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DIFFERENTIATION UNDER THE INTEGRAL SIGN
AND HOLOMORPHY

STEN BJON
Abstract.

In this paper we prove the following general exponential law for holomorphic functions in
infinite dimensions:

H,(UxV,G)= H/(U,H,(V,G)).

This generalizes exponential laws for holomorphic functions in [7], [1], [6].

1. Introduction.

The integral (%f(t)dt of a continuous function f:[a,b] - E into a con-
vergence vector space (abbreviated cvs) E was in [5] defined to be the element
' [51 o f(t)de of the second dual LL,,E, where co denotes the compact-open
topology. This definition, combined with continuous convergence (see [2]) on
function spaces, led for an L-embedded E (see [14], [3]) promptly to useful
results concerning preservation of limits and continuity of x + [5f(t, x)dt
(cf. Lemma 3.2). The main reasons for this simplicity are: 1) the reflexivity
LL,,C.(X)= C(X) of the algebra of continuous functions on a convergence
space X, when endowed with continuous convergence; 2) the cartesian
closedness of the category of convergence spaces.

In the present paper a notion of continuous differentiability (called (D2))
is shown to combine well with the integral and leads in a natural way to,
for instance, a theorem on differentiation under the integral sign. The class
of L-embedded cvs is large enough to contain all Hausdorff locally convex
spaces. There are, however, important classes of cvs which ar not L -embedded.
For instance, bornological vector spaces (see [11]), endowed with bornological
convergence, are not L.-embedded in general. We therefore develop a parallel
theory for functions with values in L.-embedded spaces (see [3]). The class
of these spaces contains not only all Hausdorff locally convex spaces but all
polar bornological vector spaces as well. A structure, which we call “local
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uniform convergence” and denote with the subscript e is now used on
function spaces.

The theory developped in section 3 provides a basis for infinite-dimensional
analysis in general. But in this paper it is only applied to holomorphic
functions and spaces of holomorphic functions. It is shown that a function
S :U — F defined on a t-open set and with values in an L or L.-embedded
space is holomorphic (i.e. Giteaux holomorphic and continuous) iff it is
complex differentiable in the sense (D2) when considered as a function into
a sequential completion of F. Power series expansions for holomorphic
functions on 7-open subsets of equable cvs with values in L, -embedded spaces
are derived. These expansions have stronger convergence properties than
the ones in [5]. A new general exponential law

H(UxV,G) = H/(U,H.V,G))

for spaces of holomorphic functions is derived. Its connection with results of
Colombeau [6] for bornological spaces will be studied in a forthcoming paper.

As the referee has pointed out to the author, A. Kriegl and L. D. Nel
discuss another form of holomorphy in [13]. They also prove an exponential
law.

A convergence space X [8] is a set, on which with each point xe X is
associated a set of filters, which are said to converge to x, and are such that
the following conditions hold:

1) The trivial ultrafilter associated with x, always convergences to x;
2) If # 2 ¢ and ¥ converges to x, then # converges to x;
3) If # and % converge to x, then ¥ N % converges to x.

A convergence vector space (cvs) (see [8], [9]) is a convergence space with
a vector structure, such that the vector operations are continuous (a map is
continuous if it preserves convergence). All vector spaces in this paper have
the scalar field K (= R or C). A cvs E is said to be equable (see [9]) if each
filter which converges to 0 in E contains a filter %, such that V¥4 = ¢
and ¢ converges to 0 in E. Here ¥V denotes the 0-neighbourhood filter of K.
Clearly there exists on E a coarsest equable vector convergence structure
finer than the original structure on E. The vector space E endowed with this
equable structure is denoted by E°. For a convergence space X and a cvs
E C,(X, E) denotes the vector space of all continuous f : X — E endowed with
continuous convergence (see [2]). A net (f,), converges to zero in C,(X, E)
iff for each xe X and each net (x,),, which converges to x, the net
(fi(xx)) converges to zero in E. The convergence structure of
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CX,E) = (C(X,E)y

is in this paper called “local uniform convergence” (in fact, it is local uniform
convergence if E is a normed space). A net (f,), converges to zero in
C.X,E) (where E is a locally convex cvs; see below) iff for each xe U
and each (x,),, which converges to x, there is a filter 4, converging to zero
in F, such that for each G e ¥ exists a k,, such that gg(f,(x,)) converges to
zero uniformly on {x,:x 2 k,} (q¢ denotes the gauge of G). A cvs E is said
to be L.-embedded (or L,-embedded) if the mapping jz:E — L.L.E (or
je: E = L,LE), jg(x)l =Il(x), into the second dual is an embedding (see
[14],[3]). We say that E is circled (or locally convex if each filter which
converges to 0 in E contains a filter base # of circled (or circled convex)
sets, such that # converges to zero in E.

