THE F. AND M. RIESZ THEOREM REVISITED

EDWIN HEWITT, SHOZO KOSHI AND YUJI TAKAHASHI

1. Introduction.

The celebrated F. and M. Riesz theorem states: if \(\mu \) is a complex Borel measure on the unit circle \(T \) such that

\[
\hat{\mu}(n) = \int_T e^{-in\theta} d\mu(\theta) = 0 \quad \text{for } n = -1, -2, \ldots,
\]

then \(\mu \) is absolutely continuous with respect to Lebesque measure on \(T \). Some forty years later, Helson and Lowdenslager [4] generalized the F. and M. Riesz theorem to compact Abelian groups with ordered duals. deLeeuw and Glicksberg [1], Doss [2], [3], and Yamaguchi [11] shortly afterwards obtained a number of related results. In this note we present simple and perspicuous proofs of these theorems by using the Helson-Lowdenslager theorem and some other well-known facts. In particular, we will prove Yamaguchi's theorem without using the theory of disintegration.

We are very grateful to Professor S. Saeki for showing us the proof of Theorem C for \(G = \mathbb{R}^n \). His idea was also a guide for our proof for the case in which \(G \) contains a compact open subgroup.

2. Preliminaries and four theorems.

Let \(G \) be an Abelian group. We say that \(G \) is an ordered group if \(G \) contains a subsemigroup \(P \) such that \(P \cup (-P) = G \) and \(P \cap (-P) = \{0\} \). (We will refer to \(P \) as an order in \(G \).) It is well known that \(G \) is an ordered group if and only if \(G \) is torsion-free (see [5]).

Let \(G \) be a locally compact Abelian group and let \(\hat{G} \) be its dual group. (The term "locally compact Abelian group" means "locally compact Abelian group satisfying Hausdorff's separation axiom"). A fixed but arbitrary Haar measure on \(G \) will be denoted by \(m_G \). The symbol \(M(G) \) will denote the Banach algebra of all bounded regular complex Borel measures on \(G \) under con-

Received November 19, 1985.
volution multiplication and the total variation norm. For an element x in G, δ_x denotes the Dirac measure at x. For μ in $M(G)$, let μ_a and μ_s be respectively the absolutely continuous and singular parts of μ with respect to m_G. We denote the Fourier-Stieltjes transform of a measure μ by $\hat{\mu}$ and convolution of measures μ and ν by $\mu \ast \nu$. For a subset E of \hat{G}, $M_{E}(G)$ denotes the space of measures in $M(G)$ whose Fourier-Stieltjes transforms vanish on $\hat{G}\setminus E$.

All notation and terminology not explained in the sequel is as in [5].

We now state the four Theorems mentioned in section 1.

Theorem A (Helson–Lowdenslager, cf. [9, Theorem 8.2.3]). Let G be a compact Abelian group with ordered dual \hat{G} and let P be an order in \hat{G}. If μ is a measure in $M_{\mathcal{P}}(G)$, then μ_a and μ_s belong to $M_{\mathcal{P}}(G)$ and moreover $\hat{\mu}(0) = 0$.

Theorem B (deLeeuw–Glicksberg [1, Proposition 5.1]). Let G be a compact Abelian group and let ψ be a nontrivial homomorphism of \hat{G} into the additive group R of real numbers. If μ is a measure in $M(G)$ such that $\hat{\mu}(\gamma) = 0$ for all $\gamma \in \hat{G}$ with $\psi(\gamma) \leq 0$, then $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for all $\gamma \in \hat{G}$ with $\psi(\gamma) \leq 0$.

Theorem C (Doss [3, Lemma 1]). Let G be a locally compact Abelian group with ordered dual \hat{G} and let P be an order in \hat{G}. If μ is a measure in $M_{\mathcal{P}}(G)$, then μ_a and μ_s also belong to $M_{\mathcal{P}}(G)$ and moreover $\hat{\mu}_s(0) = 0$.

Theorem D (Yamaguchi [11]). Let G be a locally compact Abelian group and let P be a subsemigroup of \hat{G} such that $P \cup (-P) = \hat{G}$. If μ is a measure in $M_{\mathcal{P}}(G)$, then μ_a and μ_s also belong to $M_{\mathcal{P}}(G)$.

Remark 2.1. In his paper [11], Yamaguchi also showed the following. Let G, \hat{G}, and P be as in Theorem D. If μ is a measure in $M_{\mathcal{P}}(G)$, then μ_a and μ_s belong to $M_{\mathcal{P}}(G)$. To prove Theorems C and D, it suffices to prove them with $M_{\mathcal{P}}(G)$ replaced by $M_{\mathcal{P}}(G)$: Yamaguchi proved this in [11, pp. 244–245]. We will prove Theorems C and D in this form.

