MATH. SCAND. 60 (1987), 63-76

THE F. AND M. RIESZ THEOREM REVISITED
EDWIN HEWITT, SHOZO KOSHI AND YUJI TAKAHASHI

1. Introduction.

The celebrated F. and M. Riesz theorem states: if u is a complex Borel
measure on the unit circle T such that

f(n) = Ie“”’dﬂ(O) =0 forn=-1,-2..,
T

then u is absolutely continuous with respect to Lebesque mesaure on T. Some
forty years later, Helson and Lowdenslager [4] generalized the F. and M. Riesz
theorem to compact Abelian groups with ordered duals. deLeeuw and
Glicksberg [1], Doss [2], [3], and Yamaguchi [11] shortly afterwards obtained
a number of related results. In this note we present simple and perspicuous
proofs of these theorems by using the Helson-Lowdenslager theorem and some
other well-known facts. In particular, we will prove Yamaguchi’s theorem
without using the theory of disintegration.

We are very grateful to Professor S. Saeki for showing us the proof of
Theorem C for G = R". His idea was also a guide for our proof for the
case in which G contains a compact open subgroup.

2. Preliminaries and four theorems.

Let G be an Abelian group. We say that G is an ordered group if G
contains a subsemigroup P such that P U (—P) =G and P (-P) = {0}.
(We will refer to P as an order in G.) It is well known that G is an
ordered group if and only if G is torsion-free (see [5]).

Let G be a locally compact Abelian group and let G be its dual group.
(The term “locally compact Abelian group” means “locally compact Abelian
group satisfying Hausdorff’s separation axiom”.) A fixed but arbitrary Haar
measure on G will be denoted by m. The symbol M(G) will denote the Banach
algebra of all bounded regular complex Borel measures on G under con-
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volution multiplication and the total variation norm. For an element x in G, 6,
denotes the Dirac measure at x. For u in M(G), let u, and u, be respectively
the absolutely continuous and singular parts of u with respect to m;. We
denote the Fourier-Stieltjes transform of a measure p by it and convolution
of measures u and v by u*v. For a subset E of G, Mg(G) denotes the space
of measures in M(G) whose Fourier-Stieltjes transforms vanish on G\E.

All notation and terminology not explained in the sequel is as in [5].

We now state the four Theorems mentioned in section 1.

THEOREM A (Helson-Lowdenslager, cf. [9, Theorem 8.2.3]). Let G be a
compact Abelian group with ordered dual G and let P be an order in G. If p
is a measure in Mp(G), then u, and u, belong to Mp(G) and moreover [1(0) = 0.

THeEOREM B (deLeeuw—Glicksberg [1, Proposition 5.1]). Let G be a compact
Abelian group and let y be a nontrivial homomorphism of G into the additive
group R of real numbers. If p is a measure in M(G) such that [i(y) = O for all
y€G with y(y) £ 0, then fi,(y) = fi,(y) = 0 for all ye G with y(y) < 0.

TueoreM C (Doss [3, Lemma 1]). Let G be a locally compact Abelian
group with ordered dual G and let P be an order in G. If yu is a measure in
Mp(G), then p, and pg also belong to Mp(G) and moreover f1,(0) = 0.

THeorem D (Yamaguchi [11]). Let G be a locally compact Abelian group
and let P be a subsemigroup of G such that P U (—P) = G. If u is a measure
in Mp(G), then u, and p, also belong to Mp(G).

REMARK 2.1. In his paper [11], Yamaguchi also showed the following. Let
G, G, and P be as in Theorem D. If u is a measure in Mp(G), then g,
and u, belong to Mp(G). To prove Theorems C and D, it suffices to prove
them with Mp(G) replaced by Mp(G): Yamaguchi proved this in [11,
pp. 244-245]. We will prove Theorems C and D in this form.

The cited proof of Theorem A is unexceptionable, and Theorem A will be
used in our ‘work. We will generalize Theorem B. Doss’s proof of Theorem C
is flawed, since he tacitly assumes that P is Haar measurable (which as shown
in [5] need not be the case). It seems worthwhile to present a short proof of
Theorem C. Yamaguchi’s proof of Theorem D is in part impenetrable, and
again our simple proof seems preferable.

3. Generalized Theorem B.

In this section we prove a generalization of Theorem B (see Theorem 3.6).
We first prove the theorem for a compact metrizable Abelian group by using
a result on measurable selections. We next prove it for all compact Abelian
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groups by using a lemma due to Pigno and Saeki ([8, Lemma 4]).
We first prove a simple corollary of Theorem A.

