RESOLUTION OF THE SIGN AMBIGUITY IN THE DETERMINATION OF THE CYCLOTOMIC NUMBERS OF ORDER 4 AND THE CORRESPONDING JACOBSTHAL SUM

S. A. KATRE and A. R. RAJWADE

1. Introduction.

In his Werke ([7, pp. 79–87]), Gauss, by a wholly elementary procedure, obtained formulae for cyclotomic numbers of order 4 for a prime $p \equiv 1 \pmod 4$, in terms of the quadratic partition $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod 4$, (which fixes s_0 uniquely and t_0 upto sign). This result may also be found in the work of Dickson ([5, pp. 400–401]). However, Gauss and Dickson did not resolve the sign ambiguity in t_0 , viz. given a generator g of F_p^* , it is not clear which sign of t_0 gives correct formulae for the cyclotomic numbers corresponding to g. The corresponding result of g. Hall ([8, Theorem 3.2]) for g (g = g = 1 (mod 4)) also has a similar sign ambiguity in the case when g = 1 (mod 4). (See also Storer [13, Lemmas 19, 19', p. 48 and p. 51].) The main object of this paper is to resolve this sign ambiguity. Indeed we prove the following:

THEOREM 1. Let p be an odd prime, $q=p^n\equiv 1\pmod 4$, q=1+4f. Let v be a generator of $\mathbf{F_q^*}$. If $p\equiv -1\pmod 4$, let $s=(-p)^{n/2}$ and t=0. If $p\equiv 1\pmod 4$, define s uniquely by $q=s^2+t^2$, $p\nmid s$, $s\equiv 1\pmod 4$, and then t uniquely by $v^{(q-1)/4}\equiv s/t\pmod p$. Then the cyclotomic numbers of order 4 for $\mathbf{F_q}$, corresponding to v, are determined unambiguously by the following formulae:

For f even,

$$A = (0,0) = \frac{1}{16}(q-11-6s),$$

$$B = (0,1) = (1,0) = (3,3) = \frac{1}{16}(q-3+2s+4t),$$

$$C = (0,2) = (2,0) = (2,2) = \frac{1}{16}(q-3+2s),$$

$$D = (0,3) = (3,0) = (1,1) = \frac{1}{16}(q-3+2s-4t),$$

$$E = (1,2) = (2,1) = (1,3) = (3,1) = (2,3) = (3,2) = \frac{1}{16}(q+1-2s),$$

and for f odd,

$$A = (0,0) = (2,0) = (2,2) = \frac{1}{16}(q-7+2s),$$

$$B = (0,1) = (1,3) = (3,2) = \frac{1}{16}(q+1+2s-4t),$$

$$C = (0,2) = \frac{1}{16}(q+1-6s),$$

$$D = (0,3) = (1,2) = (3,1) = \frac{1}{16}(q+1+2s+4t),$$

$$E = (1,0) = (1,1) = (2,1) = (2,3) = (3,0) = (3,3) = \frac{1}{16}(q-3-2s).$$

(This solves the cyclotomic problem in this case completely.)

Also, for $p \equiv 1 \pmod{4}$, if s_0 , t_0 are uniquely determined by $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod{4}$, and $v^{(q-1)/4} \equiv s_0/t_0 \pmod{p}$, then the s and t in the above formulae are given by

$$s = s_0^n - \binom{n}{2} s_0^{n-2} t_0^2 + \binom{n}{4} s_0^{n-4} t_0^4 - \dots$$

and

$$t = t_0 \left[\binom{n}{1} s_0^{n-1} - \binom{n}{3} s_0^{n-3} t_0^2 + \dots \right].$$

The above described ambiguity for cyclotomic numbers of order 4 runs parallel to the sign ambiguity in the well known Jacobsthal sum defined by

$$\Phi_2(a) = \Phi_2(a; q) = \sum_{x \in F_a} \left(\frac{x(x^2 + a)}{q} \right), \quad a \in F_q^*, \ (q = p^n \equiv 1 \pmod{4}),$$

where (./q) is the Legendre symbol in F_q . This ambiguity is apparent in the following result of Jacobsthal (q = p case) (see also [1, pp. 384–385]).