The cited proof of Theorem A is unexceptionable, and Theorem A will be used in our work. We will generalize Theorem B. Doss’s proof of Theorem C is flawed, since he tacitly assumes that P is Haar measurable (which as shown in [5] need not be the case). It seems worthwhile to present a short proof of Theorem C. Yamaguchi’s proof of Theorem D is in part impenetrable, and again our simple proof seems preferable.

3. Generalized Theorem B.

In this section we prove a generalization of Theorem B (see Theorem 3.6). We first prove the theorem for a compact metrizable Abelian group by using a result on measurable selections. We next prove it for all compact Abelian
groups by using a lemma due to Pigno and Saeki ([8, Lemma 4]).

We first prove a simple corollary of Theorem A.

Lemma 3.1. Let G be a compact Abelian group with torsion-free dual \hat{G} and let P be a subsemigroup of \hat{G} such that $P \cup (-P) = \hat{G}$. If μ is a measure in $M_P(G)$, then μ_a and μ_s also belong to $M_P(G)$.

Proof. We may suppose that $P \cap (-P) \neq \{0\}$; otherwise the lemma is Theorem A. Since $P \cap (-P)$ is a torsion-free Abelian group, there is a subsemigroup Q of $P \cap (-P)$ such that $Q \cup (-Q) = P \cap (-P)$, and $Q \cap (-Q) = \{0\}$ (see [5, Remark (2.6)]). We write

$$P_1 = (P \setminus Q) \cup \{0\}$$

and

$$P_2 = (P \setminus (-Q)) \cup \{0\}.$$

A short argument, which we omit, shows that P_1 and P_2 are subsemigroups of \hat{G}, that $P_1 \cup (-P_1) = P_2 \cup (-P_2) = \hat{G}$, that $P_1 \cap (-P_1) = P_2 \cap (-P_2) = \{0\}$, and that $P_1 \cup P_2 = P$. Suppose that μ is a measure in $M_P(G)$. In particular we have $\hat{\mu}(\gamma) = 0$ for all $\gamma \in P_1$. Theorem A shows that $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for all $\gamma \in P_1$; similarly $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for all $\gamma \in P_2$. Since $P_1 \cup P_2 = P$, we have $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for all $\gamma \in P$.

The following Lemma 3.2 is due to Ryll–Nardzewski [7], [10].

Lemma 3.2. Let X be a metric space and let Y be a separable and complete metric space. Let \mathcal{F} be the family of all nonvoid closed subsets of Y. Let Σ be a mapping from X to \mathcal{F} with the following property: $\{x \in X : \Sigma(x) \subset K\}$ is closed in X for each closed subset K of Y. Then there exists a mapping σ from X into Y such that:

(i) $\sigma(x) \in \Sigma(x)$ for each $x \in X$;

and

(ii) $\sigma^{-1}(U)$ is a Borel subset of X for each open subset U of Y.

Lemma 3.3. Let G be a compact metrizable Abelian group, let H be a closed subgroup of G, and let π be the natural homomorphism of G onto G/H. Then there exists a mapping σ from G/H into G with the following properties:

(i) $\pi \circ \sigma(x) = \hat{x}$ for each $\hat{x} \in G/H$;

(ii) $\sigma^{-1}(U)$ is a Borel subset of G/H for each open subset U of G.
PROOF. We use Lemma 3.2 with \(X = G/H, \ Y = G, \) and \(\Sigma(\hat{x}) = x + H, \) where \(\pi(x) = \hat{x}. \) We need only to verify that the set

\[A_k = \{ \hat{x} \in G/H ; \Sigma(\hat{x}) = x + H \subset K \} \]

is closed in \(G/H \) for each closed subset \(K \) of \(G. \) This is simple. Indeed, let \(\{\hat{x}_n\} \) be a sequence in \(A_k \) such that \(\{\hat{x}_n\} \) converges to an element \(\hat{x} \) in \(G/H. \) Choose elements \(x_n \) and \(x \) in \(G \) such that \(\pi(x_n) = \hat{x}_n \) for \(n = 1, 2, \ldots \) and \(\pi(x) = \hat{x}. \) Since \(G \) is compact and metric, a subsequence \(\{x_{n_j}\} \) of \(\{x_n\} \) converges to an element \(x_0 \) of \(G. \) Then \(\{\hat{x}_{n_j}\} \) converges to \(\hat{x}_0 = \pi(x_0), \) and so \(\hat{x}_0 = \hat{x}. \) For \(h \in H, \) we have \(x_0 + h \in K \) because \(\{x_{n_j} + h\} \) converges to \(x_0 + h \) and \(x_{n_j} + h \in K. \) That is, \(x_0 + H \subset K; \) and so \(x + H \subset K \) because \(\hat{x}_0 = \hat{x}. \)