With each point x in a locally convex (topological) vector space E is
associated the set of filters, which converge to x with respect to the
topology. Thus E can be considered as a cvs. A bornological vector space E
with bornology # can be identified with a cvs in the following way: Each
filter on E, which contains a filter of the form ¥V B for some Be 4, is said
to converge to zero (bornological convergence). Convergence to other points
is obtained by translation. All Hausdorff locally convex topological vector
spaces are L.- and L,-embedded and all polar bornological vector spaces
(i.e. such with a bornology base of sets B with B°® = B) are L,-embedded.
However, most cvs belong to neither of these classes. As an example,
consider the algebra L.(2,2) (= L.(2,2)= L2 ® L,2)) of continuous
endomorphisms on the locally convex space 2 of C*-functions on R" with
compact support. This space is L-embedded and L.-embedded, but is neither
topological nor bornological, since L,2 is a bornological vector space, which
is not a normed space.

2. Differentiable functions.

Let E be a separated cvs and let I be an interval. We say that a function
f:1 > E is differentiable if the limit of h=*(f(t+h)—f(t)) as h — 0, called
the derivative f'(t) of f at t, exists in E (we form the one-sided limit if ¢ is
an endpoint of I') and continuously' differentiable if f': I — E is continuous.

For any cvs E we denote by E, the vector space E, endowed with the

finest locally convex topology, which is coarser than the convergence structure
of E.

LEMMA 2.1. Let E be a real cvs. If a function f € C([a, b], E) is differentiable
on ]la, b[, then
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f(b)—f(a)e (b—a)cl.I'f']a, b,
where the closed convex hull c1.I" f"]a, b[ is formed in E, (cf. also [8]).
Proor. For each /€ LE there is a number ¢ € Ja, b[, such that
I(f(b)—f(a) = (b—a)(l = f)C).
Consequently
I(f(b)—f(a)/(b—a)) 2 c,
if I(f"]a, b[) 2 c. Thus
fb)—f(a)e (b—a)el, I f']a, b[,

where the closed hull is formed in the weak topology o(E, LE). But this hull
coincides with the hull formed in E..

LEMMA 2.2. Let E be an L.-or L,embedded cvs and let
R =[ay,b,] x " x[a,, b,].

If a function f: R — E and its partial derivatives f:R — E are continuous,
then there is a bounded subset B of E with B®® = B and f(B)—f(a)€||B—all- B
for all a, feR.

Proor. Since E is L. or L,-embedded, the sets fi(R), k =1,...,n, are
compact and hence bounded (see [4]). The bornology of E” is polar (see [3]).
Consequently there is a bounded set B = B°°, such that 2nf(R) £ B for

k=1,..,n. In the complex case, for instance, there is then for each
o, BeR and le LE a point £ € R with

Re(l o f(B)—1 o f(@) = Y Re(l ° fi)(&)(Bc—a) €2 ||B—ell- Rel(B).

A corresponding relation holds for the imaginary part. Thus

I(f(B)—f ()€ (B)||B—al
for all I e LE, which yields:

SB)—f(@)ellp—all- B® = ||B—«||B.

Let E and F be cvs over K (= R or C) and let U be an open subset of E.
We say that a function f: U — F is differentiable (or has a derivative) in the
sense (Dk), k =0,1,2, if there is, for each xe U, a continuous linear
f'(x): E - F (the derivative) and a remainder r: V — F, where V is an open
set with Oe V and x+ V € U, such that f(x +h) = f(x)+f'(x)h+r(h) and the
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condition (Rk), k =0,1,2, holds (cf. [9], [10], [12]:
r(sh)

N

rth)

(RO) r(h)—»0 as h—0, —-0 as s—O0foreach heV;

(R1) r(h)—»0 as h-0, -0 as (s,h)—(0,0).

(R2) The set V can be chosen to be circled and the function ¢, defined by

r(sh)
8(3,h)= "'s-— fOl’SﬁéO

0 fors =0,
is continuous on S x V, where S = {Ae K: || < 1}.

REMARKS.

a) Let U & R" be open and let F be an L -embedded cvs. Using (1) (below)
and Lemma 3.2 it is easy to show that a function f: U — F is differentiable
in the sense (D2), if the partial derivatives f}, k = 1,...,n, exist and are
continuous. For an L,-embedded F, Proposition 3.7 can be used for the
derivation of a corresponding result.

b) Holomorphic functions are differentiable in the sense (D2) under general
conditions by Proposition 4.1.