PROPOSITION (Jacobsthal [10], 1907). For $p \equiv 1 \pmod{4}$, $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod{4}$, one has,

$$\Phi_2(a; p) = \begin{cases} -2s_0, & \text{if a is a fourth power } (\text{mod } p), \\ 2s_0, & \text{if a is a square but not a fourth power } (\text{mod } p), \\ \pm 2t_0, & \text{if a is not a square } (\text{mod } p). \end{cases}$$

The ambiguity in the sign of t_0 in the results of Jacobsthal remained unresolved for quite some time. In 1935, Davenport and Hasse ([4, § 7 II, pp. 176–178]) obtained $\Phi_2(a)$ in terms of the two normalized prime factors π , $\bar{\pi}$ of $p = n\bar{\pi}$ in Z[i] and the quartic residue symbol. (See the formulation of H. P. F. Swinnerton-Dyer in [3, p. 284] for the case q = p. From the formuls for N_p there, we get $\Phi_2(a; p)$ by $N_p = p + 1 + \Phi_2(-D; p)$.) The ambiguity in Jacobsthal's result was resolved by E. Lehmer ([12, Theorems 2 and 4]) in the case when 2 is a quartic nonresidue of $p \equiv 1 \pmod{4}$.

Recently, Hudson and Williams [9], Evans [6], and Katre (independently) [11], have resolved this sign ambiguity completely in the case q=p by different methods. However for $q=p^n$ (n>1) only partial results are known. For $q=p^2$, see the results of Berndt and Evans (with sign ambiguities) in [2, Theorems 6.1 and 6.2]. For a general q, the result for $\Phi_2(1)$ may be found in Storer's book [13, p. 56]. The second aim of this paper is to obtain unambiguous results for $\Phi_2(a, p^n)$, $n \ge 1$. This is achieved in the following

THEOREM 2. Let $q = p^n \equiv 1 \pmod{4}$. Let $a \in F_q$, $a \neq 0$. If $p \equiv -1 \pmod{4}$, let $s = (-p)^{n/2}$ and t = 0. If $p \equiv 1 \pmod{4}$, define s uniquely by $q = s^2 + t^2$, $p \nmid s$, $s \equiv 1 \pmod{4}$, and in case a is not a square in F_q , define t uniquely in terms of a by $a^{(q-1)/4} \equiv s/t \pmod{p}$. Then $\Phi_2(a)$ is unambiguously given by

Also, for $p \equiv 1 \pmod{4}$, $q = p^n$, if s_0 and t_0^2 are uniquely given by $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod{4}$, and in case a is not a square in F_q , t_0 is uniquely given by $a^{(q-1)/4} \equiv s_0/t_0 \pmod{p}$, then we have the alternative formulation

$$-2\left[s_0^n - \binom{n}{2}s_0^{n-2}t_0^2 + \dots\right] \qquad \text{if a is a fourth power in } \mathbf{F}_q,$$

$$\Phi_2(a) = 2\left[s_0^n - \binom{n}{2}s_0^{n-2}t_0^2 + \dots\right] \qquad \text{if a is a square but not a fourth power in } \mathbf{F}_q,$$

$$2t_0\left[\binom{n}{1}s_0^{n-1} - \binom{n}{3}s_0^{n-3}t_0^2 + \dots\right] \qquad \text{if a is not a square in } \mathbf{F}_q.$$

In section 2, we give the proof of Theorem 1 and in section 3, that of Theorem 2. In section 4, we give an example.

REMARK. For $a, b \neq 0$ in F_q $(q \equiv 1 \pmod{4})$, Theorem 1 enables us to find the number N_1 of solutions of the equation $ax^4 - by^4 = 1$ in F_q , this number being $16(k, h) + N_0(a) + N_0(-b)$, where for any chosen generator v of F_q^* , $h \equiv \text{ind}_v a \pmod{4}$, $k \equiv \text{ind}_v b \pmod{4}$, and for $u \in F_q^*$, $N_0(u) = 4$ or 0 according as u is or is not a fourth power in F_q . Also, Theorem 2 enables us to find the number N_2 of solutions of $y^2 = ax^4 - b$, $a, b \in F_q^*$, since

$$N_{2} = q + \sum_{x \in F_{q}} \left(\frac{ax^{4} - b}{q} \right) = q + (a/q) \sum_{q} \left(\frac{x^{4} - b/a}{q} \right)$$
$$= q + (a/q) \{ \Phi_{2}(-b/a) - 1 \} .$$

The number of solutions of $y^2 = x^3 + ax$ in F_q is given by $q + \Phi_2(a)$.

