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RESOLUTION OF THE SIGN AMBIGUITY IN
THE DETERMINATION OF THE CYCLOTOMIC
NUMBERS OF ORDER 4 AND THE
CORRESPONDING JACOBSTHAL SUM

S. A. KATRE and A. R. RAJIWADE

1. Introduction.

In his Werke ([7, pp. 79-87]), Gauss, by a wholly elementary
procedure, obtained formulae for cyclotomic numbers of order 4 for a
prime p=1 (mod 4), in terms of the quadratic partition p=s3+1t3, so=1
(mod 4), (which fixes s, uniquely and ¢, upto sign). This result may also be
found in the work of Dickson ([5, pp. 400—401]). However, Gauss and
Dickson did not resolve the sign ambiguity in t,, viz. given a generator g of
F3, it is not clear which sign of ¢, gives correct formulae for the cyclotomic
numbers corresponding to g. The corresponding result of M. Hall ([8,
Theorem 3.2]) for F, (g=p"=1(mod 4)) also has a similar sign ambiguity
in the case when p=1 (mod 4). (See also Storer [13, Lemmas 19, 19, p. 48
and p. 51].) The main object of this paper is to resolve this sign ambiguity.
Indeed we prove the following:

THEOREM 1. Let p be an odd prime, q=p"=1 (mod 4),q=1+4f. Let v be
a generator of F¥. If p=—1(mod4), let s=(—p)y’* and t=0. If p
=1(mod 4), define s uniquely by q=s*>+1t2, p /' s, s=1(mod 4), and then t
uniquely by v@~ V% =5/t (mod p). Then the cyclotomic numbers of order 4
for F,, corresponding to v, are determined unambiguously by the following
Jormulae:

A = (0,0) = {5(q—11-6s)

B=(0,1) = (1,0) = (3,3) = 45(q—3+2s+4t)

C= (0,2 = (20 = (2,2) = 16(g—3+29),

D=(03)= (30 = (1,1) = &(g—3+2s—41),
E=(12)=21)=@13)=@G31=(2,3=032=1q+1-29),
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and for f odd,

A = (0,0) = 2,0) = (2,2) = fs(g—7+29),

B=(0,1) = (1,3) = 3,2) = &(q+1+2s—4t),

C =0(0,2) = {s(g+1-6s),

D=(0,3)=(2=(3,1) = &(@+1+2s+41),
E=(10=(1L1)=@21)=(23) =30 = 3,3) = &@-3-25).

(This solves the cyclotomic problem in this case completely.)

Also, for p=1(mod 4), if sy, to are uniquely determined by p=s3+t3,
so=1(mod 4), and v9~ VW4 =5,/t, (mod p), then the s and t in the above
formulae are given by

s = sﬁ—(';)s’(','zt%+(2)s'6"4t3— .
n - n —
t = to[(1>s'5 ‘—<3)s'5 3t%+...].

The above described ambiguity for cyclotomic numbers of order 4 runs
parallel to the sign ambiguity in the well known Jacobsthal sum defined by

and

0,@) = @ q) = ¥ ("—"‘%i‘-‘l) aeF?, (g=p'=1(mod4))

xeF,
where (./q) is the Legendre symbol in F,. This ambiguity is apparent in the
following result of Jacobsthal (g=p case) (see also [1, pp. 384-385]).

ProrosiTioN (Jacobsthal [10], 1907). For p=1 (mod 4), p=si+ti,
So=1 (mod 4), one has,

—2sy, if ais a fourth power (mod p),
D,(a; p) = 2s9, if a is a square but not a fourth power (mod p),
+2t,, if ais not a square (mod p).