LEMMA 3.1. Let G be a compact Abelian group with torsion-free dual G and
let P be a subsemigroup of G such that P U (—P) = G. If u is a measure in
M p«(G), then pu, and u, also belong to M p(G).

Proor. We may suppose that P n (—P) % {0}: otherwise the lemma is
Theorem A. Since P n(—P) is a torsion-free Abelian group, there is a
subsemigroup Q@ of P N (—P) such that Q u(—-Q)=P n(-P),
and Q N (—Q) = {0} (see [5, Remark (2.6)]). We write

P, = (P\Q) v {0}

and
P, = (P\(-Q)) v {0}.

A short argument, which we omit, shows that P, and P, are subsemigroups
of G, that P, U(—P;) = P, U (—P,)= G, that P, n(—P,) = P, n(—P,)
= {0}, and that P, U P, = P. Suppose that u is a measure in Mp(G).
In particular we have j(y) =0 for all yeP;. Theorem A shows that
f1.(y) = fi(y) = O for all y e Py ; similarly f,(y) = fi(y) = O for all ye P, Since
P, U P, = P, we have f,(y) = ji(y) = O for all ye P.

The following Lemma 3.2 is due to Ryll-Nardzewski [7], [10].

LeMMA 3.2. Let X be a metric space and let Y be a separable and complete
metric space. Let F be the family of all nonvoid cjosed subsets of Y. Let X
be a mapping from X to F with the following property: {xe X: Z(x) = K}
is closed in X for each closed subset K of Y. Then there exists a mapping o
from X into Y such that:

(i) o(x)e X(x) for each xe X,
and

(i) o~ *(U) is a Borel subset of X for each open subset U of Y.

LEMMA 3.3. Let G be a compact metrizable Abelian group, let H be a closed
subgroup of G, and let © be the natural homomorphism of G onto G/H. Then
there exists a mapping ¢ from G/H into G with the following properties:

() nog(X) =X for each XeG/H;
(i) o~ '(U) is a Borel subset of G/H for each open subset U of G.
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Proor. We use Lemma 3.2 with X =G/H,Y =G, and X(x)=x+H,
where 7n(x) = Xx. We need only to verify that the set

A, ={XeG/H; Z(x) = x+H < K}

is closed in G/H for each closed subset K of G. This is simple. Indeed, let
{x,} be a sequence in A, such that {x,} converges to an element x in G/H.
Choose elements x, and x in G such that n(x,) = %, for n=1,2,... and
n(x) = x. Since G is compact and metric, a subsequence {x,,} of {x,} converges to
an element x, of G. Then {x,} converges to %, = m(x,), and so %, = x. For
he H, we have xo+he K because {x,,j+h} converges to xo +h and x, +he K.
That is, xo+ H < K; and so x+ H < K because x, = x.

LEMMA 3.4. Let G be a compact metrizable Abelian group and let P be a
subsemigroup of G such that P U (—P) = G. If u is a measure in M p(G),
then u, and u, are also in Mp(G).

Proor. Since G is a compact metrizable Abelian group, G may be regarded
as a closed subgroup of the countably infinite dimensional torus G, (see [9,
Theorem 2.2.6]).

By Lemma 3.3, there exists a mapping ¢ from G,/G to G, with the
following properties:

(i) noa(x) = X for each X € Go/G;
(i) o~ '(U)is a Borel subset of G,/G for each open subset U of G,,

where 7 denotes the natural homomorphism from G, onto G,/G.

It suffices to show that p, belongs to Mp(G) if u does. Assume the contrary:
there is a measure u in Mp(G) such that fi(y,) + O for some y,eP. By
considering jou, we may suppose that fi,(0) & 0. We will also consider u as
a measure in M(G,).

Now we define a function on G,/G for each bounded Borel function on G,
and each ve M(G,) as follows:

W) X = v*d,x)(f) for xeGy/G.
It is obvious that the mapping (') is a bounded Borel function on G,/G

for each bounded Borel function f on G, and each ve M(Gg). Thus we can
define measures A, 4,, and A, in M(G,) as follows:
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ASf) = f K * 0o(x)(f )dmg i6(X) ;

Go/G

*) M) = J Ba * Oo(x)(f )dmg (%) ;

Go/G

L) = J s * o) f )dmg, (%)

Go/G

for f e C(Gy).

