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LOWER EQUIVARIANT K-THEORY

JAN-ALVE SVENSSON

0. Introduction.

The algebraic version of equivariant Whitehead torsion was introduced by
Rothenberg in [S] using the universal R-extension of the Burnside category
B(G).

A redefinition of the K _;-groups of a ring R was given by Pedersen in [3],
using the notion of Z'-graded categories; if 2 is the category of finitely
generated free R-modules, then K_;(R) = K(Z;,,), where 2,, , is the Z*!-
graded category associated to 2.

We combine these two approaches and define the equivariant K _;-groups
of a discrete group G with respect to a ring R and a subset # < Conj(G),
thus obtaining K_;(R; G; F).

The notion of an R-category is reviewed in Section 3. Essentially it is a
category with an R-bimodule structure on the hom-sets which behaves well
with respect to composition of morphisms. If 2 is an R-category, then
R[T] ®g 2 is an R[T]-category (R[T] is the group ring of the infinite cyclic
group T). Let 2; and (R[T] ® 2); denote the corresponding Z'-graded
categories and K _{(2) = K,(2;+,).

THEOREM A. If 2 is an R-category, then

K_(R[T]®x2) = K_(2)® K_;_1(2) ® 2Nil _;_,(2).

Here ﬁﬁ_i_l(@) is the abelian group which classifies the nilpotent maps in
Dis1.

In Section 4 we specialize to universal ring extensions of the restricted
Burnside category B(G; #). T' denotes the direct sum of i-copies of T and
R[T] its group ring. Using the restriction and induction functors between
the categories B(Gx T; # x {1}) and B(G x(t"); # x {1}) we construct an
action of the momoid N!*! = (N\{0},-)'*' on K,(R[T**'];G;#) and
prove:
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180 JAN-ALVE SVENSSON

THEOREM B. K_i(R;G; #) = K{(R[T*']; G; FymvN"",

Finally we have the K _;-analogue of one of the main algebraic results
from [5]: '

TueoreM C. K_(R;G; #) = Y ® K_(R[NH/H]).
(He#

ACKNOWLEDGEMENT. I would like to thank my advisor Professor Ib Madsen
for introducing me to the subject and for many fruitful discussions.

1. Some functorial constructions.

In this section we outline some functorial constructions on the category
of additive categories.

Let o be an arbitrary category. We define three associated categories,
Aut(«/), Proj(«/) and Nil(«/) as follows. The objects of Aut(s/) are pairs
(A,a) with a: A - A on automorphisms. The objects of Proj(«#) are pairs
(A, p) with p: A —» A satisfying p? = p, and finally the objects of Nil(.«/) are
pairs (4,v) with v: 4 > A satisfying v" = 0 (here we assume that &/ has an
initial-terminal object). In each case the morphisms are the obvious ones,
namely the morphisms of &/ which commute with the extra structure. For
example

Nil(«)((4,v), (B,u)) = {f: A - B| fv = uf}.

If o/ is an additive category it is easily checked that Aut(s/), Proj(«)
and Nil(.«/) all have a natural additive structure. Thus Aut(%/), Proj(«/) and
Nil(=/) are endofunctors on the category of additive categories. Henceforth &/
denotes a small additive category.

Recall that Ky(o/) is defined as the abelian group generated by isomor-
phism classes of objects in & modulo the relations [4 @ B] = [4]+[B].
K (o) is the abelian group generated by isomorphism classes of objects in
Aut(o/) subject to the relations

[4,ab] = [4,a]+[4,b] and [A@® B,a®b]=[A,a]+[B,b].

In particular, [4,1] =0, [4,a™'] = —[A4,4] and

ron()
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for any morphism f:B — A. Hence

[A ® B, (g i)] = [B(—D A,(j 2)] = [4,4]+[B,b].

If o and &' are equivalent, then Ky(#) = Ko(2/') and K () = K,('),

. of course.

In K,(Nil /) we introduce the relations
(1.1) [A@B,(('; ’;):l: [A,v]+[B,u],

where f: B — A is an arbitrary morphism. The quotient group of K,(Nil &)
is Nily(&/). Similarly, we introduce

() Ko(Proj#) = Ko(Projsf)/[4,0] = 0.

(1.2) (i) Nily(Proj &) = Nily(Proj #)/[4,0,v] = 0.

(i)  Nilg(s#) = Nilg(#)/[4,0] = 0.
For later use we list some obvious relations. In K,(Proj .«/) we have
(13) [A@B,((’; g)]= [4,p]+[B.q].