The ambiguity in the sign of ¢, in the results of Jacobsthal remained
unresolved for quite some time. In 1935, Davenport and Hasse ([4, § 7 I1,
pp. 176-178]) obtained ®,(a) in terms of the two normalized prime
factors mn, @ of p=n=n7 in Z[i] and the quartic residue symbol. (See the
formulation of H. P. F. Swinnerton-Dyer in [3, p. 284] for the case g=p.
From the formuls for N, there, we get ®,(a; p) by N,=p+1+9,
(—D; p).) The ambiguity in Jacobsthal’s result was resolved by E. Lehmer
([12, Theorems 2 and 4]) in the case when 2 is a quartic nonresidue of
p=1(mod4).
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Recently, Hudson and Williams [9], Evans [6], and Katre
(independently) [11], have resolved this sign ambiguity completely in the
case g=p by different methods. However for g=p" (n>1) only partial
results are known. For q=p?, see the results of Berndt and Evans (with
sign ambiguities) in [2, Theorems 6.1 and 6.2]. For a general g, the result
for @,(1) may be found in Storer’s book [13, p. 56]. The second aim of
this paper is to obtain unambiguous results for @,(a,p"), n=1. This is
achieved in the following

THEOREM 2. Let q=p"=1 (mod4). Leta € F,,a+0. If p= —1 (mod 4),
let s=(—p)"* and t=0. If p=1 (mod 4), define s uniquely by q=s+1t?,
pts, s=1(mod4), and in case a is not a square in F,, define t uniquely in
terms of a by a9~ V4 =5/t (mod p). Then ®,(a) is unambiguously given by

—2s if ais a fourth power in F,,
®,(a) = 2s if a is a square but not a fourth power in F,,
2t ifais not a square in F .

Also, for p=1 (mod4), g=p", if s, and t} are uniquely given by p=s3
+1t3,50=1 (mod 4), and in case a is not a square in F o Lo 1s uniquely given
by a9~ V4 =5y/t, (mod p), then we have the alternative formulation

—2 sa—(")sn2e2+ ... if a is a fourth power in F,,
2 q
®,(a) = ol 2 (" 224 if a is a square but not a
2 07\ 20 ot fourth power in F,,

2t0[<'11) o“—<§)$‘3t3+ - ] if a is not a square in F,.

In section 2, we give the proof of Theorem 1 and in section 3, that of
Theorem 2. In section 4, we give an example.

REMARK. For a,b #0in F, (=1 (mod 4)), Theorem 1 enables us to find
the number N, of solutions of the equation ax*—by*=1 in F,, this
number being 16(k, h)+ Ny (a)+ No(—b), where for any chosen generator
vof F}, h=ind,a (mod 4), k=ind, b (mod 4), and for u € F}, N (u)=4 or
0 according as u is or is not a fourth power in F,. Also, Theorem 2 enables
us to find the number N, of solutions of y>=ax*—b, a,be F %, since
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N, =q+ Y (ax4_b> =q+(a/q) ) (x4_b/a>

xeF, q q
= g+ (a/q){®,(—b/a)-1} .
The number of solutions of y?>=x3+ax in F o is given by q+®,(a).

2. The unique determination of cyclotomic numbers of order 4.

Let p be an odd prime, g=p"=1 (mod 4), g=1+4f, v be a generator of
the cyclic group F}, F, being the finite field of q elements. Let x be the
character on F,, satisfying x(0)=0, x(v)=i. Then for h,k modulo 4, the
cyclotomic numbers (h,k) and the Jacobi sums R(h,k) of order 4 are
defined by

(h,k) = the number of v € F, such that ind,v=h (mod 4) and
ind,(v+1) = k (mod4),
R(h,k) = 2‘; X1 -v).
veF,
(Here x°(0)=0, unlike on p. 44 in [13].

Note that our R(h, k) is the J,(h, k) defined on p. 44 of [13], and so by
Lemma 15, p. 44 of [13], it is equal to the R(h, k) defined on p. 43 therein,
whenever none of h,k, h+k is divisible by 4. By Lemma 13 of [13], we
have R(1,1), R(1,1)=q and by Lemma 14 of [13], R(1,1)=(-1)
R(2,1).

