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ANALYTICALLY NORMED SPACES *

V. DOBRIC

Summary.

The problem of transferring results concerning almost sure convergence from a family of semi-
normed spaces generating the topology of a locally convex space to the locally convex space
requires, in general, determining when an uncountable union of null-sets is a null-set. A
solution of this problem is obtained in a large class of locally convex spaces viz. analytically
normed spaces with respect to a certain o-algebra on the space. The main result is that a
sequence of random vectors taking values in an analytically normed space converges almost
sure if and only if it converges almost sure with respect to every seminorm in a generating
family. Then it is proved that such a class of analytically normed spaces is stable under “nice”
countable inductive and projective limits, that this class contains a long series of standard spaces
e.g. C(T) in its compact-open topology with T Polish, C(7T) in its strict topology and with T
Polish, the Schwartz test function space as well as the Schwartz distribution space.

1. Introduction.

Limit theorems for stochastic processes with values in locally convex spaces,
particularly in the test function space, have recently been studied in connection
with the infinite system of particles. The topology of a locally convex space
is generaded by a family of seminorms, so knowing some limit theorems for
seminormed spaces, one could try to transfer them to the locally convex
spaces. Particularly we are interested in limit theorems concerning almost
sure convergence, for example the law of large numbers. But to transfer almost
sure convergence results for seminormed spaces to locally convex spaces
requires in general determining when the uncountable union of null-sets is a
null-set. We offer a solution of this problem by introducing the concept of
analytically normed spaces with respect to a certain g-algebra on the space.
Basically this means that an ordered structure on the generating family of
seminorms is sufficiently smooth. This class of analytically normed spaces
includes the test function spaces as well as many other locally convex spaces.

* The present paper is a part of my doctorial thesis and was carried out under supervision
of Professor J. Hoffmann-Jorgensen during my stay at The Mathematics Institute at Aarhus
University.
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We shall also show that under very weak conditions, the inductive and
projective limits of analytically normed spaces are again analytically normed
spaces.

Our main reference is the forthcoming book of J. Hoffmann-Jergensen [4],
in particular Chapter 2, where the author studies the smoothly ordered spaces
with the purpose of solving problems connected with infinite dimensional
stochastic processes.

2. Basic definitions.

We let (NN, #(NN), <) be the ordered, measurable space of all sequences
of integers, where #(NN) is the Borel s-algebra with respect to the product
topology on NN and = is the product ordering on NV, ie.

(0}) = (0}) = ai = 0] VieN.

Let us recall that a subset I', of an ordered space (I', £) is cofinal in (I, =)
if for every a e I' there exists feI'y so that ¢ = .

We shall follow the notation of [2] and [6] concerning Souslin schemes,
Z -Souslin sets, and the Souslin operations. If .# is a family of sets in Q,
then S(#) denotes the family of all #-Souslin sets, and CS(#) the family
of all C#-Souslin sets that is

CS(F)={AS Q| Q \AeS(ZF)}.

It is well-known that S(S(#)) = S(#) and that S(#) is stable on countable
unions and countable intersections.

DerFmniTiON 2.1. Let (I, %) be a measurable space with an ordering =.
Then (I', ¥4, =) is called a smoothly ordered measurable space if there exists
a measurable, increasing, cofinal map ¢ from (NN, Z(NN, <) into (I, %, <).
We say that (I', 4, <) is a g-smoothly ordered measurable space if there exists
a sequence {I,} of subsets of I' so that uUT, is cofinal in (I, £) and
for all neN the spaces (I',,¥9,, =,) are smoothly ordered, where ¥, = ¥,
and £, is the restriction of < on I,.

DEerFINITION 2.2. Let (2, %) be a measurable space and let 4 S R? be a
set of real functions on Q. Then we say that A is smoothly (respectively
g-smoothly) filtering upwards on (2, #) if there exists a smoothly (respec-
tively g-smoothly) ordered space (I', 4, <) and an increasing cofinal map ¢
from (I', %) into A with its pointwise ordering so that
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{(d, w)eT'x Q| p(a,w) > a} eS(¥ ® ) VaeR,

where @(a, w) = @(a)(w).
Note that since ¢ is increasing,

o, w) = p(f,w) Va= B, VweQ,
and that cofinality of ¢ means

VieAdJael; o w)2f(w) YVoeQ.