LEMMA 3.4. Let \(G \) be a compact metrizable Abelian group and let \(P \) be a subsemigroup of \(\hat{G} \) such that \(P \cup (-P) = \hat{G}. \) If \(\mu \) is a measure in \(M_P(G), \) then \(\mu_a \) and \(\mu_s \) are also in \(M_P(G). \)

PROOF. Since \(G \) is a compact metrizable Abelian group, \(G \) may be regarded as a closed subgroup of the countably infinite dimensional torus \(G_0 \) (see \([9, \text{Theorem 2.2.6}]\)).

By Lemma 3.3, there exists a mapping \(\sigma \) from \(G_0/G \) to \(G_0 \) with the following properties:

(i) \(\pi \circ \sigma(\hat{x}) = \hat{x} \) for each \(\hat{x} \in G_0/G; \)

(ii) \(\sigma^{-1}(U) \) is a Borel subset of \(G_0/G \) for each open subset \(U \) of \(G_0, \)

where \(\pi \) denotes the natural homomorphism from \(G_0 \) onto \(G_0/G. \)

It suffices to show that \(\mu_s \) belongs to \(M_P(G) \) if \(\mu \) does. Assume the contrary: there is a measure \(\mu \) in \(M_P(G) \) such that \(\hat{\mu}_a(\gamma_0) \neq 0 \) for some \(\gamma_0 \in P. \) By considering \(\gamma_0 \mu, \) we may suppose that \(\hat{\mu}_a(0) \neq 0. \) We will also consider \(\mu \) as a measure in \(M(G_0). \)

Now we define a function on \(G_0/G \) for each bounded Borel function \(v \in M(G_0) \) as follows:

\[(1) \quad \hat{x} \mapsto v \circ \delta_{\sigma(\hat{x})}(f) \quad \text{for} \ \hat{x} \in G_0/G. \]

It is obvious that the mapping (1) is a bounded Borel function on \(G_0/G \) for each bounded Borel function \(f \) on \(G_0 \) and each \(v \in M(G_0). \) Thus we can define measures \(\lambda, \lambda_1, \) and \(\lambda_2 \) in \(M(G_0) \) as follows:
\[
\begin{align*}
\lambda(f) &= \int_{G_0/G} \mu * \delta_{\sigma(\hat{x})}(f) \, dm_{G_0/G}(\hat{x}); \\
\lambda_1(f) &= \int_{G_0/G} \mu_a * \delta_{\sigma(\hat{x})}(f) \, dm_{G_0/G}(\hat{x}); \\
\lambda_2(f) &= \int_{G_0/G} \mu_s * \delta_{\sigma(\hat{x})}(f) \, dm_{G_0/G}(\hat{x})
\end{align*}
\]

(1)

for \(f \in C(G_0) \).

Note that the equalities (1) hold for each bounded Borel function \(g \) on \(G_0 \). This can be easily verified by approximating a bounded Borel function on \(G_0 \) by continuous functions on \(G_0 \).

We will show that \(\lambda_1 \) and \(\lambda_2 \) are respectively the absolutely continuous and singular parts of \(\lambda \) with respect to \(m_{G_0} \). Once we have proved this fact, the Lemma can be established as follows. Define

\[
\bar{P} = \{ \gamma \in \hat{G}_0 : \gamma|G \in P \},
\]

where \(\gamma|G \) denotes the restriction of \(\gamma \) to \(G \). It is obvious that \(\bar{P} \) is a subsemigroup of \(\hat{G}_0 \) and that \(\bar{P} \cup (-\bar{P}) = \hat{G}_0 \). If \(\gamma \) is an element of \(\bar{P} \), then \(\gamma|G \in P \) and therefore we have

\[
\mu * \delta_{\sigma(\hat{x})}(\bar{\gamma}) = \hat{\mu}(\gamma)(-\sigma(\hat{x}), \gamma) \\
= \hat{\mu}(\gamma|G)(-\sigma(\hat{x}) \gamma) \\
= 0
\]