2. The unique determination of cyclotomic numbers of order 4.

Let p be an odd prime, $q = p^n \equiv 1 \pmod{4}$, q = 1 + 4f, v be a generator of the cyclic group F_q^* , F_q being the finite field of q elements. Let χ be the character on F_q , satisfying $\chi(0) = 0$, $\chi(v) = i$. Then for h, k modulo 4, the cyclotomic numbers (h, k) and the Jacobi sums R(h, k) of order 4 are defined by

$$(h,k) = \text{the number of } v \in F_q \text{ such that } \operatorname{ind}_v v \equiv h \pmod{4} \text{ and } \operatorname{ind}_v (v+1) \equiv k \pmod{4},$$

$$R(h,k) = \sum_{v \in F_q} \chi^h(v) \chi^k (1-v).$$

(Here $\chi^0(0) = 0$, unlike on p. 44 in [13].

Note that our R(h, k) is the $J_{\chi}(h, k)$ defined on p. 44 of [13], and so by Lemma 15, p. 44 of [13], it is equal to the R(h, k) defined on p. 43 therein, whenever none of h, k, h+k is divisible by 4. By Lemma 13 of [13], we have R(1,1), $\overline{R(1,1)} = q$ and by Lemma 14 of [13], $R(1,1) = (-1)^f R(2,1)$.

But

$$R(2,1) \sum_{v \neq 0,1} \chi^{2}(v)\chi(1-v) ,$$

$$= \sum_{v \neq 0,1} (\chi^{2}(v)+1)\chi(1-v) - \sum_{v \neq 0,1} \chi(1-v) ,$$

$$\equiv \sum_{v \neq 0,1} (\chi^{2}(v)+1) + \chi(1) \pmod{(2+2i)} ,$$

$$= -\chi^{2}(1) + q - 2 + 1 ,$$

$$= q - 2 \equiv -1 \pmod{(2+2i)} .$$

This gives $R(1,1) \equiv (-1)^{f+1} \pmod{(2+2i)}$.

We note that if we write R(1,1) = -s + it, then $q = s^2 + t^2$, and the congruence condition on R(1,1) is equivalent to saying that $s \equiv 1 \pmod{4}$.

LEMMA 1. If $\alpha, \beta \in \mathbb{Z}[i]$ are comprime to 1+i and they satisfy $(\alpha) = (\beta)$, and $\alpha \equiv \beta \pmod{(2+2i)}$, then $\alpha = \beta$.

PROOF. By the first condition, $\alpha = \beta \eta$, where η is a unit in Z[i], hence a root of unity. Since α , β are coprime to 1+i, the second condition forces that $\eta \equiv 1 \pmod{(2+2i)}$. Hence $\eta = 1$.

In view of this lemma, R(1,1) is fixed completely if one knows the prime ideal decomposition of R(1,1). We achieve this in what follows:

CASE (i). Let $p \equiv -1 \pmod{4}$. Since $q \equiv 1 \pmod{4}$, we get that n is even and so is f. p itself stays prime in Z[i] and so R(1,1) $\overline{R(1,1)} = q$ gives $(R(1,1)) = (p)^{n/2}$ as ideals. This forces that $R(1,1) = -(-p)^{n/2}$. We have thus proved

PROPOSITION 1. Let $p \equiv -1 \pmod{4}$, $q = p^n$, $q \equiv 1 \pmod{4}$, then the system of diophantine equations $q = s^2 + t^2$, $s \equiv 1 \pmod{4}$ has a unique solution viz. $s = (-p)^{n/2}$, t = 0. For this solution, R(1, 1) = -s + it.