¢) Clearly (R2) implies (R0O) and (R1).

d) Observe, that the condition (R2) requires the set U to be c-open in the
sense that for each x € U exists a circled open set V with x+V & U.

ProrosITION 2.3. Let E and F be cvs over K, E equable and F circled.
If a function f: U — F on an open subset U of E is differentiable in the
sense (D1), then f:U — F¢ is continuous.

PRroOF. Let xe U and let # = V% be a filter, which converges to 0 in E.
We shall prove that f(x + %) converges to f(x) in F¢. Now

[+ F)—f(x) 2 f'XNF)+r(F).
Let ¢ be a filter, which converges to 0 in F, has a filter base consisting of
circled sets and is coarser than g(V, #), where the function ¢ is defined as in

(R2). For each & with 0 < 6 < 1 and each circled F € # (with F & V)

r(6F) = 6-¢(Ds, F), where D;= {AeK:|A| < d}.
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Thus r(F) 2 Ve(V,F) 2 V¥, and hence
Jx+F)—f(x) 2 VS ()NF)+ VY,
ie. f(x+ %) converges to f(x) in Fe.

We say that a cvs E is t-regular, if for each filter &, which converges to 0
in E, the filter base {cl,F:Fe %} of closed hulls cl.F in E,, converges to 0
in E.

ProPOSITION 2.4. Let I be an interval, X a convergence space and F a
t-regular, locally convex cvs. A function f :1 x X — F has a continuous partial
derivative f:1x X —» F iff f:1 - C.(X,F), defined by f(t)(x) = f(t,x), has
a continuous derivative, and then ' = (f{)".

Proor. Suppose that f] is continuous. Let 4 be a filter, which converges
to a point x€ X and let tel. By Lemma 2.1

f(t+h,x)—f(t,x)ehcl,l"f’l(l,,, G)

for |h <6, t+hel and xeG, where Ge¥ and I; = ]t—9,t+J[. The
filter base

{cI.,I'f1(5,G):6 > 0,Ge %}

converges to f(t,x), since f is continuous and F is locally convex and
t-regular. Thus the quotient h™!(f(t+h)—J(t)) converges to (f})7(t) in
C.(X,F) for each tel, ie. ' is the continuous function (f%)". Conversely,
if ' exists and is continuous, then

h= (f (e +h,x)=f(2,x)) = h™ ' (Jie +h) = [()(x)

converges to f'(t)(x) as h — 0 for each tel and xe X, that is f) exists and
is continuous.

Proposition 2.3 can be applied to a continuously differentiable function
f:R — E, which is defined on a closed rectangle R in R", if a continuously
differentiable extension of f to an open neighbourhood of R exists.
Proposition 2.4 can be used as a tool for the construction of such an
extension :

COROLLARY 2.4.1. Let R = [ay,b,] %" - x [a,, b,] and let E be a t-regular,
locally convex cvs. Each f e C(R,E) with continuous partial derivatives
fi:R—E, k=1,...,n, has a continuous extension f : R, » E with continuous
partial derivatives, where

R, = Ja;—&by+e[ x - xJa,—¢, b, +¢[

and ¢ > 0.
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Proor. With f is associated a function

]': [al’bl] - Cc([ab bZ] X X [am bn]a E)s

which is continuously differentiable by Proposition 2.4. A continuously
differentiable extension of f to Ja, —e¢, b, +¢[ is constructed by applying a
(possibly empty) straight line segment at each end of the “curve” f in the
directions indicated by the derivatives. With this extension is associated a
continuously differentiable function

[a27b2] - Cc(]al —aabl +8[ X [03, b3] XX [am bn]’ E),

which is extended in the same way, and so on. The desired extension of
[ is obtained by induction.