for each \(\hat{x} \in G_0/G \). We infer that

\[
\hat{\lambda}(\gamma) = \lambda(\bar{\gamma})
\]

\[
= \int_{G_0/G} \mu * \delta_{\sigma(\hat{x})}(\bar{\gamma}) \, dm_{G_0/G}(\hat{x})
\]

\[
= 0
\]
for each $\gamma \in \tilde{P}$. On the other hand, we have

$$\hat{\lambda}_s(0) = \hat{\lambda}_2(0)$$

$$= \int_{\tilde{G}_0/G} \mu_s * \delta_{\sigma(\check{x})}(1)dm_{\tilde{G}_0/G}(\check{x})$$

$$= \hat{\mu}_s(0) \neq 0.$$

The group \(\tilde{G}_0 \) is the weak direct sum of countably many copies of the integers and so is torsion-free. This contradicts Lemma 3.1.

To complete the present proof, we need to prove that λ_1 and λ_2 are respectively the absolutely continuous and singular parts of λ with respect to $m_{\tilde{G}_0}$. Since $\lambda = \lambda_1 + \lambda_2$, it is sufficient to show the following:

(I) λ_1 is absolutely continuous with respect to $m_{\tilde{G}_0}$;

(II) λ_2 is singular with respect to $m_{\tilde{G}_0}$.

To prove (I), let E be a Borel subset of G_0 such that $m_{\tilde{G}_0}(E) = 0$. Since

$$0 = m_{\tilde{G}_0}(E)$$

$$= \int_{\tilde{G}_0/G} \int_{G} 1_E(x + y)dm_G(y)dm_{\tilde{G}_0/G}(\check{x}) \quad (\check{x} = \pi(x)),$$

there exists a Borel subset A of G_0/G such that $m_{\tilde{G}_0/G}(A) = 0$ and

$$\int_{G} 1_E(x + y)dm_G(y) = 0$$

for all x in G_0 such that $\pi(x) \in A^c \subset G_0/G$. For $x \in A^c$, we have

$$\mu_a * \delta_{\sigma(\check{x})}(1_E) = \int_{G} 1_E(\sigma(\check{x}) + y) \frac{d\mu_a}{dm_G}(y)dm_G(y).$$

Since $\sigma(\check{x}) \in \pi^{-1}(\check{x})$, it follows that $\mu_a * \delta_{\sigma(\check{x})}(1_E) = 0$. Accordingly we have
\[\lambda_1(E) = \int_{G_0/G} \mu_s * \delta_{\sigma(\hat{x})}(1_E) dm_{G_0/G}(\hat{x}) \]

\[= \int_A \mu_s * \delta_{\sigma(\hat{x})}(1_E) dm_{G_0/G}(\hat{x}) + \]

\[+ \int_{A^c} \mu_s * \delta_{\sigma(\hat{x})}(1_E) dm_{G_0/G}(\hat{x}) \]

\[= 0. \]

This proves (I).

We now prove (II). Employing the canonical decomposition of \(\mu_s \) as a linear combination of nonnegative (singular!) measures, we may suppose that \(\mu_s \) is nonnegative and that \(\|\mu_s\| = 1. \)

Since \(G_0 \) is compact and metrizable, \(C(G_0) \) contains a countable dense subset \(\{f_n\} \). Let \(\varepsilon \) be a positive real number. For \(n = 1, 2, \ldots, \), Luzin's theorem shows that there exists a compact subset \(E_n \) of \(G_0/G \) such that \(m_{G_0/G}(E_n^c) < \varepsilon/2^n \) and \(\hat{x} \to \mu_s * \delta_{\sigma(\hat{x})}(f_n) \) is continuous on \(E_n \). We write \(E = \bigcap_{n=1}^{\infty} E_n \). Then \(E \) is compact and \(m_G(E^c) < \varepsilon \) and \(\hat{x} \to \mu_s * \delta_{\sigma(\hat{x})}(f_n) \) is continuous on \(E \) for each \(h \in C(G_0) \). The measure \(\mu_s * \delta_{\sigma(\hat{x})} \) is singular with respect to \(m_G \) for each \(\hat{x} \in G_0/G \). A short argument, which we omit, shows that for each \(\hat{x} \in E \), there is an \(f \in C(G_0) \) with \(0 \leq f \leq 1 \) such that:

\[\begin{cases} 1 = \|\mu_s * \delta_{\sigma(\hat{x})}\| < \mu_s * \delta_{\sigma(\hat{x})}(f) + \varepsilon; \\ \delta_x * m_G(f) < \varepsilon \quad \text{for } x \in \pi^{-1}(\{\hat{x}\}), \end{cases} \]

since \(G + \sigma(\hat{x}) = \pi^{-1}(\{\hat{x}\}) \).