But

R(2,1) D*Zo ) Ypd-v),
= Y (Pw+1)xd-v)- ; x1-v),
v*¥0,1 v¥0,1

= Y (P@+1)+x1) (mod(2+2i),

v¥0,1
= —x*(1)+q9-2+1,
= g-2= —1 (mod(2+2i).
This gives R(1,1)=(—1)** (mod (2+2i)).

“We note that if we write R(1,1)= —s+it, then g=s?>+t?, and the
congruence condition on R(1,1) is equivalent to saying that s=1 (mod 4).

LemMa 1. If a, B € Z[i] are comprime to 1+i and they satisfy (¢)=(B),
and a=P (mod (2+2i)), then a=4.
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ProoF. By the first condition, a = fn, where n is a unit in Z[i], hence a
root of unity. Since a, B are coprime to 1+, the second condition forces
that =1 (mod (2+2i)). Hence n=1.

In view of this lemma, R(1, 1) is fixed completely if one knows the prime
ideal decomposition of R(1,1). We achieve this in what follows:

CasE (i). Let p= —1 (mod 4). Since g=1 (mod 4), we get that n is even
and so is f. p itself stays prime in Z[i] and so R(1,1) R(1,1)=q gives
(R(1,1))=(p)"? as ideals. This forces that R(1,1)=—(—p)”?. We have
thus proved

PropoOSITION 1. Let p=—1 (mod4), g=p", gq=1 (mod4), then the
system of diophantine equations q=s*+1t2, s=1 (mod4) has a unique
solution viz. s=(—p)"?, t=0. For this solution, R(1,1)= —s+it.

Cask (ii). Let p=1 (mod 4). In this case p is the product of two distinct
prime ideals in Z[i]. Let b=v4~Y'* Then b € F,. By abuse of notation, let
b also denote any rational integer =v'9~ 14 (mod p). Then (b—i)(b+i)=0
(mod p). One checks at once that there is a unique prime divisor p of p
which also divides b—i. Then p=pp. We now have

LemMa 2. Let J=R(1,1). Then p|J but pt 7.
Proor. For k=1, 3, let 6, be the automorphism of Q(i) satisfying o,(i)
=i, Thus J=J%, J=J°,. Let

S, = Y oMe- 4] _p)a- 14
veF,
Since v~ 1* € F, S, may be considered as an integer modulo p. We have,
J=8, = Y X —v)—oMe- A —p)aDIe] |

veF,
= Z X"(U){x"(l -v)—(1 _v)k<q— 1)/4} +
+Z(1 —v)k(q— 1)/4{xk(v)_vk(q— 1)/4} .
Each term in the curly brackets is divisible by b —i modulo p. Therefore,

J%=0 (mod p) if and only if S;,=0 (mod p) if and only if S,=0 (mod p).
Now

v v j=0 J

But
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i - 10 if (@—1)47j,
l,;" v = {q——l otherwise .

This gives §; =0 (mod p), and

S, = (—1)(:1—1)/4(3(51‘1:11)}?) (mod p) .

However for x=1,2,3, the exact power of p dividing (x(q—1)/4)! is
((@—1)/(p—1)—n)x/4. Hence the exact power of p dividing (37))¢") is
(@-1)/(-1)—n)-%- (3—1—-2)=0. Thus S3%0 (mod p). This completes
the proof of Lemma 2.

LemMA 3. (R(1,1))=yp", as ideals.

Proor. This follows from Lemma 2, noting that (p)=pp and
R(1,1)R(1,1)=q=p"

LemMMA 4. For p=1 (mod4), the conditions R(1,1)=(—1)/*1!
(mod (2+2i)), and (R(1,1))=p", fix R(1,1) completely.

Proor. This follows from Lemma 1.