Note that the equalities (*) hold for each bounded Borel function g on G,.
This can be easily verified by approximating a bounded Borel function on G,
by continuous functions on Gy,

We will show that A, and A, are respectively the absolutely continuous
and singular parts of 4 with respect to mg,. Once we have proved this fact,
the Lemma can be established as follows. Define

P ={yeG,:y|Ge P},
where y|G denotes the restriction of y to G. It is obvious that P is a

subsemigroup of G, and that P U (—P) = G,. If y is an element of P, then
y|G € P and therefore we have

W*0q2)(7) = A(Y)(—a(X),7)
= (|G} —o(X).p)
=0

for each x € Go/G. We infer that

Ay) = A()

= J. B * Og(x)(7)dmg (%)
Go/G

=0
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for each y € P. On the other hand, we have

1,0) = 1,0)

= j Us * Og(x)(1)dmg, j(X)
GG

= 4,0) ¥ 0.

The group G, is the weak direct sum of countably many copies of the
integers and so is torsion-free. This contradicts Lemma 3.1.

To complete the present proof, we need to' prove that 1, and A, are
respectively the absolutely continuous and singular parts of 4 with respect to
mg,. Since A = A, +4,, it is sufficient to show the following:

1) A, is absolutely continuous with respect to mg,;
(II) 4, is singular with respect to mg,.

To prove (I), let E be a Borel subset of G, such that mg (E) = 0. Since

0 = mg,(E)

= J IIE(x +y)dmg(y)dmg (%) (X = n(x)),

Go/G G

there exists a Borel subset A4 of G/G such that mg /G(4) = 0 and

\

jls(x +y)dmg(y) = 0
G

for all x in G, such that n(x)e A° = Go/G. For x € A°, we have

du,
de

Ha * Ogi)(1E) = fls(o(x)ﬂ) (y)dmg(y).

G

‘Since g(¥)en~1(%), it follows that u, * d,()(1g) = 0. Accordingly we have
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A4(E) I Ha * O (x)(1g)dmgG j6(X)

Go/G

= J/‘a * Og(x)(1£)dmg j6(X) +

A

+ f Ha * So2)(1g)dmg  6(%)
A‘

This proves (I).

We now prove (II). Employing the canonical decomposition of u, as a
linear combination of nonnegative (singular!) measures, we may suppose that
U is nonnegative and that ||yl = 1.

Since G, is compact and metrizable, C(G,) contains a countable dense subset
{f.}. Let ¢ be a positive real number. For n = 1,2,..., Luzin’s theorem shows
that there exists a compact subset E, of Go/G such that mg G(E;) < &/2"
and % — p, * dg(z)(f,) is continuous on E,. We write E = ()., E,. Then E
is compact and mg(E‘) < & and X — p, * d(:)(f,) is continuous on E for
n=12,.... Since {f,} is dense in C(Gy), X — p, * d4(x)(h) is continuous on
E for-each he C(Go). The measure pu, * . is singular with respect to mg
for each %€ Gy/G. A short argument, which we omit, shows that for each
x € E, there is an f € C(Gy) with 0 = f < 1 such that:

(“) 1= ””’s * 66()3)" < ”’s*éa(i)(f)'*'s;
d.xmg(f) <e for xen '({x}),

since G +0a(x) = n~ ' ({x}).

Since X — p, * 84(x)(f) is continuous on E and x — &, * mg(f) is continuous
on G, the inequalities (*') hold on some neighborhood Uy of % in E. Since
E is compact, there exist X;,X,,..., and %, in E such that ()., U = E.
We denote the f’s that correspond to %, X3, ..., X by f1, f2, ..., fi, respectively.
Now we define a function g on G, as follows:
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(fy on 7[_1(Ux,)§
fo on T (Ug,\Uy);

k—1
S on T (Ug)\ .Ul Us);
AS

L0 onzn Y(E9.

Then g is a Borel function on G, such that 0 S g £ 1, 1 —¢ < p, * 05(1)(9),
and 6, * mg(g) < & for each x e E and x e n~'({x}). Hence we have

A29) = f Us * Oo(x)(g)dmg jG(X) > 1—2¢

Go/G

and
r

mGo(g) = gdeo
Go

P
= fy (x+y)dmg(y)dmg ;6(%)
Go/G G

f Jg(x +y)dmg(y)dmg jG(%)
EG

< emg G(E) S e.