Since \(\hat{x} \to \mu_s * \delta_{\sigma(\hat{x})}(f) \) is continuous on \(E \) and \(x \to \delta_x * m_G(f) \) is continuous on \(G \), the inequalities (11) hold on some neighborhood \(U_{\hat{x}} \) of \(\hat{x} \) in \(E \). Since \(E \) is compact, there exist \(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k \) in \(E \) such that \(\bigcup_{j=1}^k U_{\hat{x}_j} = E \). We denote the \(f^s \) that correspond to \(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k \) by \(f_1, f_2, \ldots, f_k \), respectively. Now we define a function \(g \) on \(G_0 \) as follows:
\[
g = \begin{cases}
 f_1 & \text{on } \pi^{-1}(U_{\hat{x}_1}); \\
 f_2 & \text{on } \pi^{-1}(U_{\hat{x}_2} \setminus U_{\hat{x}_1}); \\
 \vdots & \vdots \\
 f_k & \text{on } \pi^{-1}(U_{\hat{x}_k} \setminus \bigcup_{j=1}^{k-1} U_{\hat{x}_j}); \\
 0 & \text{on } \pi^{-1}(E').
\end{cases}
\]

Then \(g \) is a Borel function on \(G_0 \) such that \(0 \leq g \leq 1, 1 - \varepsilon < \mu_s * \delta_{\sigma(\hat{x})}(g) \), and \(\delta_s * m_G(g) < \varepsilon \) for each \(\hat{x} \in E \) and \(x \in \pi^{-1}(\{\hat{x}\}) \). Hence we have

\[
\lambda_2(g) = \int_{G_0 / G} \mu_s * \delta_{\sigma(\hat{x})}(g) \, dm_{G_0 / G}(\hat{x}) > 1 - 2\varepsilon
\]

and

\[
m_{G_0}(g) = \int_{G_0} g \, dm_{G_0}
\]

\[
= \int_{G_0 / G} \int_{G} g(x + y) \, dm_{G}(y) \, dm_{G_0 / G}(\hat{x})
\]

\[
= \int_{E} \int_{G} g(x + y) \, dm_{G}(y) \, dm_{G_0 / G}(\hat{x})
\]

\[
< \varepsilon m_{G_0 / G}(E) \leq \varepsilon.
\]

Since this holds for each \(\varepsilon > 0 \), \(\lambda_2 \) is singular with respect to \(m_{G_0} \).

We quote the following lemma from Pigno and Saeki [8, Lemma 4].

Lemma 3.5. Let \(G \) be a nonmetrizable locally compact Abelian group, and let \(D \) be a \(\sigma \)-compact subset of \(G \) with \(m_G(D) = 0 \). Then, given a \(\sigma \)-compact subset \(\Delta \) of \(\hat{G} \), we can find a \(\sigma \)-compact, non-compact, open subgroup \(\Gamma \) of \(\hat{G} \) which contains \(\Delta \) and satisfies \(m_G(D + \Gamma^\perp) = 0 \).

Theorem 3.6. Let \(G \) be a compact Abelian group and let \(P \) be a subsemigroup of \(\hat{G} \) such that \(P \cup (-P) = \hat{G} \). If \(\mu \) is a measure in \(M_P(G) \), then \(\mu_s \) and \(\mu_s \) also belong to \(M_P(G) \).
PROOF. It suffices to show that \(\hat{\mu}_s(\gamma) = 0 \) for all \(\gamma \in P \). Since \(\mu_s \) is a singular measure, we can choose a \(\sigma \)-compact subset \(E \) of \(G \) such that \(m_\sigma(E) = 0 \) and \(|\mu_s|(E^c) = 0 \). Let \(\gamma_0 \) be any element of \(P \). By Lemma 3.5, there is a countable subgroup \(\Gamma \) of \(\hat{G} \) containing \(\gamma_0 \) such that

\[
m_\sigma(E + \Gamma^\perp) = 0.
\]