ReMARK. For p=1 (mod4), the number of solutions (s,t) of the
equations g =s? +t2, s=1 (mod 4) is equal to the number of ideals a in Z[i]
such that aa=gq. (More precisely, let (so,t,) be any given solution of
p=s3+t3, so=1 (mod4). Then (s,t) is a solution of g=s2+1¢2, s=1
(mod 4) if and only if s+ it = (5o +ito ) (s, —ito)" 7 for some 0<j<n.) This
number is n+1. We should like to know which of these n+1 solutions
gives rise to R(1,1)= —s+it. For this we first note that of these n+1
solutions there are exactly two solutions such that p } (—s+it), viz. those
for which —s+it has prime ideal factorization p" or p". Hence these
two solutions correspond to R(1,1) and R(1,1). Also, p ¥ (—s+it) is
equivalent to saying that p ts. (This follows from g=s%+t2.) We have
thus proved

PRrOPOSITION 2. For p=1 (mod 4), if s and t satisfy q=s*+t%,p ts,s=1
(mod 4), then —s+it=R(1,1) or R(1,1) and conversely.

Compare with Theorem 3.2 in [7] and Lemma 18 of [10]).

The proposition shows that the diophantine conditions g =s2+1t2,p /s,
s=1 (mod4) determine s uniquely and ¢ upto sign. We now determine
which ¢ gives R(1,1)= —s+it with the aid of the following
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LEMMA 5. For p=1 (mod 4), let g=s?>+t2, p /' s. Then p| (—s+it) if and
only if b=s/t (mod p).

Proor. The conditions g=s>+t2, pts imply that —s+it is the
power of a single prime divisor of p. Hence p|(—s+it) if and only if
p| (b—i)(—s—it), and noting that b=i(mod p) if and only if
—s+it=t(b—s/t) (mod p), the lemma follows.

CoRrOLLARY. For p=s3+t3, p=(—so+ity) if and only if b=sy/t,
(mod p).

Since p|R(1,1) but not R(1,1) we have

PROPOSITION 3. Let p=1 (mod 4). Let s,t € Z be uniquely determined by
q=s*>+t%,pks,s=1(mod4), and v¢~ V'* =5/t (mod p). Then R(1,1)= —s
+it and conversely.

LEMMA 6. Let p=1 (mod4). Then with obvious notation R(1,1; q)
=(—11*YR(@,1; p))", where R(1,1; p) corresponds to a primitive root g
mod p satisfying g?~ V4 =v4~ V4 (mod p).

Proor. Each side has absolute value ]/E, and each side has prime ideal
factorization p”" where p is the unique prime divisor of p which also divides
Va4 _j=gla=D4_;  Also, if q=1+4f and p=1+4f,, then (—1)
=(—1)", so each side has the same residue (—1)*! (mod (2+2i)).
Hence the result follows by Lemma 1.

PROPOSITION 4. Let p=1 (mod 4). Let s and t be as in Proposition 3 and
let so,to be uniquely determined by p=s3+t3, so=1 (mod 4), and v~ /4
=S5¢/to (mod p). Then

s = sa—(;>s3'2t5+(2)s'6'4t3— e

t = to[('ll)sg"l —(g)sﬁ'3tﬁ+ .. ] .

Proor. Under the given conditions, R(1,1; p)= —so+it, (g to be
chosen as in Lemma 6). Hence by Lemma 6,

and

—s+it = (=1 (=so+ite) = —(so—ito)" -
Thus
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s—it = (So - ito)n

- n\ .-
= l:sa—(;)s'() 2t?,+(4)s'5 “tﬁ——...]—-
(- (@) (aa ]

REMARK. In view of Proposition 4, for p=1 (mod 4) one now does not
require to find the values of s and t in g=s*>+t2, pts, s=1 (mod 4), by
trial for each n separately; it is sufficient to know the result just for n=1.
Trials to find both s and s, may also be avoided using the results of Gauss
(for so) and Storer (for s) (see Theorem 8, p. 52 of [13]) viz. 2s, is the
unique even integer between — p and p which is congruent to (2f°) (mod p),
where p=1+4f,, and 2s is the unique even integer between —q and q
which is congruent to (*/) (mod q), where g=p"=1+4/.