DeriNiTiON 2.3, If (—A) = {f €eR?| (—f)e A} is smoothly (respectively
g-smoothly) filtering upwards on (Q, #), then we say that A is smoothly
(respectively g-smoothly) filtering downwards on (Q, 7).

DeriNiTION 2.4. If ¢ is a family of subsets on Q, then we say that ¢
is smoothly (g-smoothly) filtering upwards on Q if A = {14| Ke %"} is so.

Throughout all of this paper F denotes a locally convex space, I the
family of all continuous seminorms on F and & a o¢-algebra on F.
The following definition is due to J. Hoffmann-Jergensen.

DEerINITION 2.5. We say that F is an .#-analytically normed space if:
(2.5.1) I1 is g-smoothly filtering upwards on (F,.7),
or equivalently, since IT is upwards directed,
(2.5.2) I1 is smoothly filtering upwards on (F, .#)

(see Lemma 2.5 in [4]); or equivalently, if there exists a generating family
1, of seminorms for the topology on F satisfying

(2.5.3) I, is o-smoothly filtering upwards on (F, #)

(see Lemma 2.5 in [4]); or equivalently, if there exists an upwards directed
subset [T, of IT generating the topology on F and satisfying

(2.5.4) IT, is smoothly filtering upwards on (F, %)
(see Lemma 2.5) in [4]); or equivalently:

(2.5.5) there exists a smoothly ordered measurable space (I',%, =) and a
map ¢: I' - II defined by ¢: a — ¢, and satisfying:
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() a,Sq YasB,
(i) {g.€ll| ael} is cofinal in II,
(i) {(,x)elXF| g,(x)>a}eS(%® F) Va>0,

or equivalently:
(2.5.6) there exists a map ¢ — g, from NN into IT so that:

() go=q. Vo=,
(i) {q,€Il| o € NN} generates topology on F,
(iii) {(o,x)eNNXF| qo(x) > a} e S(ANV)® #) Va > 0.

Notice that in (2.5.5 (iii)) or (2.5.6 (iii)) we may replace > by = since
the family of Souslin sets is stable on countable unions and countable inter-
sections.

If (I, £) is countably cofinal, then evidently (I',2', <) is a g-smoothly
ordered measurable space. If (I', £)is upwards directed and coundably cofinal,
then (I, 27, £) is a smoothly ordered measurable space.

The following definition is from [2]:

DEFINITION 2.6. Let f be a map from a measurable space (E, &) into
a topological space F. We say that:

(2.6.1) f is &-simple if there exists a finite partition {E,,...E,} & &
of E such that f is constant on each E,, 1<k =n.
(2.6.2) fis &-elementary if there exists a countable partition {E,}7-, S &

of E so that f is constant on each E,, k = I.

DerFiniTION 2.7. Let .# be a o-algebra on F. Then F admits a .7#-
elementary (.#-simple) resolution of the identity on F if and only if there
exists .7 -elementary (# -simple) functions, {s,}- from F into F, such that

lim s, (x) =x VxeF.

k—

3. The analytically normed spaces.
Our first result is a description of a neighbourhood base at 0 for the
topology on an .#-analytically normed space.
ProposiTION 3.1. If F is an % -analytically normed space, then
AU = {VeCS(F)| Vis closed, symmetric, convex, Oeint V}

is a neighbourhood base at O for the topology on F.
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Proor. If F is an .#-analytically normed space, than (2.5.6) holds, and
since
S(ANN® .7) = S(A(NN) x .7),
see [6], we have that every NN section of a set in S(A(NV) ® %) belongs to

S(#) (and every F section of a set in S(4(NN) ® .#) belongs to S(A(NN))).
Particularly, if a > 0, if

A = {(o,x)eNNx F|q,(x) > a},
and if o e NN is fixed, then by (2.5.6 (iii)) we have
A(g) = {xeF| (6,x)e A} = {xe F| q,(x) > a} e S(¥),
and therefore
G.L1) (xeF| q,(x) < a} = V,(0) = A(c) e CS(F).

