base point preserving G-maps. The category $B(G; \mathcal{F})$ has finite coproducts (and products) and $\{*\}$ is both initial and terminal. Let R be any ring (with $1 \in R$). Define the equivariant K_{-i} -groups ($i \ge -1$) of G with respect to R and \mathcal{F} to be

$$K_{-i}(R;G;\mathscr{F})=K_1((R\otimes B(G;\mathscr{F}))_{i+1}).$$

Similarly

$$\operatorname{Nil}_{-i}(R;G;\mathscr{F}) = \overline{\operatorname{Nil}}_{0}((R \otimes B(G;\mathscr{F}))_{i}).$$

From Theorem A we have

COROLLARY 4.1.

$$K_{-i}(R[T];G;\mathscr{F})\cong K_{-i}(R;G;\mathscr{F})\oplus K_{-i-1}(R;G;\mathscr{F})\oplus 2\mathrm{Nil}_{-i-1}(R;G;\mathscr{F}).$$

PROPOSITION 4.2. If Γ is abelian, then $R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\})$ is an $R[\Gamma]$ -category.

PROOF. Let $\gamma \in \Gamma$. Since Γ is abelian the map

$$\gamma \colon \bigvee_i (G \times \Gamma/F_i \times 1)^+ \to \bigvee_i (G \times \Gamma/F_i \times 1)^+,$$

which sends $[g_1, \gamma_1]_i$ to $[g_1, \gamma\gamma_1]_i$ and + to + is a $G \times \Gamma$ -map. Choose a point x_i in each $G \times \Gamma$ orbit in X, $(G \times \Gamma)_{x_i} = F_i \times 1$. Then we have the usual $G \times \Gamma$ -isomorphism

$$\phi: \bigvee_{i} (G \times \Gamma/F_i \times 1) \to X, \qquad [g_1, \gamma_1]_i \mapsto (g_1, \gamma_1)x_i.$$

If we choose another set of orbit points $\{x_j'\}$, we get another isomorphism ψ . However $[\phi\gamma\phi^{-1}] = [\psi\gamma\psi^{-1}]$ in $R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\})$. Indeed, IND $(B(G \times \Gamma; \mathscr{F} \times \{1\}))$ has skeleton $\{(G \times \Gamma/F \times 1)^+ | (F) \in \mathscr{F}\} \cup \{*\}$ so it is enough to show that if

$$h: (G \times \Gamma/F_1 \times 1)^+ \xrightarrow{\cong} (G \times \Gamma/F_2 \times 1)^+$$

is a $G \times \Gamma$ -isomorphism, then $h\gamma h^{-1} = \gamma$ in $B(G \times \Gamma; \mathscr{F} \times \{1\})$. This follows from the assumption that Γ is abelian.

For $[\sum r_i f_i] \in R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\})(X, Y)$ define

$$(4.3) \qquad \left[\sum r_i f_i\right] \gamma = \left[\sum r_i f_i\right] \left[\phi \gamma \phi^{-1}\right], \quad \text{for some } \phi \colon \bigvee_i (G \times \Gamma/F_i \times 1)^+ \xrightarrow{\cong} X$$

and

(4.4)
$$\gamma[\sum r_i f_i] = [\psi \gamma \psi^{-1}][\sum r_i f_i], \text{ for some } \psi : \bigvee_j (G \times \Gamma/F_j \times 1)^+ \xrightarrow{\cong} Y.$$

By the above this definition is independent of the choices of ϕ and ψ . It follows immediately from (4.3) and (4.4) that $R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\})$ is an $R[\Gamma]$ -category.

PROPOSITION 4.5. The $R[\Gamma]$ -categories $R[\Gamma] \otimes B(G; \mathcal{F})$ and $R \otimes B(G \times \Gamma; \mathcal{F} \times \{1\})$ are equivalent.

PROOF. Consider the functor

$$\overline{\psi}: B(G; \mathscr{F}) \to B(G \times \Gamma; \mathscr{F} \times \{1\}) \to R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\}),$$

which sends $f: X \to Y$ to $[f \land 1]: X \land \Gamma^+ \to Y \land \Gamma^+$.