LEMMA 7. Let g=1 (mod4). (p may be=+1 (mod4).) For a given
generator v of F}, write R(1,1)= —s+it. Then the cyclotomic numbers of
order 4 for F,, related to v, are those given in the statement of Theorem 1.

Proor. This result follows from the calculations in the proofs of
Lemmas 19 and 19’ on pp. 48-51 of [13]. For g=p, the formulae appear in
the work of Gauss ([7, p. 83 and 87]) or Dickson ([5, pp. 400—401]).

Proor oF THEOREM 1. This now follows by combining Propositions 1,
3, 4 with Lemma 7.

3. The evaluation of the Jacobsthal sum &,(a) in F,.
The Jacobsthal sum @, (a), for F,,q=1 (mod4),a € F,, a+0, is defined

by
®,(a) = Z (v(u2+a)) ’

veF, q

where (- /q) is the Legendre symbol in F,. (The Jacobsthal sum may be
defined evenifa=0o0r g3 1 (mod 4), but then itis trivial to evaluateit.) The
theory developted in section 2 will enable us to evaluate @, (a) correctly and
thus remove the sign ambiguity of Jacobsthal and later authors. To this end
we first have

LemMA 8. @,(a)=(a/q)[x(@)R(1,1)+x(a)R(1,1)].
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Proor. By Theorem 2.7, p. 376 of [2],
®2(a) = (=D @x@R(1, 1) +x* 3@ (4)R(3,3)]
(=42 @)[x(@R(1,1)+x(@)R(1,1)] .

But for g=1 (mod 4), —4 is a fourth power in F,. Also x*(a)= (a/q). This
proves the lemma.

Proor oF THEOREM 2. For g=1 (mod 4), let R(1,1; g)= —s+it, and in
case p=1 (mod 4),let R(1,1; p)= —s, +ity, where g and v are related as in
Lemma 6. Then

s = s’5—<2)s3"2t§+..., and

-]

If p=—1 (mod4), s=(—p)”?,t=0.If p=1 (mod 4), s, s, are determined
uniquely by g=s2+t2, pt's, s=1 (mod4), and p=s3+t3, s, =1 (mod 4)
respectively. If a is a fourth power in F,, then

D,(a) = —s+it+(—s—it)
= —25.

If a is a square but not a fourth power in F,, then

D,(a) = s—it+(s+it)
= 25.

Let now a be a nonsquare in F,. Let v be a chosen generator of F}
satisfying

ya~ D4 = @0/ (mod p) .

Then t,t, are uniquely determined by
@-v4 =5 _ So
a =t 14 (mod p) .

Also it follows that for the chosen v, y(a)=i.
Thus
D,(a) = —[i(—s+it)—i(—s—it)
2t .

This proves the theorem.
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4. An example.

Let p=5,q=p?=25=1+4f. Thusfis even, g =52 +t2, s=1 (mod 4) has
three solutions viz. (— 3, +4) and (5,0). The condition p / s rejects the last
solution. Thus s= —3, t=+4. Take

F,={l+mw| I,m (mod5), =1, w+1}.
For the generator v=2+w of F},
Va4 = 46 = _2 (mod5).

Hence the condition v¥~Y*=gs/t (modp) gives t=4. Thus using the
formulae in Theorem 1 for feven, the cyclotomic numbers (i,j) of order 4
in F, corresponding to v are correctly given by the matrix

J

[T S ]

SR NN O
NN O N =
N == N
NN O| W

which may be verified by direct calculation also.

For a= —2+w, a® V4 =5s/t (mod p) gives t=—4, so ®,(a)=2t= —8
by Theorem 2. This agrees with the result obtained by direct calculation,
since it may be checked that for x %0, x* +ax is a square for 8 values of x
and a nonsquare for 16 values of x, so that @,(a)=8—-16= —8.

Note that the s, ¢, of Theorems 1 and 2 in these cases are respectively
1,2 and 1, —2, and they yield correct results.
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