Note that (g Z) is a morphism in Proj.sf only if pf+fq = f, and (1.3)
follows from the equality

(1 pf—f q><p f)(l fq—pf) _ <p 0)‘

0 1 0 q/\0 1 0 ¢q
In Nil,(Proj &) we have

) [Aea&(é g)(g Z>]=[A,p,v]+[3,q,u].

(14) () [A4po) = [4, p,vp].
i)  [4,p0] = [4, vp]+[4, p,0]-[4,1,0].
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proving (i). Note that
(@)
I-p p )
p O v 0 1 0\ [vp+u(l—p) 0
(104G 26 u) = (oo ("0 ™ v rean)

is an isomorphism in Nil(Proj.«/). Thus

1
Conjugating by (0 ) yields

[A.p.v]+[A 1 =p,u] = [A, L,op+u(l —p)].
If (4, p, v) e Ob Nil(Proj .«7), then

(I—=p) =ov(1-p),

so (4,1 —p,v) and (A4, p, vp) € ObNil(Proj o).
Choosing u = vp we get

(1.5) [A,p,v]+[A, 1 —p,vp] = [4, L,vp].
Substiiuting v by vp shows that
[4,p,vp]+[A4,1—-p,vp] = [A4, 1,vp].
Thus [4, p,v] = [4, p, vp], proving (ii). Also, by (1.5) (two times)
[4,p,v] = [4, 1,vp]—[A, 1 —p,vp] = [A. 1,vp]+[A4, p,0]-[A4, 1,0],
proving (iii).
ProposITION 1.6. Nily(Proj o) = Nilo(o#) @ Ko(Proj o).
Proor. There are homomorphisms (induced by the obvious functors).
Nilo () % Nily(Proj /) 2 Nil ()

and
Ko(Proj o) 2 Nilo(Proj o) 2 Ko(Proj ),
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given by
i[4,v] =[A,1,0]-[4,1,0],  i,[4,p] = [4,p,0],
P,[A,p,v] =[4,vp] and  P,[A4,p,v] = [4,p].

Then Pyi; = 0, Py, =0, Py, =1, Py, =1and by (1.4) (ii)
[A,p,v] = [A, 1,vp]+[A4,p,0]—[4,1,0]

showing that i,P,+i, Py = 1.

2. Z'-graded categories.

In this section we review some results of [3] on Z'-graded categories. We
use the terminology from [3]. Let ./ be an additive category. For each
natural number i we consider the Z'-graded category .«/;. Its object are sets
of the form {A,},cz where each A4, is an object in /. An object in .o,
will be denoted by 4 and A(J) = 4;. A morphism f: A4 - B in </, is a set
{/f) k) 1Kk ez Where f; g2 A(J) = B(K) and f; x = 0 if

|[J—K| = Max |j,—k{| > d, some deN.
lsssi

A morphism in .o/; will be denoted by a single letter f. It has components
f(J,K) = f,x. We say f is bounded by d = d(f). Composition of f: 4 - B
and g: B — C is defined by

G, K) =} g(L,K)of(J,L).
L

Clearly o = /¢ and ./; is an additive category.

A function F:.of — % extends to a functor F;:.«/; » #; and a natural
transformation n:F — G extends to n;: F; > G;. We have the shift endo-
functors T*': .o/, > .o/, given by

(TH'A) = AU Ji-1o JiF 1),
(TEYYS,K) = f(Grs oo fimro JiF D, (kyy oo kio g ki F 1)),

T* is naturally isomorphic to 14 by

1 if jl=kh--~’ji-—l=ki—l’ ji=ki$1

+ * =
(4, T A)(J,K)—{o otherwise.
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Observe the embeddings
L:odi— oy
defined by

(LA)(J) =A(jls'--ajisfi+l)
(2.1)

f((j1,---sji’ﬁ+1), (k19~-'akiaki+l)) if Jiv1 = ki+1
0 otherwise.

(L)Y, K) ={

Note that t*'oLf= Lfot*! and t*': T*'L4A = LA > LA.
Pedersen defines

(2.2) K_i(o)=K(His1)-

Similarly we define

(2.3) Nil_;(«/) = Nily()).

For a Z'-graded object A we let p,: A4 — A be the projection

1 if J=K and ;20
0 otherwise.

p+(J,K) = {

Also, p_: A — A denotes the projection

1 if J=K and ;<0
_(J,K) = .
P-( ) {0 otherwise.
If (4,a)eObAut s/, ,,, then (4,ap_a ')e0bProj«;,,. Furthermore, since
a and a”! are bounded this projection equals the identity on A(J), j;,; < 0
and zero on A(K), k;,; > 0. Thus summation in the i+ 1th direction of a
certain band around j;,,; = 0 gives an element (4,ap_a~')e0bProj .«7;.