Since this holds for each & > 0, 4, is singular with respect to mg,.
We quote the following lemma from Pigno and Saeki [8, Lemma 4].

LEMMA 3.5. Let G be a nonmetrizable locally compact Abelian group, and let
D be a g-compact subset of G with mg(D) = 0. Then, given a o-compact subset
4 of G, we can find a g-compact, non-compact, open subgroup I' of G which
contains A and satisfies mg(D+T*) = 0.

THEOREM 3.6. Let G be a compact Abelian group and let P be a sub-
semigroup of G such that P U (—P) = G. If p is a measure in Mp(G), then
Uq and p, also belong to M p(G).
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Proor. It suffices to show that [ (y) = O for all y e P. Since y, is a singular
measure, we can choose a g-compact subset E of G such that mg(E) =0
and |u|(E°) = 0. Let y, be any element of P. By Lemma 3.5, there is a
countable subgroup I' of G containing y, such that

1) mg(E+T*) = 0.
Let © be the natural homomorphism from G onto G/I'*. By (1), we have

(2) (m(w)s = m(yy),

where 7n(u) denotes the image of u under n:m(u)(A) = u(n~'(A)) for Borel
subsets 4 of G/I'*. Write P’ = P nI'. Then P’ is a subsemigroup of I" such
that P" U (—P’) =T, and (n(u))’(y') = O for all y" e P". (Recall that the dual
group of G/I'* is I' and therefore f(y) = (n(u))'(y) for all yer.) Since
I' = (G/T) is countable G/I'* is metrizable and hence (2) and Lemma 3.4
imply that (n(u))'(y') = (n(u),)"(y') =0 for all yeP. It follows that
fs(yo) = (m(s)) (yo) = 0. Since y, is an arbitrary element of P, we have
f(y) = 0 for all ye P.

REMARK 3.7. Let y be as in Theorem B. If we put

P={yeG;y(@) =0}

and apply Theorem 3.6, we obtain Theorem B.
Theorem 3.6 is strictly stronger than Theorem B. To see this, consider the
compact group T2 and its dual group Z>. Let P be

{(x,y,2)€Z%;z > 0} U {(x,y,0)€Z>;x = 0}.
Plainly P is a subsemigroup of Z3 such that P U (—P) = Z3. If y is a nonzero
homomorphism of Z3 into R nonnegative on P, we have y((x, y, z)) = az with
o > 0. Thus y vanishes for all (x, y,0) and
P E y '({xeRlx 2 0}).

Thus Theorem B cannot prove Theorem 3.6.

4. Proof of Theorem C.

As we noted in Remark 2.1, we will prove Theorem C with M(G)
replaced by Mp(G). We make use of the structure theorem for locally
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compact Abelian groups (see [6, Theorem (24.30)]) and examine two cases.

We may suppose that G is nondiscrete: otherwise the Theorem reduces to
Theorem A. It suffices to show that if u is a measure in Mp(G), then
belongs to Mp(G). By the structure theorem, G has the form R"@ X,
where n is a nonnegative integer and X is a locally compact Abelian group
containing a compact open subgroup 4. We examine two cases.

Case I: n = 0. Since X = G is nondiscrete, A is infinite, and G/A is discrete.
If we put H = A, then H is a compact open subgroup of G, and G/H is
discrete. The dual group of G/H is of course H* = A. Let u be a measure
in Mp(G). Since u has o-compact support, there exists a sequence {x,} of
elements in G such that =3 ,p. .y and x;+H £ x;+H if i % j,
where yu, .y denotes the restriction of u to x,+ H. Observe that

(1) lull = Y ltx,+4ll-
n=1
Put
) A= px +u*0_x, forn=12...

so that A,e M(H) and p = Y 2=, A, * d,. We obtain

(3) ﬁ()’) = Zl I,,()’)( —Xps )’) for Y€ G
Since H is open in G, it is obvious that u; = ) X, (4,),*d,,, and so
“) As(y) = Zl (A @)(=%n,y) for yeG.

We will now show that if ye P, then f,(y4+4) =0 for n = 1,2,.... (Recall
that the dual group of H is G/A.) As a measure in M(H), A, has a Fourier-
Stieltjes transform constant on cosets of H'* = A. Thus we may write
A (y+A) for yeG. For a fixed y in P, define

V= "gl In(‘)"*'A)(""-’Cm y)éx.+H-

(This series converges in the total variation norm on M(G/H) = I'(G/H)
because of (1) and (2).) By (3), we have for every y' € A
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f’(}”) = Zl I,.('}"*“ A)(_xm 'y)(“xn"'H’ yl)

4_‘: Ay Y )= Xy 7 +7)

= Ay +7y").