3. Integration of differentiable functions.

Let R = [a;,b,] x - x[a,, b,] and let f € C(R, E), where E is a cvs. We

define the integral
j.' h J‘f(tl’ sy t")dtl e dtn
R

of f over R to be the linear form

(l Hj lofl(ty,...t,)dt, ...dt,,) eLL,E,
R

where co denotes the compact-open topology (see [4]). For brevity we write
t, dt and [y for (t;,...,t,), dt;...dt, and |- - fg. For a cvs E let E® and
alE (respectively E? and a?E) denote the sequentially complete hull and the
sequential adherence of jg(E) in L.L.E (respectively L.L.E). We recall and
slightly generalize the lemmas [S; Lemma 5.2, 4.2, and 4.3]:

LemMA 3.1. Let R = R, x R,, where
Rl = [al,bl] X X [a,,, bk]
and '
R; = [axs1,bxe1] x - x[anb,]), 1Sk =n,
and let F be a cvs. For any fe C(R, F) the equalities
Jf(t)dt = J‘dsl Jf(shsz(dtz = stz Jf(susz)dsl
R R, R,

R, R,
hold, where t = (s,,53), Sy = (ty,.. 1), S2 = (txs1,---tp), and (g f(t)dt € a®F.
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Proor. The lemma is an immediate consequence of elementary analysis and
the fact, that LF = L(F?) separates points in F{. According to [4] the value
of an integral is an element of a®F.

LEMMA3.2. LetR = [a,,b,] x - x [a,, b,], let X be a convergence space and let
F be an L -embedded cvs:

(i) For any feC(Rx X,F) the integral [gf(t)dt of the function f:
R - C.(X, F), defined by f(t)(x) = f(t, x), can be (canonically) identified
with the function

(x HJf(l,X)dt)EC(X,a;”F).
R
(ii) If a net (f,),e converges to f in C(R x X, F), then

lim J fi(t, x)dt = f £t x)dt,
' R R

where the limit is formed in C (X, a®F).

Proor. (i) If F = K then

I f@)dteLL,,C.(X) = C(X)
R

(cf. [2]). Thus the integral can be identified with a continuous function, the
actual form of which one obtains by letting the integral operate on

(ix(x):9 » g(x)) € LCAX).

Now, let F be an arbitrary L-embedded cvs. Since the mapping
a:C(X, F) = CAX x L.F),a(g)(x,1) = | o g(x),is an embedding, the restriction
of L.L(x) to a®C (X, F) is an injective mapping into

L.L.C.(X x L.F) = C.X x L.F).

Hence the integral of f can be identified with the integral of
f:R - C(X x L.F), f(t)(xa l)= Lo f(x).

This in turn, can be identified with the continuous function

o, 1) o |10 f(2,x)dt = ( j f(t,x)dt) )
R R
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and hence also with (x - jR f(t,x)dt)e C(X, L .L.F). But since Lz f(t,x)dt e a’F
the assertion follows.
(ii) is proved in the same way as [5, Lemma 4.3] using (i).

When f'(t, x) is assumed to be continuously differentiable in the variable x,
more can be said about the function x + [ f(t, x)dt:

THeOREM 3.3. Let R = [ay,b,] x - x [a,, b,], let U be a c-open subset of a
cvs E and let F be an L -embedded cvs. If a function f e C(R x U, F) has a
continuous partial derivative f'.: R x U — F in the sense (D2) with respect to
the U-variable, then the function

I(f):U - a?F, I(f)x)= Jf(t,X)dt,
R

is differentiable in the sense (R2) and the derivative is given by

I(fY(x)h = I f'(t, x)hdt.
R

Proor. For xe U let V be a circled open set, such that x+V £ U,

ft,x+h) = f(t,x)+f(t, x)h+r(t, h)

and the function &(s, t, h) (with the value s~ 'r(t, sh) for s # 0 and the value 0
for s = 0) is continuous for |s| <1, teR and heV. Since h v g f'(t, x)hdt
is linear and continuous (Lemma 3.2 (i)) it suffices to note that
ri:he jkr(t, h)dt satisfies the remainder conditon (R2): The function

€:(s,h) r—»fs(s, t, h)dt
R
corresponding to r, is continuous for |s|] < 1 and he V by Lemma 3.2 (i).

THEOREM 3.4. Let U be a c-open subset of a cvs E and F an L -embedded
cvs. Suppose that a net (f,), and a function f in C(U, F) are such that

(i) the net (f,(x)), converges to f(x) in F for each x € U, and
(i) each function f, is continuously differentiable in the sense (D2) and the
net (f}), converges to a function g in C (U, L(E, F)).

Then f is (continuously) differentiable in the sense (D2) and ' = g.