ProposiTION 2.4 (Pedersen). The map Aut(of;,,) —» Ko(Proj .o/;) which
sends the object (A,a) to the class [A,ap_a~']—[A4,p-] induces an iso-
morphism from K,(&;,,) to Ko(Proj &).

The reader is referred to [3] and [4] for a proof. We only remark that the
inverse of the maps in (2.4) is given by the functor Proj(so/;) —» Aut(«/;,):

(f:(4,p) = (B,q)) » (Lf : (LA, 1-Lp+1Lp) - (LB, 1-Lg +1Lq)).
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3. K_{(') of universal R-extensions.

Throughout this section R will be a ring with identity and ¢ will be a
small category with finite coproducts and an initial and terminal object. We
consider the groups K_;(R ® %), where R ® € is the universal R-extension of
% (cf. [S]). First a category 2 is said to be an R-category if

(1) for each pair of objects (4, B) the set 2(4, B) is an
R-bimodule such that the compositions

2(B,C)x 2(A,B) - 2(A,C)
(3.1)
are R-linear to the left in the first variable and to the right
in the second one and R-balanced,
(i) there is a 0-object,
(iii) 2 has finite coproducts.

A functor F: 2 — @' is said to be an R-functor if F(rf +gs)'= rF(f)+F(g)s,
for all f,ge 2(A, B) and r,seR.

Given a category €, we construct its universal R-extension, R ® %, as
follows. Let R(%) be the category with the same objects as ¥ and with
morphisms

R(€)(4, B) = {A:4(4, B) » R|A(f) = 0, almost all f}

R(%)(4,B) is an R-bimodule; its elements can be written in the form
Y finite 7ifi- The composition is defined by

() (5) -

R(%) satisfies condition (3.1) (i) but not the two other conditions. An object
I of € is said to be indecomposable if given

~ A
"
e Liy
’f
]Z— L AVB
AT Tiz
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then at least one of the dotted arrows exists. Let IND(%) denote the category
of indecomposable objects in €. We can now define the universal R-extension
R ® %, it has the same objects as ¥ and R ® %(A, B) = R(%)/K(A, B),
where K (A, B) is the R-bisubmodule of R(%)(A, B) consisting of all morphisms
4A:A — B, such that for any morphism u:I - A, e IND(¥), Aop=r,-0,
some r, € R. One easily deduces that

K(A,B) = {AeR(¥)(4,B)|for all he €(I, A), e IND(%), Ah =r,-0].

The elements of R ® %(A,B) will be written in the form [) r;f;]. The
obvious functor ¥ —» R ® % preserves coproducts, so R ® % is an R-category.

Let T denote the infinite cyclic group with generator t. R[T] is the
group algebra of T with coefficients in R. If 2 is an R-category, then
R[T] ®g 2 is the R[T]-category with the same objects as & and morphisms
(R[T] ®x 2)(A4, B) = R[T] ®x Z(A, B).

The R-functor 2 — R[T] ® g 2 preserves coproducts and (R[T] @ Z)(A, B)
can be identified with 2(4, B)[T].

We have the following obvious
ProposiTiON 3.2. R[T] ®& (R ® €) is R[T]-isomorphic to R[T]® 6. A
ring homomorphism ¢: Ry = R, (¢(1) = 1) induces an R,-functor,

9:RiQ®F¥->R,®%.

It is the identity on objects and map the morphism [} r;f;] to [Y ¢(r;)fi].

ProrosiTiION 3.3. Let F: 4 — €' be a functor preserving initial-terminal
objects. Suppose every map ge ¢’ (I', FA), I' e IND(¥’) factorizes as

‘I -4, FA
K /r(h)
N
FI

for some he (I, A), ] e IND(¥). Then F extends uniquely to an R-functor
F:R®% - R® ¥, equal to F on objects and with F([Y r,f]) = [ r.F(f)].

Proor. If F:R® ¥ - R ® €' is well defined it is obviously an R-functor.
It suffices to show that it is well defined. Suppose Y r;fih =r,-0 for all
he€(,A), eIND(¥). Let ge €'(I',FA), I' e IND(¥’), then
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Y riF(f)g = Y. riF(f)F(hk = F(} rifilk = F(ry-0)k = r,- 0.

Note that F:R® é - R ® ¢ preserves coproducts even if F:% — ¢’
does not.

CoroLLARY 34. If 6 and €' are equivalent, then RQ € and RQ €’
are equivalent.