For every o e NN the set V,(o) is closed, symmetric, convex, and Oeint V.
So if

U = {V,(0)] seNN, a >0},

then by (2.5.6(ii)), %« is a neighbourhood base at 0 for the topology on F,
and by (3.1.1) the Proposition is proved.

In the case when a locally convex space is metrizable, we have a converse
of Proposition 3.1 which we show below.

ProposITION 3.2. Let F be a metrizable locally convex space and # an
g-algebra on F so that A€ F implies aAe # for all a > 0. If

(321) W ={VeCS(#)|V is closed, symmetric, convex OeintV} is a
neighbourhood base at O for the topology on F, then F is #-analytically
normed.

Proor. Since F is metrizable, there exists a countable decreasing subfamily
% of w, which is also a neighbourhood base at 0 for the topology on F.
Let {p,|neN} S IT be the increasing sequence of seminorms associated
with %, and let @:N — IT be a map defined by

o(n) = p,.
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Then ¢ is increasing and cofinal in I1. We shall prove that
A, ={(n,x)eNxF| o(n)(x) > a}eS(ZN)® #) VYa>0.
By assumption (3.2.1) we have that
{xeF| px)>1}eS(F) VneN,
and so
{xeF| pyx)>a} =a{xeF| p,(x)>1}eS(F) ¥YneN, Va>0,

since ad € .7 for all Ae.# and all a > 0. If we rewrite A, as follows:
Aa= | {n} x{xeF| p,(x) > a},
1

then, since
{n} x{xeF| p,x)>a}eS(BN)® #) VneN, Va>0,
we have that
A,eS(BIN)® F) Va>0.
Since the space (N, #(N), <) is smoothly ordered (take y:NN — N to be

V(o) = g,), we have proved that F is .#-analytically normed.

The following result is the main result of this paper. It shows that in an
& -analytically normed space, almost sure convergence is equivalent to the
almost sure convergence in (F, q) for all g in a generating family of seminorms
for the topology on F.

THEOREM 3.3. Let (S, &, u) be a probability space, and let F be % -analytically
normed. If f,: (S, &) — (F, #) are measurable random variables such that

(33.1) uH(seS| qUh(s) 0} =1 Vqell,
then
(3.3.2) f,s)=0 in F pu—as.

Proov. If F is & -analytically normed, there exists an increasing and cofinal
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map ¢ :NN — [T such that
(3.3.3) {(6,x)eNNx F| ¢(c)(x) > a} e S(ANN)® #) Va>0.

Let
T, = {seS| q(fls)) » 0} Vqell,
and let .7 = {T,| qel}. If we prove that 7 is smoothly filtering upwards

on (S,.%), then, because u,(T;) =0 for every gell, Corollary 2.3 in [4]
states that

T=yT,
qell

is a u-measurable set and u(T) = 0 which then implies (3.3.2). Let
Y:NN > {17 gell}

be defined by

y(o) =11,
It is very easy to check that y is increasing and cofinal. It remains to prove that
(334) S,={(6,5)eNNxS| y(o)(s) > a}eS(ABNYY® ¥) VYa>D0.
Ifaz1,then S, =9 eSABNV)® ¥). If 0 <a < 1, then
(3.3.5) S.={(0,5)eNNX S| s€T,q} = {(0,5)eENNX S| @(0)(fu(s)) £ 0}

(e o]

— U A 0 (e %S| 9@)ils) = 1/n).

n=1 m=1 k=m

So if we prove that
(3.3.6) {(0,5)eNN X S| @(0)(fi(s)) 2 1/n} € S(B(NN) x &),
we have finished. Let us define h,:NNx § — NN x F by

h,(a,s) = (0, f,(s)) VYneN.