Case (ii). Let $p \equiv 1 \pmod{4}$. In this case p is the product of two distinct prime ideals in $\mathbb{Z}[i]$. Let $b = v^{(q-1)/4}$. Then $b \in F_p$. By abuse of notation, let b also denote any rational integer $\equiv v^{(q-1)/4} \pmod{p}$. Then $(b-i)(b+i)\equiv 0 \pmod{p}$. One checks at once that there is a unique prime divisor p of p which also divides b-i. Then $p = p\bar{p}$. We now have

LEMMA 2. Let J = R(1, 1). Then $\mathfrak{p} | J$ but $\mathfrak{p} \not \backslash \overline{J}$.

PROOF. For k=1, 3, let σ_k be the automorphism of Q(i) satisfying $\sigma_k(i) = i^k$. Thus $J = J^{\sigma_1}$, $\overline{J} = J^{\sigma_3}$. Let

$$S_k = \sum_{v \in F_q} v^{k(q-1)/4} (1-v)^{k(q-1)/4}$$
.

Since $v^{(q-1)/4} \in F_p$, S_k may be considered as an integer modulo p. We have,

$$\begin{split} J^{\sigma_k} - S_k &= \sum_{v \in F_q} \left[\chi^k(v) \chi^k(1-v) - v^{k(q-1)/4} (1-v)^{k(q-1)/4} \right] \,, \\ &= \sum_v \chi^k(v) \left\{ \chi^k(1-v) - (1-v)^{k(q-1)/4} \right\} + \\ &+ \sum_v (1-v)^{k(q-1)/4} \left\{ \chi^k(v) - v^{k(q-1)/4} \right\} \,. \end{split}$$

Each term in the curly brackets is divisible by b-i modulo p. Therefore, $J^{\sigma_k} \equiv 0 \pmod{p}$ if and only if $S_k \equiv 0 \pmod{p}$. Now

$$S_k = \sum_{v} v^{k(q-1)/4} (1-v)^{k(q-1)/4} = \sum_{v} \sum_{j=0}^{k(q-1)/4} (-1)^j v^{k(q-1)/4+j} \binom{k(q-1)/4}{j}.$$

But

$$\sum_{v \in \mathbf{F}_{\mathbf{d}}} v^{j} = \begin{cases} 0 & \text{if } (q-1) \not\mid j, \\ q-1 & \text{otherwise}. \end{cases}$$

This gives $S_1 \equiv 0 \pmod{p}$, and

$$S_3 \equiv (-1)^{(q-1)/4} {3(q-1)/4 \choose (q-1)/4} \pmod{p}$$
.

However for x=1,2,3, the exact power of p dividing (x(q-1)/4)! is ((q-1)/(p-1)-n)x/4. Hence the exact power of p dividing $\binom{3(q-1)/4}{(q-1)/4}$ is $((q-1)/(p-1)-n)\cdot\frac{1}{4}\cdot(3-1-2)=0$. Thus $S_3\not\equiv 0\pmod p$. This completes the proof of Lemma 2.

LEMMA 3. $(R(1,1)) = \mathfrak{p}^n$, as ideals.

PROOF. This follows from Lemma 2, noting that $(p) = \overline{\mu} \overline{\nu}$ and $R(1,1)\overline{R(1,1)} = q = p^n$.

LEMMA 4. For $p \equiv 1 \pmod{4}$, the conditions $R(1,1) \equiv (-1)^{f+1} \pmod{(2+2i)}$, and $(R(1,1)) = p^n$, fix R(1,1) completely.

PROOF. This follows from Lemma 1.

REMARK. For $p \equiv 1 \pmod 4$, the number of solutions (s,t) of the equations $q = s^2 + t^2$, $s \equiv 1 \pmod 4$ is equal to the number of ideals a in Z[i] such that $a\bar{a} = q$. (More precisely, let (s_0, t_0) be any given solution of $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod 4$. Then (s,t) is a solution of $q = s^2 + t^2$, $s \equiv 1 \pmod 4$ if and only if $s + it = (s_0 + it_0)^j (s_0 - it_0)^{n-j}$ for some $0 \le j \le n$.) This number is n+1. We should like to know which of these n+1 solutions gives rise to R(1,1) = -s + it. For this we first note that of these n+1 solutions there are exactly two solutions such that $p \not \mid (-s+it)$, viz. those for which -s+it has prime ideal factorization p^n or p^n . Hence these two solutions correspond to R(1,1) and R(1,1). Also, $p \not \mid (-s+it)$ is equivalent to saying that $p \not \mid s$. (This follows from $q = s^2 + t^2$.) We have thus proved