Proor. By definition there are functors F: 6 — %', G: 4 — % and natural
equivalences n: 14 — GF, v: l¢ — FG, such that Fn = vF. It follows that F
and G satisfies the condition in Proposition 3.3, so the induced functors
F:REE->R ®% and G:RR® % > R R € exists. Also, the natural
equivalences extend.

A class of objects # in a category & is said to generate & if, for every
J€db(X,Y), f # 0, there exists We # and je &(W, X) such that fj + 0.

ProposITION 3.5. (Rothenberg [5]). Let 2 be an R-category and F:6 — 2
a functor such that F(IND(%)) generates F(%). Then F extends uniquely to an
R-functor F:RQ® 6 — 2.

% is said to be a wedge of two full subcategories ¢’ and ¥~
(=% ve&)if

(1) forall Xe¥, X =X, v X,;,X{e¢ and X,€¥".
iff:X, v X,-Y vY,isan isomorphism (X,, Y, €¥%"; X,,
Y,e%"), then f =f, v f,, f; and f, isomorphisms in ' and
(3.6) %", respectively.
(i) €(X{,X;)=(0)for X,€¥, X,€%".
(iii) Let i:4 > R ® % be the functor (f:4 - B) »([f]: 4 — B).
Then i(IND(%’)) generates i(%").

ProprosSITION 3.7. If € = €' v €', then
K.(R®E)=K_(RIE)DK_i(RYE").

The proof of 3.7 is essentially identical to the proof of [5, Theorem 1.17]
and will be left to the reader.

Using the Whitehead relation

3 S 4 Gy O 5 e 6 e 9

it is easy to prove the following:
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LemMma 3.8. Let H be an abelian group and ®:0bAut(/) - H a map. Then

ObAut(s/) —% H
Lo
K, (o)
if and only if

(i) &(A @ B,a® b) = D(A,a)+P(B,b),
for all (A,a),(B,b)eObAut(),

o o(498(1"))-o(108(. %))~ suosa

for all (A ® B,c)eObAut()and h:B— A, g: A — B,
(iii) ®d(A4,1) = 0.

We want to describe a map
v: K{(R[T] ® 2) - Nily(Proj 2)

and begin with giving v on Aut(R[T] ® 2). It is easy to check that the
functor R[T] ®x 2 — 2, given by

(zt‘f,.:A —»B) H(Zt‘Lﬁ:LA —»LB)

is well defined. (See section 2 for notation.) We will denote this
functor by (a: 4 — B) » (d: LA - LB). If (A4,a)e0bAut(R[T] ®x 2), then
(LA, d@) € 0bAut(2,).
Since 4 and a-
k = max(d(@),d(@ 1))

! are bounded we can consider the maps (for

k k
ap_a=' : ¥.° LAG) » ¥ LA),
-k -k
k k
ap_wa~': L2 LA(j) - L.° LA(),
-k -k

k
where p_ and t are as defined in section 2. Write Y ®LA(j) = (2k+1)4
-k
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and set
v(A,a) = [2k+1)A,ap_a~',ap_ta ']-[(2k+ 1)A,p_,p_1].

If | >k, then the restrictions of dp_a~' and dp_ta~' to the band

ljl £1 give the same element since dp_a~'(j,i) = p_(j,i) and
dp_ta~'(j,i) = ap-a~'t(j,i) = p-t(j,i) if |jl > L.
PRrOPOSITION 3.9. The map v factors over K{(R[T] ®x 2);

v:K,(R[T] ®x 2) - Nily(Proj 2).

Proor. We check the conditions in (3.8). We leave conditions (i) and (iii)
to the reader and prove (ii). If d: A @ B - A @ B is an invertible matrix with
entries in 2, then Ld = d preserves the degrees. It follows that

(3.10) V(A ® B,dc) = v(A @ B,c).

Suppose we have proven

WA 1oy
(3.11) v(AG—)B,(O : )C)—"<A@B’(t¢1f l)c)—v(A@B,c).

for every f € 2(B, A). Then by applying the Whitehead relation to

10 10
o)eo1)
we see that
10 1 0
v(A@B,(O tﬂ)c):v(A@B,(O't“>)+v(A®B,c).

If h =Y t™f,, then
0 h 1,

so it is enough to consider h = t™f. Now

1 gm*if 1 0)\/1t"\/10

= i 2
(0 1 )C (0 r*)(o 1 o:)c’ ifm 20
1 gm=1 1 0\/1 t"f\(1 0 .

- fm<0.
(0 1 )C (o t)(O 1 or‘)c’ rms=

and
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10
There are similar formulas in the case (g l)c. Thus the proposition will

follow from (3.11) by induction (using (3.10) to start it).