Then for every neN, h, is a (Z(NN) ® &, Z(NV) ® #)-measurable random
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variable and
(33.7) {(0,5)eNNx S| @(0)(fi(s)) 2 1/n} =
= h; Y{(g,x)eNNx F| @(0)(x) = 1/n}.

Now by (3.3.3), (3.3.7) and measurability of h,, neN, we have (3.3.6).

CoroLLARY 3.4. If F is .F-analytically normed and if f: (S,S,u) - (F, . F)
is a random variable such that

(3.4.1) )y {(s:)€S™ | q(Sa((s))/n) > 0} =1 Vqell,

where u™ is the countable product of p with itself and

S =X fs) VneN,

then

(1®)4{(5:)€5°19(S,((s))/n) 0 Vqell} = 1.
Proor. Since f is (&, . )-measurable, the functions
S,:8$* > F
are (¥, # )-measurable for every n e N, and since (3.4.1) holds, the statement

of the Corollary is a direct consequence of Theorem 3.3.

4. Examples of .7 -analytically normed spaces.

The following result is a basic result for this section.

THEOREM 4.1. Let F be a linear space with a c-algebra F. Let (T, J) be
a Blackwell space (see [4]) and let A be a family of subsets of T which is
a-smoothly filtering upwards on (T, J). Let t — t* be a map from T into the
algebraic dual F* of F such that

4.1.1) {x,)eFxT| |t*(x)| > a}eS(F ® T) VYa>0.
If the topology on F is induced by the family of seminorms:

4.1.2) qx(x) =sup|t*(x)] VKeA, VxeF,
teK

then F is & -analytically normed.
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Proor. Since £ is o-smoothly filtering upwards on (T, .7 ) there exists a
g-smoothly ordered measurable space (G, %, <) and a map ¢: G — £, which
is increasing and cofinal with respect to S on .#", and such that

(4.1.3) A={9.)eGxT|tecp@)eS(E®T).

Now let

Y(g) = g,y forged.

Then y is increasing from G into II = {qx|K € £}, and since ¢ is cofinal,
we have that {y(g)|ge G} generates the topology on F. Hence by (2.5.5) it
suffices to show that

4.1.4) B(a) = {(9,x) € G X F| quu(x) > a}eS(¥ ® F)

for all a > 0. Let p(g,x,t) = (g9,x) be the projection of Gx Fx T onto
G x F; then

B(a) = {(9,x)e G x F| 3te @(9): |t*(x)| > a}
= p{(g,x,t)eGx F xT| tepg),|t*(x)| > a}.

Since

{(@,x,1)e G x F x T| te(9), |t*(x) > a}
=AxT n{g,x,t)eGx F x T| [t*(x)] > a} eS(% ® F)

by (4.1.1) and (4.1.3), and since (T,.7) is Blackwell, we have that (4.1.4)
follows from the projection theorem for Blackwell spaces (see Theorem 1.5

in [4]).

Let us recall that the weak*-Baire g-algebra on the topological dual F’
of F is the smallest g-algebra on F’' making the evolution maps x — x(t)
(from F’ into R) measurable for every t € F.

Let us also recall that the Mackey topology on the topological dual F’
is the linear topology on F’ having family »#° = {K°|K € %"} as a subbase
at 0, where

A ={KEF|K is symmetric, convex, weakly compact}
and K° is the polar of K, i.e.

K° = {x’eF’| IX'(x)] 1 VxeK}.
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PROPOSITION 4.2. Let F be a locally convex space with dual space F'. Let
F' be the weak*-Baire c-algebra on F', and let k be the compact-open topology
on F' (i.e. the topology of uniform convergence on all compact subsets of F),
and B the strong topology on F' (i.e. the topology of uniform convergence on
all weakly bounded subsets of F), then we have:

(4.2.1) (F', B) is # -analytically normed if F is separable and metrizable and
(F, #(F)) is Blackwell.

(42.2) (F,x) is F'-analytically normed if F =|)r.,S,,- where S, is
Polish for all n 2 1, and every compact set in F is contained in S,
for some n 2 1.