ReMARK. The condition (i) can be weakened if U is, for instance a
translation of a circled open set: Using (1) and (ii) one realizes, that one only
needs to assume that (f,(xq)), converges to f(x,) at some point x,€ U.
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Proor. For x e U, let V be a circled open set with x+V S U. If a function
GeC(U, F) is continuously differentiable, then t ~ I(G'(x+th)h) is the con-
tinuous derivative of t = [ o G(x+th) for he V, te[0, 1]. Thus

1

(1) G(x+h) = G(x)+ J‘G’(x+th)hdt for he V.
]
Applied to the function f,, (1) yields:
filx+h) = fi(x)+fi(x)h+r,(h),

where

1
r(h) = j(fi(x +th)h—fi(x)h)dt.
0

The net ((t, h) » f'(x +th)h—f'(x)h), converges to (t,h) - g(x+th)h—g(x)h
in C,([0,1] x V, F). Hence the net (r,) converges to

1

r:h - j (g(x +th)h—g(x)h)dt

V]
in C.(V,a?F) by Lemma 3.1. Now
f(x+h) =f(x)+g(x)h+r(h),

so we only have to prove that r satisfies the remainder condition (R2). Let ¢
be the function defined by r as in (R2). Then

1
&(s,h) = f(g(x + sth)h — g(x)h)dt
0

and is continuous by Lemma 3.1. Thus f is differentiable in the sense (D2)
and f' =g.

For local uniform convergence there seems to be no direct counterpart to
Lemma 3.2, which turned out to be very useful in [S]. But if we restrict our
attention to functions, which are sufficiently differentiable, then an analogous
theorem (Theorem 3.7) can be proved. But first we need a few preparatory
results.

We use the following notations: For a circled convex subset B of a cvs
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E, Eg denotes the normed space generated by B, and Ej is its completion.
Further E® denotes the vector space E endowed with bornological convergence
with respect to the bornology of bounded sets in E.

PROPOSITION 3.5. Let E be an L. or L,-embedded cvs, let
R = [ay,b,] x - x[a,,b,]

and assume that a function f e C(R,E) has continuous partial derivatives
fx:R > E. Then

(i) the function f: R — E® is uniformly continuous, and

(ii) the integral [g f(t)dt is an element of the inductive limit lim _, Eg, where
B runs through the set of all circled convex bounded subsets of E, and
consequently an element of a”E.

Proor. By Lemma 2.2 there is a bounded set B = B°°, such that

{(/(B) = @):1IB—oll < 6} S B

for each 6 > 0. Thus f:R — E® is uniformly continuous. But f is even
uniformly continuous as a function into Ez, where B is as above. Hence the
integral is in Ey and, consequently, in lim_ E,. Since jg:E® - L.L.E is
continuous, it follows that the integral is an element of a?E.

The straightforward proof for the following lemma is left to the reader.

LeMMA 3.6. For any convergence space X and any cvs F the mapping
Ce(X, F®) = C (X, F),

f bio f wherei: F¢ — F is the identity map, is an embedding.

Let R = [a,,b,] x - x [a,, b,], let U be a c-open subset of a cvs and let
F be a cvs. For brevity we shall denote by D the set of functions
feC(R x U, F), which have continuous partial derivatives f;:R x U — F,
k = 1,...,n, with respect to the R-variables, and continuous partial derivatives

[ :RxUxXE—->F and f :RxUXEXE->F

in the sense (D2) with respect to the U-variable.

THEOREM 3.7. Let R = [ay, by ] x** x [a,. b,), let U be a c-open subset of an
equable cvs E and let F be an L,-embedded cvs:

(i) For any f €D the integral [ f(t)dt of the function = R — C,(U, F),
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defined by f(t)x = f(t, x), can be canonically identified with the function

I(f) = (x > Jf(t,x)dt) € C(U,a®F),
R

which is continuously differentiable in the sense (D2) with the derivative

I(f):U —> L(E,a’F)

given by
I(f) (x)h = j [t x)hd.
R
(i) If a net (f,), of functions in D converges in C,(R x U, F) to a function
feD, then

lim '[ fit, x)dt = f 1t x)dt,
' R R

where the limit is formed in C,(U, a®F).

Proor. (i) The function f: R » C,(U, F) is continuous by Corollary 2.4.1
and Proposition 2.3. First we shall show that the integral of f can be iden-
tified with the integral of /: R —» C,(U x L,F), defined by f(¢)(x, 1) = lo f(t, x):
Since F is L.-embedded, we have (by Lemma 3.6) a canonical embedding

a = (C(U,F) - C(U,C.LF) - C(U,C.LF) = C/(U x LF)),

and therefore the restriction of LL,a to a?C,(U, F), which contains the integral
of f, is injective. The integral of f is an element of

LL,C,(U x L,F) = C(U x L,F)

(recall that LL.C,(X) = C(X) for any convergence space X ; cf. [1]). Thus
it may be identified with