PROPOSITION 2. For $p \equiv 1 \pmod{4}$, if s and t satisfy $q = s^2 + t^2$, $p \nmid s$, $s \equiv 1 \pmod{4}$, then -s + it = R(1, 1) or R(1, 1) and conversely.

Compare with Theorem 3.2 in [7] and Lemma 18 of [10]).

The proposition shows that the diophantine conditions $q = s^2 + t^2$, $p \nmid s$, $s \equiv 1 \pmod{4}$ determine s uniquely and t upto sign. We now determine which t gives R(1,1) = -s + it with the aid of the following

LEMMA 5. For $p \equiv 1 \pmod{4}$, let $q = s^2 + t^2$, $p \nmid s$. Then $\mathfrak{p} \mid (-s + it)$ if and only if $b \equiv s/t \pmod{p}$.

PROOF. The conditions $q=s^2+t^2$, $p \nmid s$ imply that -s+it is the power of a single prime divisor of p. Hence $\mathfrak{p} \mid (-s+it)$ if and only if $p \mid (b-i)(-s-it)$, and noting that $b \equiv i \pmod{\mathfrak{p}}$ if and only if $-s+it \equiv t(b-s/t) \pmod{\mathfrak{p}}$, the lemma follows.

COROLLARY. For $p = s_0^2 + t_0^2$, $p = (-s_0 + it_0)$ if and only if $b \equiv s_0/t_0 \pmod{p}$.

Since $\mathfrak{p}|R(1,1)$ but not $\overline{R(1,1)}$ we have

PROPOSITION 3. Let $p \equiv 1 \pmod{4}$. Let $s, t \in \mathbb{Z}$ be uniquely determined by $q = s^2 + t^2$, $p \not\mid s$, $s \equiv 1 \pmod{4}$, and $v^{(q-1)/4} \equiv s/t \pmod{p}$. Then R(1,1) = -s + it and conversely.

LEMMA 6. Let $p \equiv 1 \pmod{4}$. Then with obvious notation $R(1,1;q) = (-1)^{n+1} (R(1,1;p))^n$, where R(1,1;p) corresponds to a primitive root $q \pmod{p}$ satisfying $q^{(p-1)/4} \equiv v^{(q-1)/4} \pmod{p}$.

PROOF. Each side has absolute value \sqrt{q} , and each side has prime ideal factorization p^n where p is the unique prime divisor of p which also divides $v^{(q-1)/4} - i = g^{(q-1)/4} - i$. Also, if q = 1 + 4f and $p = 1 + 4f_0$, then $(-1)^f = (-1)^{nf_0}$, so each side has the same residue $(-1)^{f+1} \pmod{(2+2i)}$. Hence the result follows by Lemma 1.

PROPOSITION 4. Let $p \equiv 1 \pmod{4}$. Let s and t be as in Proposition 3 and let s_0, t_0 be uniquely determined by $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod{4}$, and $v^{(q-1)/4} \equiv s_0/t_0 \pmod{p}$. Then

$$s = s_0^n - \binom{n}{2} s_0^{n-2} t_0^2 + \binom{n}{4} s_0^{n-4} t_0^4 - \dots ,$$

and

$$t = t_0 \left[\binom{n}{1} s_0^{n-1} - \binom{n}{3} s_0^{n-3} t_0^2 + \dots \right].$$

PROOF. Under the given conditions, $R(1,1; p) = -s_0 + it_0$ (g to be chosen as in Lemma 6). Hence by Lemma 6,

$$-s+it = (-1)^{n+1}(-s_0+it_0)^n = -(s_0-it_0)^n.$$

Thus

$$s-it = (s_0 - it_0)^n$$

$$= \left[s_0^n - \binom{n}{2} s_0^{n-2} t_0^2 + \binom{n}{4} s_0^{n-4} t_0^4 - \dots \right] -$$

$$-it_0 \left[\binom{n}{1} s_0^{n-1} - \binom{n}{3} s_0^{n-3} t_0^2 + \binom{n}{5} s_0^{n-5} t_0^4 - \dots \right].$$