By Proposition (3.5) and (4.2) and the fact that $\{G/F^+ \wedge \Gamma^+ | (F) \in \mathscr{F}\} \cup \{*\}$ is a skeleton in IND $(R \otimes B(G \times \Gamma; \mathscr{F} \times 1))$, $\overline{\psi}$ extends to

$$\bar{\Psi}: R[\Gamma] \otimes B(G; \mathscr{F}) \to R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\})$$

and

$$\overline{\Psi}\left[\sum_{\gamma}\gamma\sum_{i}r_{i,\gamma}f_{i,\gamma}\right] = \sum_{\gamma}\gamma\left[\sum_{i}r_{i,\gamma}(f_{i,\gamma}\wedge 1)\right] = \sum_{\gamma}\left[\sum_{i}r_{i,\gamma}(f_{i,\gamma}\wedge \gamma)\right].$$

We show that $\overline{\Psi}$ is a full embedding and that every $Z \in B(G \times \Gamma; \mathscr{F} \times \{1\})$ is isomorphic to $X \wedge \Gamma^+$ for some $X \in B(G; \mathscr{F})$. The latter is immediate since

$$Z \cong \bigvee_{i} (G \times \Gamma/F_i \times 1)^+ \cong \left(\bigvee_i G/F_i^+\right) \wedge \Gamma^+.$$

We consider the map

$$\overline{\Psi}: R[\Gamma] \otimes B(G; \mathscr{F})(X, Y) \to R \otimes B(G \times \Gamma; \mathscr{F} \times \{1\})(X \wedge \Gamma^+, Y \wedge \Gamma^+).$$

Suppose $\left[\sum_{i,\gamma}r_{i,\gamma}(f_{i,\gamma}\wedge\gamma)\right]=0$. Let $\phi_x\colon G/F^+\to X$ be the G-map which sends [1] to $x\in X$, $(F\subseteq G_x)$. By assumption we have that

$$(4.6) r \cdot * = \left(\sum_{i,\gamma} r_{i,\gamma}(f_{i,\gamma} \wedge \gamma)\right) \circ (\phi_x \wedge 1) = \sum_{i,\gamma} r_{i,\gamma}(f_{i,\gamma}\phi_x \wedge \gamma),$$

where * is the zero (constant) map. Now,

$$f_1 \wedge \gamma_1 = f_2 \wedge \gamma_2 \Leftrightarrow (f_1 = f_2 \text{ and } \gamma_1 = \gamma_2) \text{ or } f_1 = f_2 = *$$

Thus (4.6) implies that

$$\sum_{\gamma} \gamma \sum_{i} r_{i,\gamma} f_{i,\gamma} \phi_{x} = \left(\sum_{i,\gamma} r_{i,\gamma} \gamma \right) \cdot * ,$$

proving that $\overline{\Psi}$ is an embedding.

Let $f: X \wedge \Gamma^+ \to Y \wedge \Gamma^+$ be a $G \times \Gamma$ -map and $\{x_i\}$ a choice of one point in each G-orbit of X, inducing

$$\phi: X \xrightarrow{\cong} \bigvee_{i} G/F_{i}^{+}$$
.

Denote projection on the jth factor of $\bigvee_{i} G/F_{i}^{+}$ by p_{j} . Let

$$[\psi]: X \wedge \Gamma^+ \to \bigvee_i (G/F_i^+ \wedge \Gamma^+)$$

be the map induced by the maps $p_j \phi \wedge 1$ (recall that coproducts are products in an R-category),

$$[\chi]: \bigvee_{i} (G/F_{i}^{+} \wedge \Gamma^{+}) \to Y \wedge \Gamma^{+}$$

is induced by the maps

$$\phi_{y_j} \wedge \gamma_j \colon G/F_j^+ \wedge \Gamma^+ \to Y \wedge \Gamma^+$$

sending $[[g], \gamma]$ to $(g, \gamma)[y_j, \gamma_j]$, where $[y_j, \gamma_j] = f[x_j, 1]$. Thus

$$[f] = [\chi \psi] = \left[\sum_{i} (\phi_{y_i} \wedge \gamma_i) (p_i \phi \wedge 1) \right] = \overline{\Psi} \left[\sum_{i} \gamma_i \phi_{y_i} p_i \phi \right],$$

showing that Ψ is full.

COROLLARY 4.7.
$$K_{-i}(R[\Gamma]; G; \mathcal{F}) \cong K_{-i}(R; G \times \Gamma; \mathcal{F} \times \{1\})$$
.