((x, e IIOf(t,x)dt) e C(U x LF),
R

and hence also with

I(f) = <x > J f(t,x)dt) e C(U, L.L,F).
R
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For each xe U let V be a circled open set with x+V S U. By (1)
S, x+h) = f(t,x)+ft, x)h+r(t, h)

for te R and he V, where the remainder
1
r(t,h) = J‘(f;(t, X+uh)h—f'(t,x)h)du.
0

Integrating over R and using Lemma 3.1 one obtains:

I(f)x+h) = I(f)(x)+ Jf;(t, x)hdt +ry(h)
R

where

ryx,h) = I(f;(t,x+uh)h —f(t,x)h)dtdu and T = Rx[0,1].
T

The function ¢;, corresponding to r,, now has the form

£(s,h) = f(f;(t, x +ush)h— ' (t, x)h)dtdu,
T

and is continuous, considered as a function § x V — L L F with
S={ileK:|A <1},

according to Lemma 3.2 (i). The function I(f):U — L.L,F is hence con-
tinuously differentiable in the sense (D2) and factors therefore continuously
through L.L.F = (L.L,F)* by Proposition 2.3. According to the same
proposition, the derivative

I(fY(x):E > L.L,F,h - j £t x)dt
R

and the functions I(f):U — L.(E,L.L.,F) and ¢,:S x V — L_L_F factor con-
tinuously through L.L.F = (L.L.F), L.(E,L.LF)and L,L.F respectively,
since they are differentiable in the sense (D2) by Theorem 3.3. Thus
I(f): U - LL_F is continuously differentiable in the sense (D2). The values
of the functions I(f) and I(f) are elements of the subspace a®F of
L.L.F by Proposition 3.5.

(i) The linear mapping I: C(R x U,F) - C(U,L.L.F), [ »I(f), is con-
tinuous by Lemma 3.2 (ii). Consequently I:C.(R x U, F) -» C (U, L.L.F) is



90 STEN BJON

continuous, too. The embedding a®F — L,L.F (recall that L .L.F is a closed
subspace of L,L.F; cf. [3]) defines an embedding C,(U,a?F) - C.(U, L.L.F)
and by Lemma 3.6, C.(U,L.L.F) is a subspace of C,(U, L.L.F). Moreover,
according to (i), I(f)eC(U,a?F) for each feD. Thus I:D - C,(U,a%F) is
continuous with respect to the convergence structure, which C.(R x U, F)
induces on D.

We say that an open subset of a cvs is t-open if it is a union of trans-
lations of circled convex open sets.

THEOREM 3.8. Let U be a t-open subset of an equable cvs E and let F be
an L.-embedded cvs. Suppose that a net (f,), in C(U, F) has the properties:

(i) the net (f,(x)), converges in F to a point f(x) for each xe U;

(i) the derivatives f,: U —» L(E,F)and f}: U — L(E ® E, F) exist and are
continuous for eachi,and thenets (f,),and (f"),convergein C (U, L (E, F))
and C.(U, L.(E ® E, F)) to functions g and m respectively.

Then the function f: U — F¢ is differentiable in the sense (D2) and [’ = g.

ReMARK. The condition (i) can often be weakened (cf. Remark after
Theorem 3.4).

ProoF. Let x e U be arbitrary and consider the equation

Silx+h) = fi(x)+fi(x)h+r(h),

~

where

1
ri(h) = f(fﬁ(x +uh)h—fi(x)h)du€eF,
0

which is valid for each h in a circled convex open set V with x+V & U,
according to (1). The function ¢,, which is defined as in (R2) by the remainder
r,, is now

1

el(s9 h) = J"yl(ua S, h)d“’

o

where y,(, s, h) = fi(x +suh)h—f(x)h. Let

1
r:h e f(g(x +uh)h —g(x)h)du
0
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and
1
e:(s,h) » J(g(x + suh)h —g(x)h)du
0

denote the limits of the nets (r,), and (¢), in C.(V,F) and C(Sx V,F)
respectively (Lemma 3.2 (ii)). Then f(x+h) = f(x)+g(x)h+r(h), and ¢ is the
function corresponding to the remainder r. We shall prove that

e:SxV —»a®F, where S ={leK:|A <1},

is differentiable in the sense (D2). Since f’ exists and is continuous, one easily
finds that the partial derivative D, 7, of y, with respect to (s, h) (in the sense
(D2)) exists and is continuous, and that