Let \(\pi \) be the natural homomorphism from \(G \) onto \(G/\Gamma^\perp \). By (1), we have

\[
(\pi(\mu))_s = \pi(\mu_s),
\]

where \(\pi(\mu) \) denotes the image of \(\mu \) under \(\pi : \pi(\mu)(A) = \mu(\pi^{-1}(A)) \) for Borel subsets \(A \) of \(G/\Gamma^\perp \). Write \(P' = P \cap \Gamma \). Then \(P' \) is a subsemigroup of \(\Gamma \) such that \(P' \cup (-P') = \Gamma \), and \((\pi(\mu))'(\gamma') = 0 \) for all \(\gamma' \in P' \). (Recall that the dual group of \(G/\Gamma^\perp \) is \(\Gamma \) and therefore \(\hat{\mu}(\gamma) = (\pi(\mu))'(\gamma) \) for all \(\gamma \in \Gamma \).) Since \(\Gamma = (G/\Gamma^\perp)' \) is countable \(G/\Gamma^\perp \) is metrizable and hence (2) and Lemma 3.4 imply that \((\pi(\mu_s))'(\gamma') = (\pi(\mu)_s)'(\gamma') = 0 \) for all \(\gamma' \in P' \). It follows that \(\hat{\mu}(\gamma_0) = (\pi(\mu))'(\gamma_0) = 0 \). Since \(\gamma_0 \) is an arbitrary element of \(P \), we have \(\hat{\mu}_s(\gamma) = 0 \) for all \(\gamma \in P \).

REMARK 3.7. Let \(\psi \) be as in Theorem B. If we put

\[
P = \{ \gamma \in \hat{G} ; \psi(\gamma) \leq 0 \}
\]

and apply Theorem 3.6, we obtain Theorem B.

Theorem 3.6 is strictly stronger than Theorem B. To see this, consider the compact group \(T^3 \) and its dual group \(Z^3 \). Let \(P \) be

\[
\{(x, y, z) \in Z^3 ; z > 0 \} \cup \{(x, y, 0) \in Z^3 ; x \geq 0 \}.
\]

Plainly \(P \) is a subsemigroup of \(Z^3 \) such that \(P \cup (-P) = Z^3 \). If \(\psi \) is a nonzero homomorphism of \(Z^3 \) into \(R \) nonnegative on \(P \), we have \(\psi((x, y, z)) = ax \) with \(a > 0 \). Thus \(\psi \) vanishes for all \((x, y, 0) \) and

\[
P \subsetneq \psi^{-1}(\{ x \in R ; x \geq 0 \}).
\]

Thus Theorem B cannot prove Theorem 3.6.

4. Proof of Theorem C.

As we noted in Remark 2.1, we will prove Theorem C with \(M_p(G) \) replaced by \(M_{p^*}(G) \). We make use of the structure theorem for locally
compact Abelian groups (see [6, Theorem (24.30)]) and examine two cases.

We may suppose that \(\hat{G} \) is nondiscrete: otherwise the Theorem reduces to Theorem A. It suffices to show that if \(\mu \) is a measure in \(M_p(G) \), then \(\mu_s \) belongs to \(M_p(G) \). By the structure theorem, \(\hat{G} \) has the form \(\mathbb{R}^n \oplus X \), where \(n \) is a nonnegative integer and \(X \) is a locally compact Abelian group containing a compact open subgroup \(A \). We examine two cases.

Case I: \(n = 0 \). Since \(X = \hat{G} \) is nondiscrete, \(A \) is infinite, and \(\hat{G}/A \) is discrete. If we put \(H = A^\perp \), then \(H \) is a compact open subgroup of \(G \), and \(G/H \) is discrete. The dual group of \(G/H \) is of course \(H^\perp = A \). Let \(\mu \) be a measure in \(M_p(G) \). Since \(\mu \) has \(\sigma \)-compact support, there exists a sequence \(\{x_n\} \) of elements in \(G \) such that \(\mu = \sum_{n=1}^{\infty} \mu_{x_n + H} \) and \(x_i + H \neq x_j + H \) if \(i \neq j \), where \(\mu_{x_n + H} \) denotes the restriction of \(\mu \) to \(x_n + H \). Observe that

\[
||\mu|| = \sum_{n=1}^{\infty} ||\mu_{x_n + H}||.
\]

Put

\[
\lambda_n = \mu_{x_n + H} * \delta_{-x_n} \quad \text{for} \ n = 1, 2, \ldots
\]

so that \(\lambda_n \in M(H) \) and \(\mu = \sum_{n=1}^{\infty} \lambda_n * \delta_{x_n} \). We obtain

\[
\hat{\mu}(\gamma) = \sum_{n=1}^{\infty} \hat{\lambda}_n(\gamma)(-x_n, \gamma) \quad \text{for} \ \gamma \in \hat{G}.
\]