In proving Theorem 3 of the introduction it is convenient to introduce the usual restriction and induction functors. We write

$$\mathscr{F}H = \{ (H \cap F)_H | (F) \in \mathscr{F} \},$$

where $(-)_H$ denotes conjugacy-class in H, and have

$$\operatorname{Res}_{K}^{H}: B(K; \mathscr{F}K) \to B(H; \mathscr{F}H)$$

if $H \subset K$ and $\Gamma \setminus K/H$ is finite for $(\Gamma) \in \mathscr{F}K$. If $(\Gamma)_H \in \mathscr{F}H$ implies $(\Gamma)_K \in \mathscr{F}K$ we also have

$$\operatorname{Ind}_{H}^{K}: B(H; \mathscr{F}H) \to B(K; \mathscr{F}K)$$

by $\operatorname{Ind}_{H}^{K}(X) = X \wedge_{H}K^{+}$. The above functors induces

$$\operatorname{Res}_{K}^{H}: K_{-i}(R; K; \mathscr{F}K) \to K_{-i}(R; H; \mathscr{F}H)$$

and

$$\operatorname{Ind}_{H}^{K}: K_{-i}(R; H; \mathscr{F}H) \to K_{-i}(R; K; \mathscr{F}K).$$

Note if (F), $(F_1) \in \mathscr{F}$ implies $(F \cap F_1) \in \mathscr{F}$ (that is \mathscr{F} is a family), then $K_{-i}(R; -; \mathscr{F} -)$ is a Mackey functor (cf. [2]).

We can use the above maps to define an action of $N_{\cdot} = \{ N - \{0\}, \cdot \}$ on $K_{-i}(R[T]; G; \mathcal{F})$, namely

$$[n]\alpha = \Phi^{-1} \operatorname{Ind}_{G \times \langle t^n \rangle}^{G \times T} \operatorname{Res}_{G \times T}^{G \times \langle t^n \rangle} \Phi(\alpha),$$

where Φ is the isomorphism of Corollary 4.7.

PROPOSITION 4.8. The map $N \to \operatorname{End}(K_{-i}(R[T]; G; \mathcal{F})), n \mapsto [n]$ is a morphism of monoids (i.e. N acts on $K_{-i}(R[T]; G; \mathcal{F})$).

PROOF. Only the fact that [m][n] = [mn] needs verification. But a simple computation shows that

$$B(G \times T; \mathscr{F} \times \{1\}) \xrightarrow{\mathsf{Res}} B(G \times \langle t^n \rangle; \mathscr{F} \times \{1\}) \xrightarrow{\mathsf{Ind}} B(G \times T; \mathscr{F} \times \{1\})$$

$$\xrightarrow{\text{Res}} B(G \times \langle t^{\mathsf{m}} \rangle; \mathscr{F} \times \{1\}) \xrightarrow{\text{Ind}} B(G \times T; \mathscr{F} \times \{1\})$$

and

$$B(G \times T; \mathscr{F} \times \{1\}) \xrightarrow{\mathsf{Res}} B(G \times \langle t^{\mathsf{min}} \rangle; \mathscr{F} \times \{1\}) \xrightarrow{\mathsf{Ind}} B(G \times T; f \times \{1\})$$

are naturally equivalent. Thus they induce the same homomorphism on $K_{-i}(R; G \times T; \mathscr{F} \times \{1\})$.

THEOREM B.
$$K_{-i}(R[T]; G; \mathscr{F})^{inv \ N} = K_{-i-1}(R; G; \mathscr{F}).$$

PROOF. By Corollary 4.1 we have

$$K_{-i}(R[T];G;\mathscr{F})\cong K_{-i}(R;G;\mathscr{F})\oplus K_{-i-1}(R;G;\mathscr{F})\oplus 2\mathrm{Nil}_{-i-1}(R;G;\mathscr{F}).$$

We consider the action on each component. First note that

$$\operatorname{Res}_{G\times T}^{G\times \langle t^n\rangle}(X\wedge T^+)\cong \bigvee_{i=1}^n (X\wedge \langle t^n\rangle^+)$$

and that

$$(4.9) \qquad \bigvee_{i=1}^{n} \langle t^{n} \rangle_{i} \to T, \qquad (t_{i}^{n} \mapsto t^{n+i}) \qquad \text{is an } \langle t^{n} \rangle \text{-isomorphism.}$$

Given an ordered coproduct of n identical objects we will denote by J_n the map wich map the *i*th component to the (i+1)th by the identity map, the nth component is mapped to $*.\hat{J}_n$ is the map sending the *i*th component to the (i-1)th by the identity map and the 1st component to 0. Using this notation it follows that

$$\operatorname{Res}(1 \wedge 1) = I_n$$
, $\operatorname{Res}(1 \wedge t) = J_n + t^n \hat{J}_n^{n-2}$ and $\operatorname{Res}(1 \wedge t^{-1}) = \hat{J}_n + t^{-n} J_n^{n-2}$.