We now prove (3.11). If k = max(d(¢), d(¢~')), then ép_¢~! maps the
band —k = j = k into itself; the map is the identity if j < —k and zero if
j>k ép_t¢ ' =¢&p_¢é 't also maps the band —k < j £ k into itself;
if j < —k it equals 7, and if j > k it equals zero.

Let [ > k and define

B if |jls2

LB(j) =
U) {0 it 1| > 2

and LB" by LB’ ® LB" = LB. Let h = t*!f,

W =LB®S LB ™, LBL LB
and ' _
W' =LBES LB" ™, 1B L 1B,

Then

LRY_(VRYURY O P L T
01/ \o1N\o 1 01)PC \o 1 )TPC >

since ép_¢&~ ! is the identity if j < —! and zero if j > I. Consider

1 ﬁ'u . ey 1 _En
V—(O l)cp_tc (0 1).

If j=2 —2lthen V=2¢p_t¢ ! and if j £ —2/-2 then V = 1. In the case
h = tf we have

1 if i=-2l
(0 ~f —
V(=2-1,i)= (0 0 ) if i=-2I+1
0 otherwise.
If h = t™'f, then
1 if i=-2l
. 0 -f o
V(-2l-1,i) = <0 0) if i=-2I-1

0 otherwise.
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Writing down the matrices for ¥ and using (1.1) it follows that

[(61+ 1A @ B), <(1) hlu) ép_é ! ((l) _1h“>,v]

= [(6l+1)(4 @ B), ép_é~"*, ép_e~'].

. 1w . . .
Observing that ( 0 l) restricts to an isomorphism of the band |j| £ 3/ we get

1 t*f
v(AG—)B,(O 1)C>=V(A(—BB,C).

The proof of the other half of (3.11) is completely analogous.

The map v above is a split epimorphism. Indeed, we can define a homo-
morphism in the opposite direction by

3:Nily(Proj 2) » K, (R[T] ®& 2)
o[A, p,v] = [A, (1 -p)+(—1t)p] - [4, (1 = p)+ (v + 1)p]
(3.12) = [A,1—p—tp]+[4,1—t"'op]—[4,1-p+(v+1)p]
=[4,1-p+@—-0t)v+1)""p].
¢ is induced by the obvious functor.

ProposiTION 3.13. The map é is a section of v.

PrROOF. 1—p—t~!p is the inverse of 1—p—tp and an easy calculation
shows that

100 000 100 000
v[A4,1-p—tp] =|34,|010|,[100| |—|34,{010],[100
00p OpoO 000 010

= [4, p,0].

The last equality follows from (1.3) (i).
Assume v has nilpotence index n+1 (that is v"*' = 0). Then

(A=t~ top) ! = 1+t top+t~20%p+... +t ""p.
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The maximal bound of the maps (A=t 'op))tt is n. Using the definition
of v we get

- I,,+ M I,.. M
v[A, 1—t"'op] =[(2n+1)A,< . 0)( . O")sz],

where M is the (n+ 1) x n-matrix with entries

vip if i=n+1
M), ; = )
(M) ; {0 otherwise.

J1n+1 18 the matrix for the cyclic permutation (1,2,...,2n,2n+ 1). An applica-
tion of (1.4) (i) shows that

v[A4,1—t"'vp] = [4, 1,0p] —[4,1,0] = [4, 1, vp] —[4, 1,0].
Since 1 —p+(v+1)~'p is a morphism in 2 it follows that (cf. the proof of

(39)), v[4,1-p+(@+1)"'p] = 0.
Thus by (3.12) and (1.4) we have

vo[A, p,v] = [4,1,0p]+[A4,p,0]-[4,1,0] = [4,p,v].

We can substitute p_ and t for p, and 7!

a new homomorphism

v_:K,(R[T] ® 2) - Nily(Proj 2).

in the definition of v and get

Also, there is a homomorphism
d_:Nily(Proj 2) —» K, (R[T] ®& 2)

induced by the functor Nil Proj 2 — Aut R[T] ®z 2, which sends (4, p,v) to
(A,1-p+@—t""H+1)""p).

One shows, exactly as in the proof of Proposition 3.13, that §_ is a section
of v_. The same type of calculations also show that
(3.14) v_6[A4,p,v] = vé_[A4,p,v] = [4,1-p,0]-[4,1,0].
The embedding 2 —» R[T] ® 2 induces

iy: K1(2) > K,(R[T] ®r 2)

with left inverse given by the map R[T] - R, t » —1,

p1: K (R[T] ®r 2) - K,(2).
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We also have
i, : Ko(Proj 2)—— Nilo(Proj 2) % K, (R[T] ®z 2),
p2: K'R[T] ®k 2) & Nily(Proj 2) — Ko(Proj 2),
iy : Nilo(2)

Nilo(Proj 2)—% K, (R[T] ®& 2),
p3: Ki(R[T] ®z 2) * Nily(Proj 2)— Nilo(2),
is : Nily(2) Nilo(Proj 2)%= K,(R[T] ®z 2) and

pa: Ki(R[T] ®x 2)'> Nily(Proj 2)— Nil4(2),

where the unnamed maps are as in 1.6,
It follows from (3.14) that p,i, = (k, ).