Proor. In both cases we have that (F, #(F)) is Blackwell. We shall apply
Theorem 4.1 with (T, ) = (F, Z(F)) and t — t* to be the canonical injection
of F into the algebraic dual F'* of F'. The map from F x F’ into R defined by

(%, x7) = |x'(x)]

is continuous in the first variable and #'-measurable in the second. Since F
is separable and metrizable in the first case and F is standard in the
second case, it follows from [2, Theorem IV.2.1] that in both cases we have
that F admits a %(F)-simple resolution of the identity. Hence by [2, Theorem
IV.2.6] we have

(4.2.3) {(x,x")eF x F’| Ix'(x)| >a}le B(F)® F' Va>D0,

i.e. condition (4.1.1) holds.

Now we shall prove (4.2.1). Let " be the set of all bounded subsets of F.
To show that ¢ is smoothly filtering upwards on (F, #(F)), let q,, n = 1
be an increasing countable family of seminorms inducing the topology on F,
and let

o) ={xeF|q(x)=a(n) Vn=1} VoeNN
Clearly ¢ is an increasing map from (NN, <) into (X, S), and since
sup{g,(x)|xe K} < oo for all n 2 1 and all K € ¥, we see that ¢ is cofinal.
Moreover, we have

{(0,x)eNNx F| xe(0)} = {(0,x)eNN x F| g,(x) S o(n) ¥Yn21)

= ﬁ Ox {oeNN| g(n) = k} x {xeFI ga(x) S k} € B(NN) ® #(F).

n=1 k=
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Thus ¢ is smoothly filtering upwards on (F, #(F)) and so (4.2.1) follows
from Theorem 4.1.

To prove (4.2.2) we let ¥ be the set of all compact subsets of F. Then
A" is o-smoothly filtering upwards on (F, #(F)) by [4, Corollary 2.8] and so
(4.2.2) follows from Theorem 4.1.

REMARKS. (1). Suppose that F is a separable Fréchet space ; then the strong
topology on F’ equals the Mackey topology on F’ by [5, Theorem 23.5 (3)],
and so F’ with the Mackey topology is .7 -analytically normed.

(2). Suppose that F is quasi-complete (e.g. a Fréchet space). Then the
Mackey topology coincides on F’ with the compact-open topology on F’
when F has its weak topology. Hence if F is quasi-complete and F is a count-
able union of weakly Polish sets exhausting the weak compact sets, then F’
with the Mackey topology is .#’-analytically normed.

(3). Let F be a separable Fréchet space such that every weakly compact
set is strongly compact (e.g. F = I'); then the Mackey topology on F’ coin-
cides with the compact-open topology on F’, and so F’' with its Mackey
topology is .# -analytically normed.

If T is a topological space, we let ¢(T) be the set of all continuous real
valued functions. and we let

P/(x)=x(t) VteT, Vxe¥(T).

ProposiTioN 4.3. Let T be a Polish space, let F = €(T) and let
F.=0o{P,|teT}. Then F is F-analytically normed if €(T) is topologized by
the compact open topology.

Proor. If 7 = #(T), then (T,7) is a Blackwell space, see [2], and
A = {K S T|K is compact} is smoothly filtering upwards on (T, ), see [4].
Since the compact-open topology on €(T) is generated by the family of semi-
norms {Px| K € %"} defined by

Pg(x) =sup|x(t))] VKe.x,
tek
it is by Theorem 4.1 enough to prove that
4.3.1) {x,)eG(T)x T| |x(t) >a}e F® T VYa>0.
By definition of &, the functions

x = |x@) = |Px)] VteT,
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are .7 -measurable. The functions
t—|x(t)) xe¥(T)

are continuous, and since every Polish space T admits #(T)-elementary
resolution of the identity, Theorem IV.2.6 in [2] states that

(x,8) = |x(2)]

is a jointly measurable function. Hence (4.3.1) holds.

If T is a topological space, we let
C(T)={f:T — R]| fis bounded and continuous}.