D(s, h)YI(uS S, h)(AS, Ah) = uf:l(x +u5h)(h ® h)AS +

+usf;(x +ush)(4dh ® h)+ f(x +us)Ah—f(x)4h.
By Theorem 3.3

1
&,(s, h)(4ds, 4h) = JD(S’ w?(u, s, h)(ds, Ah)du.
(1]

Since the nets (f}), and (f}'), converge, the net (&), converges to a function
n in C,(SxV, L(K x E,a®F)), according to Lemma 3.2 (ii). Theorem 3.4
now yields that ¢:S x V — a?F is differentiable in the sense (D2) and that
¢ =n. Hence €: S x V — F factors continuously through F*. Since the linear
g(x): E — F also factors continuously through F¢, the function f: U — F¢ is
differentiable in the sense (D2) and f' = g.

4. Applications to holomorphic functions.

All vector spaces in this section are complex. In [5] Lemma 3.2 was used
for the study of holomorphic functions with values in L-embedded spaces
and spaces of such holomorphic functions, endowed with continuous con-
vergence. In order to get similar results with the same method but with
continuous convergence replaced by local uniform convergence, we have to
prove that holomorphic functions are sufficiently differentiable, so that
Theorem 3.7 can be applied.

First, we recall a few defintions (cf. [S], [7]). A function f: U — F into a
cvs F is Gdteaux holomorphic (or G-holomorphic) if the function A - lo f(x+Ah)
is holomorphic in a neighbourhood of zero for each xeU, heE and
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le LF. 1t is holomorphic, if it is G-holomorphic and continuous, and it is
said to be finitely continuous, if it is continuous on U n L with respect to the
euclidean topology for each finite-dimensional subspace L of E. Thus f is
finitely continuous iff it is continuous with respect to the finest vector
convergence structure on E.

PRrOPOSITION 4.1. Let U be a t-open subset of a cvs E (respectively equable
cvs E) and let F be an L.-embedded (respectively L,-embedded) cvs. The
following statements are equivalent for a function f: U — F:

(i) f is holomorphic;

(i) f: U F? (respectively f: U — F?) is complex differentiable in the
sense (D0);

(iii) f: U — F? (respectively f:U — F®) is complex differentiable in the
sense (D2).

Proor. The implications (iii) = (ii) = (i) are obvious. Thus, it remains to
show that (i) = (iii). For this, let f: U — F be holomorphic and assume first
that F is L-embedded. Since

A=D1 =2""41"24+272(A=1)"" forA 40,1,

we have for xeU and a suitable circled, convex, open V, such that
x+2Vv & U:

fx+h) = J f(x”h) di = f(x)+df )h+r(h),
Ill =e¢>1
where
1 f(x+Ah) 1 f(x+Ah)
df (x)h = 3 ——r—dh, rh) = o f 01 di
12l = e Al =¢>1

and where h »df(x)h can be shown to be the restriction to V of a
continuous linear mapping E — aF (cf. [S], [7], [4]). For the function ¢
corresponding to the remainder r we obtain the expression

S (x+ ph)

2m W (u—s)
lul =2

&(s, h) = du (sl < 1),

which shows that ¢ is continuous (Lemma 3.2). Thus (iii) is valid. The
corresponding expression for /o g(s, h) where [ € LF, immediately shows that ¢
is G-holomorphic as well, and hence holomorphic. Now, assume that E is



DIFFERENTIATION UNDER THE INTEGRAL SIGN AND HOLOMORPHY 93

equable, F L,embedded and f: U — F holomorphic. Then f is holomorphic
as a function into the L -embedded reflection F, of F (i.e. the canonical image
of F in L.L.F) and factors therefore, since it is differentiable in the sense (D2),
continuously through (F.)* = F (Proposition 2.3). By the same argument the
functions & and df(x)(-), being holomorphic functions into a®(F,), factor
continuously through (a®(F.))°. Since & and df (x)(-) take their values in
a®F, which is a subspace of (aZ(F.)), f: U — a%F is differentiable in the sense
(D2). Thus (iii) holds in both cases.

The derivative df : U x E — F2, (x,h) ~ df (x)h, of a holomorphic function
into an L.-embedded cvs F, is continuous by Lemma 3.2 and hence
holomorphic, since it is G-holomorphic. According to Proposition 4.1,
df :U x E - F? is differentiable in the sense (D2). But this is obviously the
same as to say that df :U — L.(E, F®) is differentiable in the sense (D2)
because of linearity in the second variable. By induction one shows that
f:U — F? is infinitely differentiable in the sense (D2). If E is equable and
F is L,-embedded, a corresponding result is obtained using the factorization
technique provided by Proposition 2.3:

COROLLARY 4.1.1. Let U be a t-open subset of a cvs E (respectively equable
cvs E) and let F be a sequentially complete L.-embedded (respectively
L.-embedded) cvs. A holomorphic function f:U — F is infinitely differentiable,
i.e. it has continuous derivatives f®:U x E x-+- x E —» F in the sense (D2) of
all orders k =0,1,2,....