ProposiTION 3.15. K, (R[T] ®x 2) = K,(2) ® Ko(Proj 2) ® ZN_il_o(.@).

Proor. By the above the only thing left to check is that ) p,i, = 1. Let
(A4, Y t"f,) €ObAut(R[T] ®x 2). Thus Y ¢"f, is a unit in the ring
R[T]®r2(4, A) = 2(4,A)[T]. _

There is an obvious homomorphism K,(2(4, A)[T]) - K,(R[T] ®& 2),
mapping an n x n-matrix to the torsion of the corresponding map n4 — nA,
followed by the map induced by R[T] — R[T], t » —t. By the usual decom-
position of K, of a ring (see [B]) we have

[Z t"'fm] = [me] +[1—p+(E+o)1+0)"'p]+[1—g+(t+u)(1+u)"q],
where p and g are matrices over 9(4, A) such that p?> = p and ¢* =q-u
and v are nilpotent matrices over 2(4, A). It follows that Zi,‘p,‘ = 1.

THEOREM A. L

K it iR[TI®¥)=K_i1 1 (RRE)®K_(R®¥)D2Nil_(RQ ¥).

Proor. The case i = 0 follows from (3.15) and (2.4). Writing down a

diagram corresponding to [3, (2.15), p. 473] one sees by induction that
K_i(R[T"] ® %) = Ki(R[T"] @z (R ® €)i+1).

4. The equivariant K_(*)-groups.

Let G be a discrete group and # a subset of the set of conjugacy classes
of subgroups of G. We shall consider G-finite sets, that is G-sets X with X/G
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finite. All G-sets will be assumed to have a base point { * } wich is a stationary
point. Let B(G; %) be the category of G-finite sets X, such that

veX—{*}=(G)e#F.

Here (H) denotes the conjugacy class of H < G. The morphisms in B(G: 7)
are base point preserving G-maps. The category B(G ; #) has finite coproducts
(and products) and {*} is both initial and terminal. Let R be any ring
(with 1 € R). Define the equivariant K _,-groups (i 2 — 1) of G with respect to
R and F to be

K_i(R;G;#)=K,(R® B(G; #))i+1)
Similarly

Nil_{R;G; #) = Nil,((R ® B(G; 7)),).

From Theorem A we have
COROLLARY 4.1.
K_(R[T];G;F)=K_i(R;G; F)®K_;_1(R;G; F)®2Nil_;_,(R;G; 7).

ProposITION 4.2. If I is abelian, then R ® B(G xI'; # x {1}) is an R[I']-
category.

ProoF. Let yeI'. Since I' is abelian the map
7V (GxT/F;x1)* - \ (GxT/F,x 1)*,

which sends [g,,7,]; to [91,yy:]i and + to + is a G x I'-map. Choose a point
x; in each G x I orbit in X, (GxTI), = F;x 1. Then we have the usual
G x I'-isomorphism

¢: V(GxT/Fix )= X,  [g71]i » (@1, 11)x%:

If we choose another set of orbit points {x}, we get another isomorphism
y. However [¢y¢~']=[yyy~ '] in RRIBGxI;F x{1}). Indeed,
IND(B(G x I'; # x {1})) has skeleton {(GxI'/F x1)*|(F)e F} u{*} so it

is enough to show that if :

h:(Gx IJF, x 1)* = (G x I'/Fy x 1)*
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is a G x I'-isomorphism, then hyh™' =y in B(G x I'; # x {1}). This follows
from the assumption that I is abelian.
For [Yrifi]eR® B(G x I'; # x {1})(X, Y) define

@43)  [Drifily =0 rifdleye '], for some ¢: V (G x T/F; x H* =X
and

4.4) y[Zr,-fi] = [yyy ][> rifi], for some y: \ (GxT/F;x1)* =y,
J

By the above this definition is independent of the choices of ¢ and y.
It follows immediately from (4.3) and (4.4) that R ® B(G x I'; # x {1}) is an
R[I']-category.

PRrOPOSITION 4.5. The R[I']-categories R[I'] ® B(G; #) and R ® B(GxT;
F x {1}) are equivalent.