Also, $\operatorname{Ind}_{G\times \langle t^n\rangle}^{G\times T}$ just means identifying t^n with t.

(i) If $(X, a) \in \operatorname{Aut}(R \otimes B(G; \mathscr{F}))_{i+1}$ consider it as an element in $\operatorname{Aut}(R[T] \otimes B(G; \mathscr{F}))_{i+1}$. Then

$$[n][X,a] = \Phi^{-1} \operatorname{Ind} \operatorname{Res} \Phi[X,a] = \Phi^{-1} \operatorname{Ind} \operatorname{Res} [X \wedge T^+, a \wedge 1]$$
$$= \Phi^{-1} \operatorname{Ind} [n(X \wedge \langle t^n \rangle^+), (a \wedge 1)I_n] = \Phi^{-1} (n[X \wedge T^+, a \wedge 1])$$
$$= n[X,a].$$

(ii) If $(X, p) \in \text{Proj}(R \otimes B(G; \mathcal{F}))_{i+1}$, then its image in $K_{-i}(R[T]; G; \mathcal{F})$ is [X, 1-p-tp] and

$$[n][X, 1-p-tp] = \Phi^{-1} \operatorname{Ind} \operatorname{Res}[X \wedge T^{+}, (1-p) \wedge 1-p \wedge t]$$

$$= \Phi^{-1} \operatorname{Ind}[n(X \wedge \langle t^{n} \rangle^{+}), ((1-p) \wedge 1)I_{n} - (p \wedge 1)J_{n} - (p \wedge t^{n})\widehat{J}_{n}^{n-2}]$$

$$= [nX, (1-p)I_{n} - pJ_{n} - pt\widehat{J}_{n}^{n-2}).$$

The automorphisms $I_n - pJ_n$ and $I_n - \hat{J}_n$ have trivial torsion. Multiplying $(1-p)I_n - pJ_n - pt\hat{J}_n^{n-2}$ on the left by $(I_n - pJ_n)^{-1}(I_n - \hat{J}_n)$ produces an upper triangular matrix which is immediately seen to have torsion equal to [X, 1-p-tp].

(iii) If $(X, v) \in \text{Nil}(R \otimes B(G; \mathcal{F}))_{i+1}$, then its images by the two embeddings of Nil is $[X, (1-tv)(1+v)^{-1}]$ and $[X, (1-t^{-1}v)(1+v)^{-1}]$, respectively.

$$[n][X, (1-tv)(1+v)^{-1}] = [n][X, 1-tv] + [X, (1+v)^{-n}],$$

by (ii), since $[X, (1+v)^{-1}] \in K_{-i}(R; G; \mathcal{F})$. As in (ii) we get

$$[n][X, 1-tv] = [nX, I_n-vJ_n-vt\hat{J}_n^{n-2}].$$

The automorphism $I_n - vJ_n$ has trivial torsion and multiplying $I_n - vJ_n - vt\hat{J}_n^{n-2}$ by $(I_n - vJ_n)^{-1}$ yields an upper triangular matrix the torsion of which is immediately seen to be equal to $[X, 1 - tv^n]$.

The same type of calculations shows that

$$[n][X, (1-t^{-1}v)(1+v)^{-1}] = [X, (1-t^{-1}v^n)(1+v)^{-n}].$$

Note that this implies that if *n* is greater than the nilpotence index of *v*, then $[n][X, (1-t^{\pm 1}v)(1+v)^{-1}]$ is contained in $K_{-i-1}(R; G; \mathcal{F})$. It follows that

$$K_{-i}(R[T];G;\mathscr{F})^{\mathrm{inv} \ N} \cong K_{-i-1}(R;G;\mathscr{F}).$$

Let us summarize the action on the components as follows

$$[n]([X, a], 0, 0, 0) = (n[X, a], 0, 0, 0)$$

$$[n](0, [X, p], 0, 0) = (0, [X, p], 0, 0)$$

$$[n](0, 0, [X, v], 0) = ([X, (1+v)^{-n}(1+v^n)], 0, [X, v^n], 0)$$

$$[n](0, 0, 0, [X, v]) = ([X, (1+v)^{-n}(1+v^n)], 0, 0, [X, v^n]).$$

The following corollary is immediate by induction

COROLLARY 4.10.
$$K_{-i}(R;G;\mathcal{F}) \cong K_1(R[T^{i+1}];G;\mathcal{F})^{\text{inv N}^{i+1}}$$