Since \(H \) is open in \(G \), it is obvious that \(\mu_s = \sum_{n=1}^{\infty} (\lambda_n)_s * \delta_{x_n} \), and so

\[
\hat{\mu}_s(\gamma) = \sum_{n=1}^{\infty} ((\lambda_n)_s)(\gamma)(-x_n, \gamma) \quad \text{for} \ \gamma \in \hat{G}.
\]

We will now show that if \(\gamma \in P \), then \(\hat{\lambda}_n(\gamma + A) = 0 \) for \(n = 1, 2, \ldots \). (Recall that the dual group of \(H \) is \(\hat{G}/A \).) As a measure in \(M(H) \), \(\lambda_n \) has a Fourier-Stieltjes transform constant on cosets of \(H^\perp = A \). Thus we may write \(\hat{\lambda}_n(\gamma + A) \) for \(\gamma \in \hat{G} \). For a fixed \(\gamma \) in \(P \), define

\[
v = \sum_{n=1}^{\infty} \hat{\lambda}_n(\gamma + A)(-x_n, \gamma) \delta_{x_n + H}.
\]

(This series converges in the total variation norm on \(M(G/H) = l^1(G/H) \) because of (1) and (2).) By (3), we have for every \(\gamma' \in A \)
\[\hat{\vartheta}(\gamma') = \sum_{n=1}^{\infty} \hat{\lambda}_n(\gamma + A)(-x_n, \gamma)(-x_n + H, \gamma') \]
\[= \sum_{n=1}^{\infty} \hat{\lambda}_n(\gamma + \gamma')(\gamma + \gamma') \]
\[= \hat{\mu}(\gamma + \gamma'). \]

Since \(A \) is a compact infinite torsion-free Abelian group, \(P \cap A \) is dense in \(A \) (see [5, Theorem (3.2)]). Thus for \(\gamma' \in A \), there exists a net \(\{ \gamma_x \} \) in \(P \cap A \) such that \(\{ \gamma_x \} \) converges to \(\gamma' \). Since all \(\gamma + \gamma_x \) are in \(P \), we have \(\hat{\vartheta}(\gamma_x) = \hat{\mu}(\gamma + \gamma_x) = 0 \) for all \(x \). Since \(\hat{\vartheta} \) is continuous, we have

\[\hat{\vartheta}(\gamma') = \lim_{x} \hat{\vartheta}(\gamma_x) = 0. \]

Since this holds for each \(\gamma' \in A \), \(\nu \) must be the zero measure, which is to say that \(\hat{\lambda}_n(\gamma + A) = 0 \) for \(n = 1, 2, \ldots \).

Now let \(\pi \) be the natural homomorphism from \(\hat{G} \) onto \(\hat{G}/A \) and put \(\bar{P} = \pi(P) \). Then \(\bar{P} \) is a subsemigroup of \(\hat{G}/A \) and \(\hat{G}/A = \bar{P} \cup (-\bar{P}) \). We have just shown that \(\hat{\lambda}_n(\gamma + A) = 0 \) for each \(\gamma + A \in \bar{P} \) and \(n = 1, 2, \ldots \). Theorem 3.6 implies that \((\lambda_n)_n(\gamma + A) = 0 \) for each \(\gamma + A \in \bar{P} \) and \(n = 1, 2, \ldots \). From (4) we conclude that

\[\hat{\mu}_n(\gamma) = \sum_{n=1}^{\infty} (\lambda_n)_n(\gamma + A)(-x_n, \gamma) \]
\[= 0 \]

for each \(\gamma \in P \).

Case II: \(n > 0 \). We write elements of \(\mathbb{R}^n \oplus X \) as \((a, \gamma) \) where \(a \in \mathbb{R}^n \) and \(\gamma \in X \). Define

\[H = (\mathbb{Z}^n \oplus X)^{\perp} (= \mathbb{Z}^n \oplus \{0\}) \]

and put \(P' = P \cap (\mathbb{Z}^n \oplus X) \). Let \(\pi \) be the natural homomorphism from \(G = \mathbb{R}^n \oplus \hat{X} \) onto \(\mathbb{R}^n \oplus \hat{X}/\mathbb{Z}^n \oplus \{0\} \). Let \(\mu \) be a measure in \(M_{P'}(G) \). Fix an element \((a_0, \gamma_0) \) in \(P \) and define \(\sigma = (-a_0, -\gamma_0)\mu \). Let \(\pi(\sigma) \) denote the image of \(\sigma \) under \(\pi: \pi(\sigma) \) is an element of \(M(\mathbb{R}^n \oplus \hat{X}/\mathbb{Z}^n \oplus \{0\}) \). We have