REMARK. In view of Proposition 4, for $p \equiv 1 \pmod{4}$ one now does not require to find the values of s and t in $q = s^2 + t^2$, $p \nmid s$, $s \equiv 1 \pmod{4}$, by trial for each n separately; it is sufficient to know the result just for n = 1. Trials to find both s and s_0 may also be avoided using the results of Gauss (for s_0) and Storer (for s) (see Theorem 8, p. 52 of [13]) viz. $2s_0$ is the unique even integer between -p and p which is congruent to $\binom{2f_0}{f_0}$ (mod p), where $p = 1 + 4f_0$, and $p = 1 + 4f_0$, where $p = 1 + 4f_0$.

LEMMA 7. Let $q \equiv 1 \pmod{4}$. (p may $be \equiv \pm 1 \pmod{4}$.) For a given generator v of \mathbf{F}_q^* , write R(1,1) = -s + it. Then the cyclotomic numbers of order 4 for \mathbf{F}_q , related to v, are those given in the statement of Theorem 1.

PROOF. This result follows from the calculations in the proofs of Lemmas 19 and 19' on pp. 48-51 of [13]. For q = p, the formulae appear in the work of Gauss ([7, p. 83 and 87]) or Dickson ([5, pp. 400-401]).

PROOF OF THEOREM 1. This now follows by combining Propositions 1, 3, 4 with Lemma 7.

3. The evaluation of the Jacobsthal sum $\Phi_2(a)$ in F_q .

The Jacobsthal sum $\Phi_2(a)$, for F_q , $q \equiv 1 \pmod{4}$, $a \in F_q$, $a \neq 0$, is defined by

$$\Phi_2(a) = \sum_{v \in F_q} \left(\frac{v(v^2 + a)}{q} \right),\,$$

where (\cdot/q) is the Legendre symbol in F_q . (The Jacobsthal sum may be defined even if a=0 or $q \not\equiv 1 \pmod 4$), but then it is trivial to evaluate it.) The theory developted in section 2 will enable us to evaluate $\Phi_2(a)$ correctly and thus remove the sign ambiguity of Jacobsthal and later authors. To this end we first have

LEMMA 8.
$$\Phi_2(a) = (a/q)[\chi(a)R(1,1) + \overline{\chi(a)R(1,1)}].$$

PROOF. By Theorem 2.7, p. 376 of [2],

$$\Phi_2(a) = \chi(-1) \left[\chi^{2+1}(a) \chi(4) R(1,1) + \chi^{2+3}(a) \chi(4) R(3,3) \right]$$

= $\chi(-4) \chi^2(a) \left[\chi(a) R(1,1) + \overline{\chi(a) R(1,1)} \right].$

But for $q \equiv 1 \pmod{4}$, -4 is a fourth power in F_q . Also $\chi^2(a) = (a/q)$. This proves the lemma.

PROOF OF THEOREM 2. For $q \equiv 1 \pmod{4}$, let R(1,1;q) = -s + it, and in case $p \equiv 1 \pmod{4}$, let $R(1,1;p) = -s_0 + it_0$, where g and v are related as in Lemma 6. Then

$$s = s_0^n - \binom{n}{2} s_0^{n-2} t_0^2 + \dots, \quad \text{and}$$

$$t = t_0 \left[\binom{n}{1} s_0^{n-1} - \binom{n}{3} s_0^{n-3} t_0^2 + \dots \right].$$

If $p \equiv -1 \pmod{4}$, $s = (-p)^{n/2}$, t = 0. If $p \equiv 1 \pmod{4}$, s, s_0 are determined uniquely by $q = s^2 + t^2$, $p \nmid s$, $s \equiv 1 \pmod{4}$, and $p = s_0^2 + t_0^2$, $s_0 \equiv 1 \pmod{4}$ respectively. If a is a fourth power in F_a , then

$$\Phi_2(a) = -s + it + (-s - it)$$
$$= -2s$$

If a is a square but not a fourth power in F_q , then

$$\Phi_2(a) = s - it + (s + it)$$
$$= 2s.$$

Let now a be a nonsquare in F_q . Let v be a chosen generator of F_q^* satisfying

$$v^{(q-1)/4} \equiv a^{(q-1)/4} \pmod{p}$$
.