Let us recall that the strict topology f on C(T) is the topology generated
by the family of seminorms

q(f) = sup {allfllk,} V¥ feC(T),

where K, K,,... are compact subsets of T, and (a,),cn iS a sequence of
positive reals with lim,_, . a, = 0, see [3].

ProrosiTioN 4.4, Let T be a Polish space, let F = C(T) and let
F-=0{P|teT}. Then F is F-analytically normed if C(T) has the strict
topology.

Proor. Let C(Q*|0) be the set of all sequences of positive rationals that
tend to 0, topologized by the discrete product topology, i.e. if {(s;)| A€ 4}
is a net in C(Q*|0), then

lim(s;,)=(s;) = Vj2 134 edisj,=s; VA2
A

If F is a subsequence ordering on C(Q*|0), i.e.

(s5) F(sj) = (s;) is a subsequence of (s}),
then (C(Q*|0), #(C(Q*|0)), ) is a smoothly ordered measurable space, see
[4, Theorem 2.10]. Let »#(T) be the set of all compact subsets of T, let

v(T) be the Vietori’s topology on #'(T), ie. the topology generated by the
sets

{KexX(T)| K< G} and {KeX(T)| K nG # ¢},
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for G open in T, and let &(T) be the Borel g-algebra of (#'(T), v(T)) called
the Effros-Borel structure. The space (£ (T), &(T), £) is a smoothly ordered
measurable space by Theorem 2.7 in [4] since T is a Polish space, and so
is the product space

(H (TN, @, &(T). ).

Let ¢ be the map
@:CQ*0)x A (TN > 11
defined by

o((ri), (Ky)) = sup rillfllk) = q(f).

For abbreviation we let

r=c@*0)x (TN

Pl we prove that ¢ satisfies (2.5.5), then F is .#-analytically normed since I’
is a smoothly ordered space. That ¢ is increasing is trivial. If ge I, i.e.

a(/) = sup @l flix).

and if we take (r;)e C(Q*|0) so that r; 2 a;, VieN, we have the cofinality
of ¢. It remains to prove

Aa = {(ri), (Ki), f)el x F| sup rillfll) > a}eS(AT) ® F) Va>0.

ie

Since

A, =

i

s

1 UQ {(r), (Kj), fl el xF|ri=q, |flk > a/a},
qe

it is enough to show that
(44.1) B. = {(K,f)e X xC(D)| Ifllx > c}e &) ® F
for all ¢ = 0. Let d be a metric defining the topology on T and let

b(t,r) = {ueT| dut) <r}.
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Let D be a countable dense subset of T, then we have:

B.={(K, f)ex xC(T)| 3teK:|f(t) > ¢}

8

(K, f)e# xC(T)| IteK:|f () > c+27"}
1

n

Il

@1 fj} {(K,/)e X' xC(T)| IteD:b(t,27%) n K # @, [f(t) > c+27"}

Qa0 o

Uy nu

n=1 k=1 teD

(KeX | K nbt,27%) #3} x {feC(T)| If(t)) > c+27"
€EN)® F.

Thus (4.4.1) holds and so the Theorem is proved.

Let us point out that if T is a completely regular space, then the dual
of (C(T),#) equals M(T), where M(T) is the set of all real valued, finite
Radon measures on (T, #(T)), see [3].

5. Inductive and projective limit of analytically normed spaces.
We shall prove first that under very weak conditions an inductive limit
of analytically normed spaces is again such a space.

THEOREM 5.1. Let F = lim_ (E,, T,) be an inductive limit of {(E,, T,)|neN},
where E, is a locally convex space and T,.E,— F is linear for all neN,
and suppose that

(5.1.1) F= span( U ’Ij,(E,,)).
n=1

Let I1, be the set of all continuous seminorms on E, and let y,:NN — I, be
increasing cofinal maps satisfying

(5.1.2) V,(-, x) is upper semicontinuous VneN, VxeE,
where y,(6,x) = W,(0)(x) for allneN, 6eNN and xeE,. If % is a 6-algebra

on F such that F admits an & -elementary resolution of the identity, then F
is F-analytically normed.
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ProoF. Let e NN and y = (y;) € (NM)N. Then we put

i=1

lI/("'-’ ?s X) = lnf{ Z T(i).//i(‘yi’ xi)l ne N’ (xh R X")E E"(X)}

for all x e F where
E"(x) = {(xl,...,x,,)e [l Ejl x=
j=1

Then by (5.1.1) and the definition of the inductive limit topology, it follows that