REMARK. Using the map R[T] oup R[T], $t \mapsto t^n$, R[T] can be conceived as an R[T]-module; multiplication by t is given by $t \cdot p(t) = t^n p(t)$. R[T] decomposes into n-copies of R[T]. Thus one can construct an action of N on $K_1(R[T] \otimes_R \mathcal{D})$ and prove that

$$K_{-i}(\mathscr{D}) \cong K_1(R[T^{i+1}] \otimes_R \mathscr{D})^{\mathrm{inv} \, N^{i+1}},$$

where \mathcal{D} is an R-category.

THEOREM C.
$$K_{-i}(R; G; \mathscr{F}) \cong \sum_{(H) \in \mathscr{F}}^{\oplus} K_{-i}(R[NH/H]).$$

PROOF. (cf. [5, Theorem 1.18]). If \mathcal{F}_1 is infinite then

$$B(G; \mathcal{F}_1) = \bigvee_{(H) \in \mathcal{F}_1} B(G; (H)).$$

This follows from the fact that $B(G; \mathcal{F}_1)(G/F_1^+, G/F_2^+) = \{*\}$, unless F_1 is subconjugated to $F_1, F_1 \lesssim F_2$; the wedge is ordered from above by this relation. It follows from Proposition (3.7) that

$$K_{-i}(R;G;\mathcal{F}_1) \cong \sum_{(H)\in\mathcal{F}_1}^{\oplus} K_{-i}(R;G;(H)).$$

But B(G; (H)) is equivalent to $B(NH/H; \{1\})$ (by the functor $G^+ \wedge_{NH} - 1$) and $R \otimes B(NH/H; \{1\})$ is equivalent to the category of finitely generated free R[NH/H]-modules. Thus

$$K_{-i}(R;G;\mathcal{F}_1) \cong \sum_{(H)\in\mathcal{F}_1}^{\oplus} K_{-i}(R[NH/H]).$$

As $K_{-i}(R; G; \mathcal{F})$ is a component of $K_1(R[T^{i+1}]; G; \mathcal{F})$, it follows that $K_{-i}(R; G; \mathcal{F})$ is generated by objects $(X, a) \in 0$ b Aut $(R \otimes B(G; \mathcal{F}))_{i+1}$, where the number of orbit types occurring in the Z^{i+1} graded G-set X is finite. Hence

$$\underbrace{\lim_{\underset{\mathfrak{F}_{1} \subset \mathscr{F}}{\mathscr{F}_{1} \text{ finite}}} K_{-i}(R;G;\mathscr{F}_{1}) \cong K_{-i}(R;G;\mathscr{F}).$$

This proves the theorem.

REFERENCES

- 1. H. Bass, Algebraic K-Theory, W. A. Benjamin, Inc., New York, 1968.
- I. Madsen and J.-A. Svensson, Induction in Unstable Equivariant Homotopy Theory and Non-Invariance of Whitehead torsion, in Conference on Algebraic Topology in Honor of Peter Hilton (Proc., Newfoundland, Canada, 1983), eds. R Piccinini and D. Sjerve, (Contemp. Math. 37), pp. 99-113. American Mathematical Society, Providence, R.I., 1985.

- 3. E. K. Pedersen, On the K_{-i} -functors, J. Algebra 90 (1984), 461–475.
- 4. E. K. Pedersen and C. A. Weibel, A nonconnective delooping of algebraic K-theory, Preprint Odense Universitet, 1983.
- M. Rothenberg, Torsion Invariants and Finite Transformation Groups, in Algebraic and Geometric Topology (Proc., Stanford Univ., Calif., 1976), ed. R. J. Milgram, (Proc. Sympos. Pure Math. 32), pp. 267-311. American Mathematical Society, Providence, R.I., 1978.

MATEMATISK INSTITUT AARHUS UNIVERSITET NY MUNKEGADE 8000 AARHUS C DENMARK and

MATEMATISKA INSTITUTIONEN CHALMERS TEKNISKA HÖGSKOLA OCH GÖTEBORGS UNIVERSITET FACK 41296 GÖTEBORG 5 SWEDEN