Proor. Consider the functor
Y:B(G;F)->BGxT;Fx{1})>RQBGxT;F x{1}),
whichsends f: X > Yto [fAL]: X AT > Y AT".
By Proposition (3.5) and (4.2) and the fact that {G/F* A ' |(F)e F} u {*}
is a skeleton in IND(R ® B(G x I'; # x 1)), ¥ extends to
Y:R[I'M®B(G;F)>RB(GxT'; F x{1})

and

P[5 r8 it | = S| Sratiy 4 0] = 2 [ St A 0]

Y

We show that ¥ is a full embedding and that every Ze B(G x I'; # x {1})
is isomorphic to X A I'* for some X € B(G; %). The latter is immediate since

Z= V (GxT/F;ix1)* g(v G/F,-+>/\F+.

We consider the map

¥:R[I'® BG; F)X,Y) > RRBGxT; Fx{1})(X AT*, Y A T*).



196 - JAN-ALVE SVENSSON

Suppose [Y;,ri,(fiy A 7)] = 0. Let ¢,: G/F* — X be the G-map which sends
[1] to xe X, (F € G,). By assumption we have that

(46) rex = (Z ri,y(ﬁ.y A V)) ° ((px A l) = Zri,y(fi,y(px A ‘Y)’
LY 1294

where * is the zero (constant) map. Now,

finn=Linype(i=f and y,=y,) or fi=f,==*.

Thus (4.6) implies that

Z )’Z Tiniy®x = (Z ri.y)’)' *
Y i iy

proving that ¥ is an embedding.
Letf:X AT" > Y A I'! beaGx I'-map and {x;} a choice of one point in
each G-orbit of X, inducing
¢:X=> V GIF}.
Denote projection on the jth factor of V G/F & by p;. Let
Wl: X AT* > V (G/Ff A TY)

be the map induced by the maps p;¢ A 1 (recall that coproducts are products
in an R-category),

[d: v (GIFt AT*)-> Y AT?

is induced by the maps
Oy, AYV;i:GIFf AT* > Y AT?

sending [[4].7] to (6. 7)[y;7,], where [3;,7,] = f[x»1].
Thus

1= D01 = | E@ 000 n] - 'P[; oo |

showing that ¥ is full.
CoroLLARY 4.7. K_(R[I'];G; F) = K_(R;GxI'; F x {1}).
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In proving Theorem 3 of the introduction it is convenient to introduce the
usual restriction and induction functors. We write

FH={(H nF)|(F)e #},
where (—)y denotes conjugacy-class in H, and have
Res:B(K; #K)— B(H; #H)

if H< K and I' \K/H is finite for (I')e #K.
If (I'ye.#H implies (I')x € #K we also have

IndX: B(H; #H) —» B(K ; #K)
by IndX(X) = X A zK*. The above functors induces
Resd: K_(R;K;FK)— K_(R;H; FH)
and
IndX:K_y(R;H; FH) —+ K_iR;K; FK).
Note if (F),(F,)e & implies (F n F,)e % (that is &% is a family), then
K_i(R; —; F —) is a Mackey functor (cf. [2]).

We can use the above maps to define an action of N, = {N—{0},-} on
K_iR[T]; G; ), namely

[n]oe = &~ nd$ <T,~>Resg P d(w),

where ¢ is the isomorphism of Corollary 4.7.

ProposiTioN 4.8. The map N — End(K_y(R[T];G; %)), n~[n] is a
morphism of monoids (i.e. N acts on K_(R[T]; G; F)).

Proor. Only the fact that [m][n] = [mn] needs verification. But a simple
computation shows that

BGxT;F x{1})2% BGx (t"y; F x {1}) 25 B(Gx T; F x {1)

B, BG x(t™y; F x {1}) 2L B(Gx T; F x {1})
and

B(G x T; F x {1})22 B(G x (t™); F x {1})25 B(G x T;f x {1})



198 JAN-ALVE SVENSSON

are naturally equivalent. Thus they induce the same homomorphism on
K_i(R;GxT;F x{1}).

THeOREM B. K_(R[T];G; F)™ N =K _,_,(R;G; F).