(w7, (1,7) e NN x (NY)N}

is a family of continuous seminorms on F, which generates the topology on F
(recall that y; is cofinal). Thus ¥ is a cofinal map from M = NN x (NV)N
into the set of all continuous seminorms on F. Clearly y is increasing, so
consider the set

(5.1.3) A(a) = {(z,y,x)eM x F| y(t,0,x) 2 a} fora=0.

If we can show that A(a) e S(Z(M) ® %), we have finished since (M, (M), £)
is a smoothly ordered space. Now, since ¥(z, g,") is continuous, then by the
assumption that F admits an #-elementary resolution of the identity and
[2, Theorem IV.2.6] it is sufficient to show that

A(a,x) = {(t,06)e M| y(r,0,x) 2 a} e BM), VxeF, Yaz0.

Observe that

a0

Aa,x)= | N {(t,a)eMl it(i)v/i,xi)ga},
i=1

n=1 (ay,...,x,)eE"(x)

and since (t,0)— (i) is non-negative continuous on M and since
(t,0) = yi(0o;, x;) is non-negative upper semicontinuous by (5.1.2), it
follows that

(t,0) > Z t(iyila, x;)

i=1

is upper semicontinuous. Hence A(a, x) is closed in M and so (5.1.3) holds.
Thus the Theorem is proved.
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One of the conditions in Theorem 5.1 is that F should admit an
# -elementary resolution of the identity. The following proposition shows the
case where it is so.

ProprosITION 5.2. Let F be the inductive limit of a family of locally convex
spaces {(E;, T;)| i e N}, where E; is a locally convex space and T;:E; - F is an
injective linear map for all i e N. Suppose that

s

(5.2.1) F=

T(E:)

1

and that E; admits F -resolution of the identity for every ieN, where F, is
an c-algebra on E; for all ieN. If

F =o{T(4)| ieN, A;e F}},

then F admits F -elementary resolution of the identity.

Proor. Let {s;,},-; be Z-clementary resolution of the identity on E;
for all ieN. Since (5.2.1) holds, every xeF belongs to at least one of
TAE;), ieN. Let
(5.2.2) k(x) = min{neN| x e T,(E,)}
and let f,: F — F be defined by

fn(x) = T;c(x)(sk(x). n(}T;c(_x)l (X))) V ne N

Further let {F,,| jeN} S  ; be a disjoint partition of E; and {a,,;| jeN} € E;,
such that

Sin(V) = Qinj Vy€Fy,;
If we denote b;,; = Ti(a;,;), and
i-1
Hinj = ’I:'(Finj) A\ Ul Tm(Em)’
then we have
Ja(x) = bi; VxeH,;

and {H,,| (i,j)e N?*} is a disjoint partition of F contained in %. Moreover,
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if xe F and y = Ty, (x), then

lim f(x) = E«x)(lim sk(x)n(y)) = Tun(¥) = x,

n— o n— 0

because T,,, is continuous by definition of the inductive topology on F.

ExaMPLE 5.3. Let @ S R"bean openset, K S 2acompact set and let the space
2, = {f € C*(Q)| support(f) € K}

have the topology induced by the family of seminorms

PK, n(f) = max Sup lDaf(X)l,

lel<n xeK
where QeN", |a| =o;+...+a, and
D!l = (a/axl)al e (a/axn)mns

and C*(Q) is the space of all infinitely differentiable functions (see [7]). Let
{K;}{>, be a sequence of compact subsets of Q such that

K, SintK;,, ieN and Q= {) K,
i=1
and let
2(Q) = {f e C*(2)| support (f) is a compact subset of Q}.