We shall now see how a theory of holomorphic functions can be developped
using local uniform convergence instead of continuous convergence on
function spaces (cf. [5]). Consider first a finitely continuous, G-holomorphic
function f: U — F on a t-open subset U of an equable cvs E with values in
an L,-embedded cvs F. The function f:U — F,, being holomorphic with
respect to the finest vector convergence structure A, on E, has for each
x € U an expansion (cf. [5])

© Jm
) et = ¥ / (x),

a'"f(x)h_-— Jf(x“h) di (m=0,1,.)

lm+1

1Al=¢

for he V, where V is a circled convex open set with x+V S U. Let U, and
E, be the sets U and E endowed with A,. According to [5],

J“f:onEo—»(Fc):"
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is holomorphic (and an m-homogeneous polynomial in h) and is therefore
differentiable in the sense (D2) by Proposition 4.1. By Propositions 2.3 and
3.5, d"f:U, x E, — (F.)° factors continuously through a®F, which is a subset
of (F.)?. Exactly as in [5] one proves that the sum (2) converges in L,LF
and hence also in a?F for a fixed he V.

Let H(U, F) denote the set of holomorphic functions U — F. In [5] we
proved that H, (U, F) is complete for a complete L.-embedded cvs F. A similar
theorem holds for an L,-embedded F:

ProrosiTiON 4.2. If U is a t-open subset of an equable cvs E a‘nd Fisa
(sequentially) complete L,embedded cvs, then H, (U, F) is (sequentially) com-
plete.

Proor. The canonical mapping H.(U, F) » H (U, L .L_F) is an embedding
(Lemma 3.6) and H(U, L.LF) is complete (see [5]). Therefore we only have
to show that H(U, F) is (sequentially) closed in H (U, L.L.F). Let (f;), be a
net (or sequence) in H(U, F), which converges to f in H, (U, L.LF). Since
f:U - L.L.F is holomorphic, the same factorization technique as in the
proof for Proposition 4.1 yields, that f: U — L.L_F is differentiable in the
sense (D2). Since f(x) = limf,(x) for each x € E and since F is (sequentially)
complete, f : U — F is differentiable in the sense (D2) and hence holomorphic
by Proposition 4.1. Thus H, (U, F) is (sequentially) complete.

The proofs for the next two theorems are omitted. The first part of
Theorem 4.3 is a direct consequence of the corresponding assertions for
continuous convergence (cf. [5]), Corollary 4.1.1 and the Propositions 2.3
and 3.5. The proofs for Theorem 4.3 (ii) and Theorem 4.4 (i), (ii) are almost
identical with the corresponding proofs in [5], but this time Theorem 3.7
(together with Corollary 4.1.1) is the working tool instead of Lemma 3.2.
Finally, for establishing the third part of Theorem 4.4 one uses the
embedding

C(U,C.(V,G)) » C(U x V,G)

(cf. Lemma 3.6) instead of the isomorphism C (U, C.(V,G)) = C(U x V, G).

THEOREM 4.3. Let U be a t-open subset of an equable cvs E and let F be
an L.-embedded cvs:

(i) The functiond™: H,(U,F)x U x E —» a®F, (f,x,h) v d™f(x)h, is con-
tinuous for each m 2 0.

(ii) There is a t-open subset X of H.,(U,F)xUxE, containing
H(U,F) x U x {0}, such that the formula
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|

S= Y L

m=0m! ’

where S(f,x,h) = f(x+h), is valid in the cvs C (X, a?F).

THEOREM 4.4. Let U and V be t-open subsets of equable cvs E and F

respectively and let G be an L,-embedded cvs:

10.
11

12.
13.

14.

(i) If f:U x V — G is holomorphic, then the function f:U — H,(V,a®G),
defined by f(x)y = f(x, ), is holomorphic.
(i) If g:U - H.(V,G) is holomorphic, then the function ¢:U x V— G,
defined by §(x, y) = g(x)y, is holomorphic.
(@iii) If G is sequentially complete, then H,(U x V,G) = H (U, H,(V, G)).
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