Proor. By Corollary 4.1 we have
K_(R[T];G;#F)=K_(R;G;F)DK_,_,(R;G;F)®2Nil_;_,(R;G; F).
We consider the action on each component. First note that
Reso 2§ (X A TH) = ~\-"/1 (X AT
and that

4.9) V(- T, (" ") s an {t")-isomorphism.
i=1

Given an ordered coproduct of n identical objects we will denote by J, the
map wich map the ith component to the (i+ 1)th by the identity map, the
nth component is mapped to #*.J, is the map sending the ith component to
the (i—1)th by the identity map and the 1st component to 0. Using this
notation it follows that

Res(1 A1)=1, Res(l1 At)=J,+t"J""2and Res(1 A t™')=J,+¢t7"Jn 2

Also, Ind§ X {-, just means identifying " with t.
i) If (X,a)eAut(R® B(G;F));+, consider it as an element in
Aut(R[T] ® B(G; #))i+1- Then
[n][X,a] = @ 'IndRes @[ X,a] = & 'IndRes[X A T*,a A 1]
= o 'Ind[n(X A ) (a A DL] =07 ([X A T*,a A 1])
= n[X,a].
(i) If (X,p)eProj(R ® B(G; #));+,, then its image in K_;(R[T];G; %)
is [X,1—p—tp] and
[rl[X,1-p—tp] = @ 'IndRes[X A T*,(1-p) A 1=p A t]
= &~ 'Ind[n(X A {"*),(1=p) A DI,—(p A 1, —(p A )27 2]
= [nX, (l_p)ln—p"n—pt]:_z)-
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The automorphisms I,—pJ, and I,—J, have trivial torsion. Multiplying
(1—p),—pJ,—ptJn~2 on the left by (I,—pJ,)”'(I,—J,) produces an upper
triangular matrix which is immediately seen to have torsion equal to
[X,1-p—tp].

@iii) If (X, v)e Nil(R ® B(G; #)); ., then its images by the two embeddings
of Nil is [X, (1—tv)(1+v)”'] and [X, (1—t'v)(1+v)" '], respectively.

[n][X, (1= to)(1+0)"'] = [n][X, 1 -] +[X, (1 +0)""],
by (ii), since [X,(1+v) 'Je K_i(R;G; #). As in (ii) we get
[Pl[X, 1—tv] = [nX,I,—vJ,—vtJ""2].

The automorphism I, —vJ, has trivial torsion and multiplying I, —vJ, —vtJ" 2
by (I,—vJ,)”! yields an upper triangular matrix the torsion of which is
immediately seen to be equal to [X, 1 —"].

The same type of calculations shows that

[P][X, (1=t o)1 +0) ] = [X, (1=t ") (1 +0)""].

Note that this implies that if n is greater than the nilpotence index of v, then
[n][X, (1 —t*'v)(1+v)~ '] is contained in K_;_;(R;G; #). It follows that
K_(R[T);G; F)™ M=K _,_,(R;G;F).

Let us summarize the action on the components as follows

[n]([X,4],0,0,0) = (n[X, 4], 0,0,0)

(n]©, [X,p],0,0) = (0,[X, p],0,0)

[](0,0,[X,0],0) = ([X, (1+0)""(1+v")],0,[X,v"],0)
[1](0,0,0,[X,v]) = ([X, (1+0)""(1+v")],0,0,[X, v"]).

The following corollary is immediate by induction

COROLLARY 4.10. K_;(R;G; #) = K,(R[T'*']; G; F)nv ™!

RemARrk. Using the map R[T] - R[T],t »¢t", R[T] can be conceived
as an R[T]-module; multiplication by t is given by t:p(t) = t"p(t). R[T]

decomposes into n-copies of R[T]. Thus one can construct an action of N
on K,(R[T] ®x 2) and prove that
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K_i(2) = Kl(R[Ti+ ‘] Rr @)inv N

where 2 is an R-category.

TueoreM C. K_(R;G; ¥F) = ZeK_i(R[NH/H]).
(HeF

PRrOOF. (cf. [5, Theorem 1.18]). If #, is infinite then

B(G;#,)= V B(G;(H)).
(H)e#,

This follows from the fact that B(G; #,)(G/F{,G/F3)= {*}, unless F,
is subconjugated to F,,F; < F,; the wedge is ordered from above by this
relation. It follows from Proposition (3.7) that

K_{R;G;F)= Y® K_(R;G;(H)).
(Hye #,

But B(G; (H)) is equivalent to B(NH/H ; {1}) (by the functor G* A yy —) and
R ® B(NH/H;{1}) is equivalent to the category of finitely generated free
R[NH/H]-modules. Thus

K_(R;G;#,)= Y% K_,R[NH/H)).
(H)e #F,

As K_(R;G;#) is a component of K,(R[T*'];G;#), it follows that
K _i(R;G; #)is generated by objects (X, a)eObAut(R ® B(G; F));+1, Where
the number of orbit types occuring in the Z'*! graded G-set X is finite. Hence

limK_R;G;#,)= K_{R;G;¥).

FicF
#, finite

This proves the theorem.
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