Then

2@ = () o,

and let 2(Q) have the inductive topology with respect to the family
{Zk)ieN} and the canonical imbeddings T;: 2k, » 2(Q). This is the well-
known test function space (see [7]). Every 9y, is a Fréchet space with Heine-
Borel property (see [7]), i.e. it is a Fréchet-Montél space, and so is a standard
space by [2, V.1.c Corollary 18]. Every standard space F admits #(F)-simple
resolution of the identity [2,IV.2 Theorem 1]; thus Pk, admits #(P)-
simple resolution of the identity for every ie N, and therefore 2(£2) admits
B(2(Q)-elementary resolution of the identity by Proposition 5.2.
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Let
II; = {PKHI JeN}

where Pk,  is defined by (5.3.1), and let y;: NN — II; be defined by
Yi(@) = Pk, o) VieN.

Then y; is increasing and cofinal in I1;. Moreover, for every f e %k, the
function ¢ — y;(g)(f) is continuous since it only depends on the first coordinate
o(l). Hence by Theorem 5.1 we have that 2(Q) is #(D(Q))-
analytically normed.

THEOREM 5.4. Let F be the projective topology with respect to a family
{(E;, f;)lie N}, where E; is a locally convex space and f;:F — E; is a linear
map for every i € N. Suppose that for every ieN the space E, is # ;-analytically
normed. If % is a o-algebra on F so that

(5.4.1) F 20{f71(4)| ieN, A;e 7},

then F is % -analytically normed.

Proor. Let II; be the set of all continuous seminorms on E; and let
@;: NN — [T, be an increasing cofinal map such that

(5.4.2) Ai(a) = {(o,u)eNNx E;| ¢y(0,u) > a} e S(B(NN) ® F))

for all ieN and all a = 0. Now, put

l//(n, a, x) = max (pi(ai’ f;(X)),

l<sisgn

for neN, o= (6;)e(NM)N and xeF. If M = Nx (NNN, then & - y(&,)
is an increasing cofinal map form M into the set of all continuous
seminorms on F by definition of the injective limit topology, and
(M, #(M), £) is a smoothly ordered space. Consider the set

A(a) = {(n,0,x)e M x F| y(n,0,x) > a}

{k} x {(o,x)e NN x F| ¢y(0, fi(x)) > a}

kgl igl
kgl igl

{k} x g7 (A4(a))
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where
g (NYW x F, BNNN) @ F) — (NN x E,, NN ® 7))
is the map defined by

9i(0,x) = (a5, filx)).

Since g; is measurable, we see that A(a)eS(#A(M)® #) by (5.4.1). Hence
the Theorem follows.

ReMARK. If #; = A(E;), ieN, and if .# = A(F), then

F 20{fi"(4)] ieN, A;eF;}.

ExampLE 5.5. Let 2'(Q) be the topological dual of 2(Q). If 2'(Q)
has its Mackey topology 1(2'(Q), 2(£2)), then we have that

o

12'(Q),2(Q) = [] «(Zk,2x)

i=1

by [8,1V.4. Corollary 1], and if (2%, 1(Zk, P«)) is F -analytically normed
for every i e N, then (2'(Q), 1(2'(R2), 2(£2))) is analytically normed with respect
to any c-algebra .# on 2'(Q) so that

(5.5.1) F20{f7(4)] ieN, AeF;}.

Every 9k, is a Montél space, so the Mackey topology ©(Z%,%k,), the
precompact topology, n(Zk,%k,), and the strong topology B(Zk, %k,
coincide on Z%. So if #; is the weak*-Baire og-algebra on Pk, then
(Zk,1(Dk,Pk)) is F-analytically normed by Proposition 4.2. So if .7 is
any g-algebra on 2'(Q) satisfying (5.5.1), then 2'(Q) is .# -analytically normed
in its Mackey topology which coincides with the strong topology and the
precompact topology since 2(Q) as the strict inductive limit of Montél spaces
{Zk|ieN} is a Montél space [8].

At the end, let us mention that we have not used that the elements of IT
are subadditive and homogeneous, so some of the results can be extended to
topological vector spaces where topology is generated by a family of positive
real valued functions.
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