Then t, t_0 are uniquely determined by

$$a^{(q-1)/4} \equiv \frac{s}{t} = \frac{s_0}{t_0} \pmod{p}$$
.

Also it follows that for the chosen ν , $\chi(a)=i$. Thus

$$\Phi_2(a) = -[i(-s+it)-i(-s-it)]$$

= 2t.

This proves the theorem.

4. An example.

Let p=5, $q=p^2=25=1+4f$. Thus f is even, $q=s^2+t^2$, $s\equiv 1 \pmod 4$ has three solutions viz. $(-3,\pm 4)$ and (5,0). The condition $p \nmid s$ rejects the last solution. Thus s=-3, $t=\pm 4$. Take

$$F_q = \{l + m\omega \mid l, m \pmod{5}, \omega^3 = 1, \omega \neq 1\}.$$

For the generator $v = 2 + \omega$ of F_q^* ,

$$v^{(q-1)/4} = v^6 \equiv -2 \pmod{5}.$$

Hence the condition $v^{(q-1)/4} \equiv s/t \pmod{p}$ gives t=4. Thus using the formulae in Theorem 1 for f even, the cyclotomic numbers (i,j) of order 4 in F_q corresponding to v are correctly given by the matrix

<u>i</u> .	j	0	1	2	3
0		2	2	1	0
1		2	0 2	2	2
2		1		1	2
3		0	2	2	2

which may be verified by direct calculation also.

For $a = -2 + \omega$, $a^{(q-1)/4} \equiv s/t \pmod{p}$ gives t = -4, so $\Phi_2(a) = 2t = -8$ by Theorem 2. This agrees with the result obtained by direct calculation, since it may be checked that for $x \neq 0$, $x^3 + ax$ is a square for 8 values of x and a nonsquare for 16 values of x, so that $\Phi_2(a) = 8 - 16 = -8$.

Note that the s_0 , t_0 of Theorems 1 and 2 in these cases are respectively 1,2 and 1, -2, and they yield correct results.

REFERENCES

- B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398.
- B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), 374-437.
- 3. J. W. S. Cassels and A. Fröhlich, *Algebraic number theory*, (Proc. Conf. Brighton, 1965), p. 284. Academic Press, London, New York, 1967.
- 4. H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen, J. Reine Angew. Math. 172 (1935), 151-182.
- 5. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
- 6. R. J. Evans, Determination of Jacobsthal sums, Pacific J. Math., to appear.
- 7. C. F. Gauss, Theoria Residuorum Biquadraticorum, Werke, vol. 2 (1876), 67-92.
- 8. M. Hall, Jr., Characters and cyclotomy, (Proc. Symp. Pure Math. 8), pp. 31-43. Amer. Math. Soc., Providence, R.I., 1965.

- 9. R. H. Hudson and K. S. Williams, Resolution of ambiguities in the evaluation of cubic and quartic Jacobsthal sums, Pacific J. Math. 99 (1982), 379-386.
- 10. E. Jacobsthal, Über die Darstellung der Primzahlen der Form 4n+1 als Summe zweier quadrate, J. Reine Angew. Math. 132 (1907), 238-245.
- 11. S. A. Katre, *Jacobsthal sums in terms of quadratic partitions of a prime*, (Proc. conference in Number Theory held at Ootacamund, India, 1984). To appear in Lecture Notes series Springer-Verlag.
- 12. E. Lehmer, On the number of solutions of $u^k + D \equiv w^2 \pmod{p}$, Pacific J. Math. 5 (1955), 103-118.
- 13. T. Storer, Cyclotomy and difference sets I, Markham Publ. Co., Chicago, 1967.

CENTRE FOR ADVANCED STUDY IN MATHEMATICS PANJAB UNIVERSITY CHANDIGARH, 160014 INDIA