Since A is a compact infinite torsion-free Abelian group, P N A is dense in
A (see [5, Theorem (3.2)]). Thus for y' € A, there exists a net {y,} in P n A
such that {y,} converges to y. Since all y+y, are in P, we have
V(y,) = A(y+7,) = O for all a. Since ¥ is continuous, we have

¥(y') = lim¥(y,) = 0

Since this holds for each y'€ A, v must be the zero measure, which is to say
that L,(y+4)=0forn=12,....

Now let n be the natural homomorphism from G onto G/A4 and put
P = n(P). Then Pisa subsemigroup of G/4 and G/A = P U (- P). We have
just shown that 4,(y+A) = 0 for each y+ AePand n = 1,2,... . Theorem 3.6
implies that (4,);(y+A4) = 0 for each y+AePand n = 1,2,.... From (4) we
conclude that

As(y) = Zl (Aa)s (v + AN = x5, 7)

for each ye P.
Case II: n>0. We write elements of R"® X as (a,7) where acR"
and y € X. Define
H=Z'®X)(=2Z"® {0})

and put PP=P()(Z"@® X). Let = be the natural homomorphism from
G=R"® X onto R"® X/2" @ {0}. Let u be a measure in Mp(G). Fix an
element (ay, 7o) in P and define ¢ = (—ag, —yo)u. Let n(s) denote the image
of ¢ under 7:n(g) is an element of M(R" @ X/Z" @ {0}). We have

(m(0))"((m, 7)) = fi((@0, y0) + (m, 7))
=0
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for all (m,y)e P’ because (ag, 7o)+ (m,y)€ P. Note that the dual group of
R®X/Z"® {0} is Z"@®{0})* =2"@® X. Since Z°@® X is a group dealt
with in Case I, we have

() (m(a))((m,y)) = 0

for all (m,y)e P". The group Z"® {0} is countable and so if E is a Borel’
subset of G with mg(E) = 0, we have mg(E + (2" @ {0})) = 0. This implies that
n(a,) is singular. Since n(L!(G)) = [}(G/H) if n is the natural homomorphism
of G onto G/H, it follows that n(s,) = (n(c)),.

Combine this with (5) to obtain

ﬁs((ao, YO)) = és((os 0))
= (n(5,))"((0,0))
= ((n(0))s)"((0,0))
=0.

Since (ag,70) is an arbitrary element of P, we have fi,((q,y)) = 0 for all
(a,7)eP.

REMARK 4.1. We may use Theorem C and the argument in the proof of
Lemma 3.1 to obtain the following special case of Theorem D.

Let G be a locally compact Abelian group with torsion-free dual group G
and let P be a subsemigroup of G such that P U (—P) = G. If u is a measure
in M p(G), then p, and u, are also in Mp(G).

5. Proof of Theorem D.

To prove Theorem D, we will make use of two fundamental facts about
locally compact Abelian groups.

By [6, Theorem (A.15) and Theorem (25.32)(a)], we can find a divisible
locally compact Abelian group D such that D contains G as an open
subgroup. We define

P={yeD;y|GeP}.

It is obvious that P is a subsemigroup of D and D = P U (—P). Let p be
a measure in Mp<(G). It suffices to prove that ji(y) = O for all ye P. We will
regard u as being a measure in M(D). Since G is open in D, u, and u, are
respectively the absolutely continuous and singular parts of p with repect
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to myp. Our first aim is to prove that fi(y) =0 for all ye P when pu is
regarded as a measure in M(D). If y € P, then 9|G is in P and therefore

Since

aR) = j(—x,v)du(x)
D

= j‘(—x, YG)dp(x)

G
= 0.

D is torsion-free (see [6, Theorem (24.23)]), Remark 4.1 gives us

fy(y) = 0 for all ye P.
Next we take an element y in P. There is an element y, of P such that
70lG = y. We find that

1. K.

R.
R.
H.
5. E.
E.
K.
L.

A7) = | (=x, y)dpy(x)
G
. L

= | (=X, 70lG)dp,(x)

Qe

»

= (-‘x, }’o)dﬂs(x) =0.

(-1
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