\[(\pi(\sigma))((m, \gamma)) = \hat{\mu}((a_0, \gamma_0) + (m, \gamma)) \]
\[= 0 \]
for all \((m, \gamma) \in P'\) because \((a_0, \gamma_0) + (m, \gamma) \in P\). Note that the dual group of \(\mathbb{R}^n \oplus \hat{\mathbb{R}}/\mathbb{Z}^n \oplus \{0\}\) is \((\mathbb{Z}^n \oplus \{0\})^I = \mathbb{Z}^n \oplus X\). Since \(\mathbb{Z}^n \oplus X\) is a group dealt with in Case I, we have

\[
(\pi(s))_a((m, \gamma)) = 0
\]

for all \((m, \gamma) \in P'\). The group \(\mathbb{Z}^n \oplus \{0\}\) is countable and so if \(E\) is a Borel subset of \(G\) with \(m_\mathcal{G}(E) = 0\), we have \(m_\mathcal{G}(E + (\mathbb{Z}^n \oplus \{0\})) = 0\). This implies that \(\pi(s)\) is singular. Since \(\pi(L^1(G)) = L^1(G/H)\) if \(\pi\) is the natural homomorphism of \(G\) onto \(G/H\), it follows that \(\pi(s) = (\pi(s))_a\).

Combine this with (5) to obtain

\[
\hat{\mu}_s((a_0, \gamma_0)) = \hat{\delta}_s((0, 0))
= (\pi(s))_a((0, 0))
= ((\pi(s))_a)^*((0, 0))
= 0.
\]

Since \((a_0, \gamma_0)\) is an arbitrary element of \(P\), we have \(\hat{\mu}_s((a, \gamma)) = 0\) for all \((a, \gamma) \in P\).

Remark 4.1. We may use Theorem C and the argument in the proof of Lemma 3.1 to obtain the following special case of Theorem D.

Let \(G\) be a locally compact Abelian group with torsion-free dual group \(\hat{G}\) and let \(P\) be a subsemigroup of \(\hat{G}\) such that \(P \cup (-P) = \hat{G}\). If \(\mu\) is a measure in \(M_{P'}(G)\), then \(\mu_a\) and \(\mu_s\) are also in \(M_{P'}(G)\).

5. **Proof of Theorem D.**

To prove Theorem D, we will make use of two fundamental facts about locally compact Abelian groups.

By [6, Theorem (A.15) and Theorem (25.32)(a)], we can find a divisible locally compact Abelian group \(D\) such that \(D\) contains \(G\) as an open subgroup. We define

\[
\bar{P} = \{\gamma \in \hat{D}; \gamma|G \in P\}.
\]

It is obvious that \(\bar{P}\) is a subsemigroup of \(\hat{D}\) and \(\hat{D} = \bar{P} \cup (-\bar{P})\). Let \(\mu\) be a measure in \(M_{P'}(G)\). It suffices to prove that \(\hat{\mu}_s(\gamma) = 0\) for all \(\gamma \in \bar{P}\). We will regard \(\mu\) as being a measure in \(M(D)\). Since \(G\) is open in \(D\), \(\mu_a\) and \(\mu_s\) are respectively the absolutely continuous and singular parts of \(\mu\) with respect
to m_D. Our first aim is to prove that $\hat{\mu}_s(\gamma) = 0$ for all $\gamma \in \bar{P}$ when μ is regarded as a measure in $M(D)$. If $\gamma \in \bar{P}$, then $\gamma|G$ is in P and therefore

$$\hat{\mu}(\gamma) = \int_D (-x, \gamma) d\mu(x)$$

$$= \int_G (-x, \gamma|G) d\mu(x)$$

$$= 0.$$

Since \bar{D} is torsion-free (see [6, Theorem (24.23)]), Remark 4.1 gives us $\hat{\mu}_s(\gamma) = 0$ for all $\gamma \in \bar{P}$.

Next we take an element γ in P. There is an element γ_0 of \bar{P} such that $\gamma_0|G = \gamma$. We find that

$$\hat{\mu}_s(\gamma) = \int_G (-x, \gamma) d\mu_s(x)$$

$$= \int_G (-x, \gamma_0|G) d\mu_s(x)$$

$$= \int_D (-x, \gamma_0) d\mu_s(x) = 0.$$

REFERENCES

EDWIN HEWITT
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195
U.S.A.

SHOZO KOSHI, YUJI TAKAHASHI
DEPARTMENT OF MATHEMATICS
HOKKAIDO UNIVERSITY
SAPPORO
060 JAPAN